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L2-COHOMOLOGY OF NONCOMPACT SURFACES

BY

DAVID R. DeBAUN1

Abstract. This paper is motivated by the question of whether nonzero L2-harmonic

differentials exist on coverings of a Riemann surface of genus s> 2. Our approach

will be via an analogue of the de Rham theorem. Some results concerning the

invariance of Z.2-homology and the intersection number of ¿"-cycles are demon-

strated. A growth estimate for triangulations of planar coverings of the two-holed

torus is derived. Finally, the equivalence between the existence of L -harmonic

one-cycles and the transience of random walks on a planar surface is shown.

-  P
1. Introduction. This work is motivated by the following question: Let S -> S be

an infinite covering of a Riemann surface of genus > 2. Does there exist a nonzero

L2-harmonic differential on SI The motivation for this question comes from the

paper [At] of Atiyah in which the following is proved.

L2-Index Theorem. Let M -* M be a Galois (normal) covering with covering group

T of a compact, smooth manifold M. Suppose E and F are two vector bundles over M

and D: CX(E) -* CX(F) a linear, elliptic differential operator. Let Ë, F, and D be

pullbacks to M of E, F, and D. Denote byJf(D) the space of solutions of Du = 0, and

by Jf ( D ) the space of L2 solutions of Du = 0. Then

indexTD = dim Jif(D) - dim 3f(D*)

= dimTJif(D) - dimrJf (£>*) = indexr/J,

where D* is the adjoint of D and dimr is the dimension function on the von Neumann

algebra of bounded operators on L2(E) (or L2(F)) which commute with the action of

r.

For our purposes the exact nature of dimr is not important. In particular we have

the following

Corollary. // index D > 0, then the equation Du = 0 has a nontrivial L2 solution

on M.

Atiyah goes on to ask whether this corollary remains true for coverings which are

not Galois. His guess is that it is probably not true, but that counterexamples would

be difficult to construct. One simple case to investigate is the following. Let S -* S
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be an infinite covering of a compact Riemannian surface of genus ^ 2. Equip 5 with

the pullback metric and consider the operator d + d*: A1 -» A2 © A0, where Ak is

the space of smooth /c-forms and d is the exterior derivative. Then index D = -%(S)

= 2g - 2 > 0, so the question reduces to whether there exist nontrivial harmonic L2

differentials on S, the question posed at the outset.

By the Corollary to the L2-index theorem, L2-harmonic differentials will always

exist if S is a normal covering. Also, if S has genus > 1, let y be a cycle which does

not separate. Then one can construct an L2-harmonic differential whose period over

y is one. Thus the only outstanding case is when 5 is a planar, non-Galois covering

of S.

Our approach is via an analogue of the de Rham theorem. Let M -» M be an

infinite covering of a compact Riemannian manifold M, with K a triangulation of M

and K its lift to M. Let C^(K) be the space of square summable chains, that is, all

formal sums Laao such that Ea2 < oo. Then CP(K) is a Hubert space. The

boundary operator dp: CP(K) -» CpX(K) is bounded, and we define L2-homology

as H^(K) = ker8/,/im3;7+1. By the Hodge decomposition this is isomorphic with

the kernel of the simplicial Laplace operator A^ = 9p+19*+1 + 9*8" . We call the

chains in the kernel of A-harmonic cycles.

For a triangulated surface, a harmonic one-cycle satisfies the following two

conditions. First, the flow into a vertex equals the flow out of that vertex. Second,

the flow going around a polygon in one direction equals the flow in the opposite

direction. If the surface is viewed as an electrical network with one ohm resistor on

each edge, then an L2-harmonic cycle represents a current flow over the network

with no current loss at the vertices (Kirchhoff's first law), total voltage drop around

every polygon zero (Kirchhoff's second law) and a finite heat output. L2-harmonic

cycles are difficult to construct. It is much easier to construct an L2-cycle; however,

it is then necessary to show that the cycle is not in the closure of boundaries. One

useful way of showing this is to calculate the intersection number of the cycle with

another cycle. In §3 it is shown that if the intersection number of two cycles is not

zero, then the cycles are nontrivial in L2-homology. Thus to show that a complex has

nonzero L2-homology, it is sufficient to exhibit two cycles whose intersection

number is nonzero. This gives rise to the following result.

Theorem. If a triangulated surface carries an L2-cycle whose support is a tree, then

this cycle is nontrivial in L2-homology.

In addition, in §3 the invariance of L2-homology under certain subdivisions is

shown, and the Poincaré Duality Theorem is shown for L2-homology of certain

triangulations of manifolds.

The connection between simplicial L2-homology and L2-harmonic forms on a

Riemannian manifold is given by the following

Theorem. Integration of forms over Simplexes of K induces an isomorphism of the

space of L2-harmonic forms onto the space of L2-harmonic chains.

This theorem is a consequence of the work of Dodziuk [Dl, Theorem 2.7]. In the

case of surfaces, we see that the existence of L2-harmonic differentials on an infinite
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covering of a compact Riemann surface is independent of the conformai structure on

the surface.

If the surface is planar, then using a theorem of Ahlfors [Ah] the surface admits a

nonzero L2-harmonic one-form if and only if it admits a nonconstant harmonic

function with finite Dirichlet integral. There are many tests for deciding this, one of

which is the following

Theorem [AhS]. Let S be an open Riemann surface with a triangulation K of

bounded distortion. Let o„ denote the number of triangles n steps away from a given

base vertex. IfLx=x I/o,, = oo, then every harmonic function on S with finite Dirichlet

integral is constant.

In §4 the analogous statement for a triangulated surface is shown.

Theorem. Let K be a planar surface triangulated so that the number of edges

meeting at a vertex is uniformly bounded over all vertices. With o„ defined as above, if

Lx=x I/o,, = oo, then there exist no L2-harmonic one-cycles.

Thus the nature of o„ is related to the existence of L2-harmonic one-cycles on a

triangulated planar surface. Since any surface of genus g > 2 is topologically a cover

of the two-holed torus, we need only examine coverings of surfaces of genus two. To

this end the following estimate is shown.

Theorem. For a planar covering of the two-holed torus, t„ > i(i)", where rn is the

number of octagonal fundamental domains n steps away from a given basepoint.

This yields the following

Corollary. // K is a triangulation of the two-holed torus and K is the lift of K to a

planar covering, then o„ ^ B ■ A", where A > 1 and B > 0, so E I/o,, < oo.

In the final section the connection between L2-cohomology and random walk is

explored. In [K], Kakutani showed that on a simply connected Riemann surface, a

particle undergoing Brownian motion returns arbitrarily close to its starting point

with probability one if and only if the surface has no harmonic functions with finite

Dirichlet norm. In this paper we will consider random walks on simplicial com-

plexes. Define a random walk along the vertices of a simplicial complex as follows.

The probabilities of moving in one step from a vertex to any of the vertices

connected to it by an edge are equal, and the probability of moving in one step to a

nonadjacent vertex is zero. A random walk is recurrent if the probability of

returning to one's starting point is one, and transient otherwise. The following

results will be shown.

Theorem. If K is a triangulated surface with a transient random walk, then K has a

nonzero L2-harmonic one-cycle, i.e., H\(K) + 0.

Theorem. Let K be a planar triangulated surface, i.e. every finite cycle is the

boundary of a (possibly infinite) two-complex. If the random walk on K is recurrent

then there exists no nonzero L2-harmonic one-cycle, i.e., H\(K) = 0.
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Corollary. A triangulated planar surface admits a nonzero L2-harmonic one-cycle

if and only if its random walk is transient.

The motivating question concerning the existence of L2-harmonic differentials on

coverings of surfaces of genus > 2 has recently been solved by J. Dodziuk [D2]

working in the smooth setting. Using an isoperimetric inequality similar to the

growth estimate of Lemma 4.4, he showed that every planar covering of a Riemann-

ian surface of genus ^ 2 is hyperbolic and, hence, carries a nonzero L2-harmonic

differential. The techniques and results developed in this paper are of independent

interest and can help to clarify the relationship between the smooth and simplicial

approaches.

2. Preliminaries. Before proceeding with the proofs of the theorems we will need

some preliminary definitions and results.

Let K be a simplicial complex. We define the space of real L2-chains as C^(K) =

{Eaaof£a2 < oo}. With this definition CP(K) is a Hubert space with inner product

(E0fl0o,Ea/J0o) = La0b„.

Definition 2.1. A uniformly locally finite complex is a simplicial complex such that

there exists an integer N so that for all p = 0,1,2,..., dim K - 1, any /»-simplex is

on the boundary of no more than N (p + l)-simplexes.

All of the complexes that we shall have occasion to use will be uniformly locally

finite. Henceforth, the word complex will mean uniformly locally finite complex. The

following lemma is an immediate consequence of uniform local finiteness. (It also

follows from Lemma 3.5.)

Lemma 2.2. For a uniformly locally finite complex the boundary operator is bounded.

Thus we can make the following definitions:

ZP(K) = {ce Cip(K)\dc = 0},

BP(K) = {ce Cip(K)\c = da, a e Cp+l(K)).

HP(K) = ZP(K)/BP(K).

Since 3 is bounded, Z| is closed; so Hp = Zp/Bp forms a Hubert space. Also we

note that 3*: Cf(K) -* CP+1(K), the adjoint of 9, is just the simplicial coboundary

operator ô.

Lemma 2.3 (The Hodge Decomposition). C2p(K) admits the following decomposi-

tion into orthogonal subspaces:

CP(K) = dCf+l(K) $/'« d*Cp~l(K) ,

where

Jfp = {ce Cp(K)\Ac = 0} = {c e Cp(K)\dc = 9*c = 0}.

Proof. That Ac = 0 is equivalent to 9c = 9*c = 0 follows from the observation

that

(Ac, c) = ((99* + 3*9)c, c) = ||9c||2 + ||9*c||2.
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The orthogonality of the summands follows from the fact that 9°9 = (9°9)* =

9* » 9* = 0. Finally we note that

(dcp+l e d*c2p~ï)± = (dcp+l)x n(¥qrï)A~

= ker9* n ker9 = Jfp.       Q.E.D.

Thus HF(K) is isomorphic to3V2P(K), the space of L2-harmonic cycles.

We can also define L2-cohomology as ker 9*/ im 9*, and prove that it is isomor-

phic to Jf2p(K).

Remark. The spaces of L2-chains and L2-cochains are dual via the inner product,

so often we will not distinguish between them. The inner product of two chains (x, y)

can be regarded as the value x(y) of x (considered as a cochain) on the chain y.

Similarly, if x = ¿Zaaa, then aa = (x, o) = x(a). Also, if 5 is a set of oriented

/z-simplexes we can view S as a//--chain defined by S = E„/>eS op, i.e., the chain with

coefficient one on each simplex in S. A chain constructed in this way will be called a

geometricp-chain. If x is a/»-chain, then by x evaluated on 5 we will mean (x, S).

It will be of use later to have an explicit formula for A on zero-chains. Let « be a

zero-chain. Then for a vertex/?,

(Azi, p) = (99*w, p) = (d*u, d*p) =    £   (3*iz, o)(d*p, o)
os/C1'

=    £   («,9o)(/z,9o>.
oe/C»

Now

/  1     if ois an edge coming into p,

(p,da) = (-1    if a is an edge going out of p,

I  0     otherwise.

Corresponding to each edge o touching//, there is a vertex q at its other end, and for

each such o, (u, da) = ±(u(q) - u(p)), depending on whether the edge is oriented

toward p or toward q. The formula above becomes

&u(p)=   £ (u(p) -u(q)) = npu(p) -   £ u(q),

q~p q~p

where q ~ p indicates that q is adjacent top, that is, q and/7 span an edge; and np is

the number of vertices adjacent to p. Thus if Aw = 0,

— L "(?) = "(/>)-
p <i~p

i.e., u has the mean value property.

We will occasionally have need to subdivide our space as a cell complex instead of

a simplicial complex. As with ordinary homology, all the definitions and theorems

can be applied to cell complexes as well as simplicial complexes.

Finally, we denote by N(a) the set U„e(,St(i;), where St(zj) is the set of simplexes

of which v is a vertex. If x and y are /»-chains and 5 is a set of /z-simplexes, we use

(x, y)s and ||x||s to denote LaeS(x, a)(y, a) and ^(x, x)s, respectively.



548 D. R DeBAUN

3. Invariance under subdivision, Poincaré duality and intersection numbers. In [D],

Dodziuk showed that when a triangulation of a Galois covering space is the lift of

the triangulation of a compact base, the L2-cohomology of the covering is invariant

under subdivisions. When the triangulation of an infinite complex is not the lift of

the triangulation of a compact base space, the L2-cohomology may vary between

triangulations. (For example, the plane triangulated as a covering of the torus versus

the disk triangulated as a covering of the two-holed torus.) However, many triangu-

lations do give rise to the same cohomology. In particular we will show the following

Theorem 3.1. // K' is the first barycentric subdivision of a complex K, then

H*(K') = H*(K) (as topological vector spaces, but not necessarily as Hubert spaces).

Before beginning the proof of this theorem we will give some general results useful

for showing that various maps are bounded on L2-chains.

Definition 3.2. Let A" and L be complexes and T: C*(K) -» C*(L) a linear map.

T is vicinal if there exists an N such that for all o e K the number of simplexes

t e L, such that (To,t) =£ 0, is less than N, and for any t e L, the number of

simplexes o e K, such that (To,t) # 0, is less than N.

Lemma 3.3. // T is vicinal and \(To, t)| < M for all o

bounded.

K, t e L, then T is

Proof. ||7x||2 = "LTeL(Tx. t)2. We estimate \(Tx, t)| as follows.

Let x = L a „a. Then

\(Tx,T)\=\(ZaJo,T

so we have

|2>0(7o,t>|<M      E      K
(To.t) *0

£<7Xt)2<a/2z;
T T      \

£      I«
(Ta.r) =•=()

<M2£a     £     a
t a

(To.t) *()

= m2nZ     £    a\
a t

{To.-,) *()

*S M2yV2£i32 = M27V2||x||2

(Schwarz inequality)

Hence, Tis bounded.

Definition 3.4. A linear map T: C-f(Kx) -> C2*(A'2) is local if it is vicinal and

there exists a positive integer n so that whenever there is a simplicial bijection tj:

N"(a) -» N"(t) (where, for a subcomplex L, N(L) is the set of simplexes which

touch L, and N"a = N(N ■ ■ ■ (No) ■ ■ ■ )) with t](o) = t, then there exists a simpli-

cial bijection S: \m(N"a) -> \m(N"j) such that 7"° tj*(o) = S*° T(a). (Im N"a
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denotes the subcomplex supporting the chain T(N"a).) In other words, a local map

has the following three properties:

(1) The image of a simplex o is a chain whose support has less than N-simplexes,

where N is a uniform bound independent of o.

(2) The number of simplexes whose image contains a given simplex is less than N.

(3) The value of the map on a simplex o depends only on the configuration of

simplexes around o.

Many of the maps of algebraic topology are local. For instance, the boundary and

coboundary operators are local. A few, such as the inverse of chain derivation, may

fail to be local because of their nonuniqueness, i.e., the value of the map on a

simplex o involves not only the configuration of simplexes about o, but on arbitrary

choices which must be made. For these maps, instead of requiring the existence of

the map S, we make only the weaker assertion that there exists an L such that

lir°î,,(o)KL||r(o)||.

We will call such maps nearly local.

Lemma 3.5. // T is nearly local, then it is bounded.

Proof. In view of Lemma 3.3 we need only show that there exists an M such that

|(7b, t)| < M. The proof of this lies in the fact that our complexes are uniformly

locally finite and thus have only a finite number of local configurations. That is,

since the number of simplexes in N(o), #(N(a)) < m for all o, then #(N"(a)) <

m", and there are only finitely many simplicial complexes of dimension less than p

which contain at most m "-simplexes. By the definition of a nearly local map, if N"a

and ¿V"t have the same configuration, i.e., if there exists a bijection tj: N"a -» N"t,

then

lir(T)|| = nr«ii,(o)|<L||r(0)||.

Let M be the maximum value of ||7ct|| for all the possible configurations. Then for

any o, t we have 11Tcr11- < L2M2, and thus |(7b, t)|2 < ||7o||2 < L2M2.

We are now in a position to prove Theorem 3.1.

Proof of Theorem 3.1. The proof is exactly the same as for ordinary homology;

one only has to check that the maps involved (the chain derivation 5, its inverse t,

and the chain homotopy G [L, Chapter 5]) are nearly local and, hence, bounded.

This is routine and will be omitted.

From this we get the invariance of L2-cohomology for many subdivisions.

Theorem 3.6. Let K and L be two triangulations of the same space (that is,

\L\ = \K\) and suppose there exists an N such that for any simplex a of K there are at

most N simplexes of L which intersect o. Then H*(K) = H*( L ).

Proof. Again we need only verify that the maps involved in the standard proof

for ordinary homology are nearly local. This follows from the compatibility condi-

tion placed upon the triangulations. It should be noted that the compatibility

condition holds for any of their barycentric subdivisions. To see this we note that if

o e K', then o can still intersect at most N-simplexes of L, and then because the
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subdivision of a /»-simplex contains /» ! /»-simplexes, o can intersect at most n ! N-

simplexes of L', where n is the dimension of K.

Corollary 3.7. The L2-cohomology H*(X) of a covering space X of a compact

space X = | K \ is a homotopy invariant of the covering X -* X.

Proof. The maps on the cover are all lifts of the corresponding maps on the base

and thus are nearly local. Hence, the corollary is a formal consequence of subdivi-

sion invariance, as in the case of ordinary homology of finite complexes.

Remark. The above proposition is a generalization of a result in [D], where it is

proved for Galois coverings.

We now turn to the case where the underlying space is a manifold. Specifically let

us recall the following

Definition 3.8. A combinatorial homology manifold is a connected complex whose

linked complexes Lk ap are homology (n - p - l)-spheres, where Lkap is the

complex such that Stap={apLkap).

If K is a combinatorial homology zz-manifold, then we can define the dual cell

complex K* of K. This is done as follows. Let K' be the first barycentric subdivision

of K. For o e K° in the original triangulation, let

*o°=    U   r"
a°ST"

be the «-cell given as the union of zz-cells of K' which contain o° as a vertex. Then

for each/7-simplex op of the original triangulation, let

*ap =    fl   *o°
a°er,<>

be the intersection of the zz-cells associated to the vertices of qp. The cells K* =

f<f"-p = *ap} give a decomposition of the manifold as the cell complex dual to K.

Then the only (n - /»)-cell of K* which meets the/»-simplex <jp of K is *op, and this

intersection is transverse. Given an orientation of op we give *ap the orientation so

that the orientations match up to give a positive orientation on the manifold. Next

we define the operators * and *"x between Kand K*. We define *: Cf(K) -* C-f(K*)

as the linear extensions of * on simplexes, i.e.,

*   £ a<P   =  £ aa*a.

Because * is a bijection from the cells of K to the cells of K*, we can define *_1:

C2*(/i*)-» C2*(/C)

*~"     £   a0*o   =   £ aaa.

''«Ei* I        oeA"

Thus (*-'/?, o) = (ß,*a).

Let a and ß bep- and (zz - /»)-cycles respectively on K. Now K and /£* both have

K' as a subdivision so by Theorem 3.6, H^(K) = H^(K*), thus we can represent the
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homology class of ß by an (n - p)-cyc\e ß on K*. We define the intersection number

of a and ß by the formula

#(a-ß)= (a,*-lß)=   £   (a,op)(ß,*op).

aP<EK

In order to show that this number is well defined on L2-homology classes we must

show that it is independent of the choice of cycles used to represent the L2-homology

classes of a and ß. As in ordinary homology, we have *°3 = 9*°* and *_1 °9 =

9*°*_1. By the Schwarz inequality, \{x, y)\ < \\x\\ \\y\\, so for fixed y, (x, y) is a

bounded functional on x and therefore continuous. If a e BP(K) and ß e Z"~P(K)

we can write a = \\mn^x'dxn. Then

#(<*•/?) = (a,*~1ß) = ( lim dxn,*-1fi)=  lim (dxn,*-lß)
\ n —» oo /        n -» oo

=  lim (x,„d*(*-lß))=  lim (x„,*-1(9/S)) = 0.
/? —* x '        n—*oc

That is, if a e BP(K) and ß e Z'{-p(K), #(a - ß) = 0. Thus the intersection

number is well defined on L2-homology classes.

This calculation yields the following lemma.

Lemma 3.9. If a e ZP(K) and ß e Z'{-p(K) with #(a ■ ß) * 0, then a and ß are

nontrivial cycles in L2-homology.

We can also define the intersection number of two cycles without reference to the

dual complex K* so long as the intersections between the cycles are transverse. The

above lemma also holds in this case. It is also clear that as in ordinary homology, the

intersection pairing is a bilinear map.

Lemma 3.9 provides a useful way of showing that cycles are nontrivial. What

follows is an application of the lemma to surfaces.

Definition 3.10. A tree cycle is a one-cycle whose underlying graph (i.e., the

union of edges on which it is nonzero) forms a tree (a connected graph with no

loops).

Theorem 3.11. // M is a surface and z is a tree cycle on M, then z is nontrivial in

L2-homology.

Proof. Pick an edge along which there is nonzero flow. Follow the edge forward

and backward along the flow until branching points are reached. Call this path L

(see Figure 3.1). The idea will be to split the cycle z into the sum of two cycles x and

y whose intersection number is nonzero, as in Figure 3.2. By Lemma 3.9, x and y are

nontrivial. Also, as in the case of ordinary homology, it follows from the definition

of intersection number that

#(<x-ß) = (-l)p("-p)#(ß-a),

where a e HP(K), ß e H2"~P(K). Thus #(y ■ y) = -#(y ■ y) for y e H\(M), so

that #(y, y) = 0. It follows that z = x + y is nontrivial, since

#(x+yy)= #(x-y) + #(yy)= #(x - y) * 0.
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Figure 3.1

Figure 3.2

Figure 3.3
All that remains to be shown, then, is that the above construction can actually be

carried out. To do this we first take the barycentric subdivision of the triangulation.

Then we split off a branch flowing in the same direction as the flow through L at

one end of L, and split the cycle starting at the intersection (see Figure 3.3). Next we

split up the cycle so that there is a flow which crosses L just once going along the

length of L. At the other end of L, we would like to send off the remaining flow

down the branches at this end, as in Figure 3.2. However, we may not be able to

divide the branches up so that we can send the proper amount of flow down each of

them (see Figure 3.4). In this case we proceed as in Figure 3.5. Starting with, say, the

upper flow we fill up the branches until we run out of flow. At this point we start

using the lower flow. Using the barycentric subdivision we go parallel to the partially

filled branch (if there is one), and fill it up with the bottom flow, then fill the

remaining branches with the lower flow. If there was no partially filled flow we are

done, otherwise we continue the process using the newly divided parallel flow. In

this way we produce two cycles whose intersection number is nonzero, since they

intersect only at one point. The sum of these two cycles differs from the original

cycle by a multiple of the boundary of the long ribbon which divides the two cycles.

Figures 3.6 and 3.7 give an example of a cycle being divided in this manner. The

shaded region represents the dividing ribbon. The dividing ribbon is in L2 because

the original cycle is. Hence the sum is homologous to the original cycle. By the

analysis at the beginning of the proof we can conclude that the original cycle is

nontrivial.    Q.E.D.
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Figure 3.4

Figure 3.5

Figure 3.6

12

Figure 3.7
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The »-operator can also be used to prove the following

Theorem 3.12 (Poincaré Duality). Let M be an oriented combinatorial homology

manifold. Then the *-operator induces an isomorphism of HP(M) with H^P(M).

Proof. Hp(M) = {z e Cp(M)\àz = (99* + 9*9)z = 0} = Jf{(M). As in

ordinary homology we have the following commutative diagram:

Cf+1(M)       £       Cf(M)       X       C{'l(M)

I* I* I*

C2"-p~1(M)      ¿      C2"-p(M)      *      CÏ~P+1(M)

Denote by AM the simplicial Laplacian on M and by AM„ the simplicial Laplacian

on M*. Then *AW = AM.* and *_1AW, = AM*_1. Thus * induces an isomorphism *:

HP(M) ■=» H^-p(M*). But, by Lemma 3.6, H^~p(M*) = H2n-p(M) and the result

follows.

Just as we can define the intersection number of two cycles, we can define the

period of a cocycle a over a cycle ß as the inner product (a, ß). A similar argument

as with intersection numbers shows that the period is an invariant of the cohomol-

ogy class of a and the homology class of ß. Also we note that (a, ß) = (ß, a)

= (ß,*~l(*a)) = #(ß ■ *a). As with intersection number, if (a,ß) # 0, then a

and ß are nontrivial. A useful consequence of this is the following

Lemma 3.13. Let K be a triangulation of a planar surface with H\(K) =t= 0. Then

there exists on K a nonzero harmonic one-cycle u such that:

(i) u has 0 period over any finite cycle,

(ii) u = 9*x, where x is a 0-chain not necessarily in L2.

Proof. First we note that (ii) follows routinely from (i). To show (i), let u0 be a

nonzero L2-harmonic one-cycle in K. If u0 has period 0 over all finite cycles, then we

are done. Otherwise, let y be a finite cycle over which u0 has nonzero period. Then y

is also a finite cycle on K', and is homologous to a finite cycle y on K*. So *_1y is a

cocycle on K and is cohomologous to an L2-harmonic one-cycle u. If c is any finite

cycle on K, then the period of z< over c is (u,c) = (*_1y, c) = #(c • y). But the

intersection number of any two finite cycles on a planar surface is zero. Thus u has

zero period on any finite cycle. Finally, since u0 has nonzero period over y, y is

nontrivial, and thus so are y and *_1y, hence u is nonzero.   Q.E.D.

4. Growth estimates for coverings. For a planar Riemann surface one can use the

following criterion to show that there are no nonconstant harmonic functions with

finite Dirichlet integral [AhS]. We triangulate the surface using a triangulation of

bounded distortion (see [AhS]). Choose a basepoint v. Then we say a triangle is of

generation n if it is not of generation less than zz, and there is a path consisting of

exactly n edges connecting a vertex of the triangle with v. Then we have
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Theorem [AhS]. Let a„ be the number of triangles of generation n. IfLx=0 I/o,, = oo,

then the surface has no nonconstant harmonic functions with finite Dirichlet integral.

Remark. It is easy to see that the convergence or divergence of El/o„ is

independent of the choice of v and indeed independent of the choice of any finite set

of vertices as vertices of generation 0.

We shall prove the above criterion for triangulations of planar surfaces and show

that the sum converges for planar coverings of compact surfaces of genus 2. First we

need the following lemma.

Lemma 4.1. Let K be a complex such that every geometric one-cycle bounds a

(possibly infinite) geometric two-chain. Let o„ be the number of triangles in K of

generation n, and suppose that El/o„ = oo. If x is an L2-one-cycle on K, i.e.,

d*x = 0, then:

(i) x evaluated on every finite geometric cycle y is 0.

(ii) There is a 0-chainy (not necessarily in L2) such that d*y = x.

Proof. The cycle y is the boundary of a geometric two-chain R. Let Rn be those

triangles in R which are at a distance of zz steps or less from y, and let Qn = dR„ \ y.

Then ||ö„||2 < o„. Since 9*jc = 0, (x, y) = - (x, Qn) for all n. By the Schwarz

inequality,

\(x,y)\ = \(x,Q„)\^\\x\\Qii-\\Q„\\^\\x\\Qiifi~n.

Hence, since the (?„'s are disjoint

l(*,Y>l2-E-^£lWle„<IWI2-
7Í

This is impossible unless (x,y) = 0. This proves (i). Finally, (ii) follows routinely

from (i).

This leads to the following result.

Proposition 4.2. // K is a triangulation of a planar surface with E"=1 I/o,, = oo,

then there exist no nonzero L2-harmonic one-cycles.

Proof. Let x e C2l(K) with d*x = dx = 0. We consider x as a flow along edges

of K. Then 9x = 0 says that no flow is lost at a vertex. Since d*x = 0, no flow can

ever return to form a cycle, for if it did, x evaluated over each edge of the cycle

would be positive, contradicting Lemma 4.1. Hence, moving along edges in the

direction of the flow will produce a curve without self-intersections. Assume x ¥= 0

and let v0 be a vertex through which the flow is not zero. Consider the set Tn of edges

of generation n from v0. Then ||r„||2 is the number of edges in Tn. The flow in

through the edges of T„ must equal the flow out through the edges of T„ which must

be at least as great as the flow through v0 (no flow lost or gained). Denoting the flow

through v0 by F, and denoting by T* those edges of T through which the flow
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travels toward Tn + x, we have

M2>   £     £    (x.o*)2

^   £ —— I    £   (j^o1)       (Schwarz inequality)
7i=i II^Cll" '„'er; i

x     F2 F2   x   1

>  £ —rr ^t ü~ = 0°
«Ti IICII2 3   n-l °«

since ||7^,+ ||2 < ||^,||2 < 3o„ (each triangle of generation zz can have at most 3 edges of

generation n). This contradiction establishes the result.   Q.E.D.

The above proposition combined with the de Rham Theorem yields

Theorem 4.3. // K is a triangulation of a planar Riemannian surface satisfying

conditions (2.3) in [Dl], and E*=1 I/o,, = oo, then there are no nonzero L2-harmonic

one-forms.

As we will show, however, this criterion is not sharp enough to be used on

covering surfaces of compact Riemann surfaces of genus > 2.

Let A' be a planar covering of T2, the two-holed torus. Consider a tessellation of X

by standard fundamental domains of T2 which we will call octagons (though some

may be octagons with certain sides identified). Let R be any set of octagons in this

tesselation, and F, E, and V be the number of octagons, edges, and vertices in R.

Letting Q be the number of edges of octagons of R which lie on the boundary of R,

we will show

Lemma 4.4. In the situation described above, Q > jF.

Remark. This lemma is a consequence of the main theorem in [Ahl], but the proof

in the case at hand is much easier.

Proof. Each octagon has 8 sides (some sides may be the same edge). Each edge

has an octagon on each of two sides (possibly the same octagon) except those on the

boundary, which border only one octagon, so

2(E- Q) + Q = 8F   or   E = 4F + Q/2.

Next, each octagon has 8 corners (again some of these may be identified), and each

interior vertex is the corner of 8 octagons (again some may be counted twice). To see

this we observe that at each vertex there must be an edge representing each of the

four generators of the fundamental group and their inverses. As for exterior vertices,

there can be at most Q of them, since each boundary edge has 2 vertices and each

boundary vertex is adjacent to at least two boundary edges. Thus V < 8F/8 + Q =

F+ Q.
The octagon, edges, and vertices form a cellular decomposition of R, from which

we may compute its Euler characteristic

x(R) = F- E+ V^ F-(4F+ Q/2) + F + Q= -2F + Q/2.
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Figure 4.1

On the other hand we can also compute x(^) homologically,

X( R) = ß2 - ßx + ßo = 0 - (lg + c - 1) + 1 = 2 - 2g - c,

where g is the genus of R and c is the number of circles which make up the

boundary. By hypothesis, g = 0. Also, c < Q, since each boundary circle must

contain at least one edge. From this we obtain

x{R)"2-c>2-Q>-Q.

Combining this with (1) yields

-2F+Q/2>x(R)>-Q,       Q>$F.   Q.E.D.

Theorem 4.5. //t„ is the number of octagons of generation n for a planar covering of

T\thenr„>\{l)n.

Proof. Let Rn be the set of octagons of generation < n. Then Fn is the number of

octagons in Rn, and Qn is the number of edges on the boundary of Rn. Each edge on

the boundary of Rn must bound an octagon of generation zz + 1, and each such

octagon can be bounded by at most 8 edges, so

Fn+l>lQn + Fn

>iFn + Fn   (Lemma 5.4)

= 1-F
trn-

Since F0 > 1 we have Fn > (I)", and hence

\ = Fn + l-Fn> ¡Fn - F„ = \Fn > Kl)".   Q.E.D.

To use this on a triangulation we will show the following.

Corollary 4.6. If K is a triangulation of T2 and K is the lift of this triangulation to

a planar covering of T2, then on K we can find A > 1, B > 0 such that o„ 3* B ■ A",

and therefore, E^=1 I/o,, < oo.

Proof. Consider the tesselation of the cover by "octagonal" fundamental domains

as in the previous theorem. For any zz ̂  0, let Pn be the set of octagons which have

nonempty intersection with a triangle of generation < zz in K, and let /?„ be the

number of octagons in P . Let / be the number of triangles in K. Then any triangle
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which has a nonempty intersection with an octagon of generation k is of generation

< kl with respect to K. Thus, with Fk defined as in Theorem 4.5, we obtain

Pkl>Fk>(l)k.

Sincepn is increasing in zz, we obtain /»„ > {I) , where [k/l] is the greatest integer

^ k/l. Let Q'n be the number of edges of octagons which lie on the boundary of P„.

Then by Lemma 4.4, Q'n > \pn. Each octagon has at most 8 edges, so the number Sn

of octagons in Pn which lie on the boundary of Pn satisfies Sn > \Q'n. Finally, any

octagon in Pn which lies on the boundary of Pn must intersect a triangle of

generation n which is adjacent to a triangle of generation zz + 1. This triangle of

generation zz + 1 can be adjacent to at most three triangles of generation n, so we

have

Now [n/l] > n/l - 1, hence

o„>m1+1/l{(ir}n- q-e-d-

Corollary 4.7. If K is a triangulation of a compact surface S of genus > 2 and K

is the lift of this triangulation to a planar cover S of S, then on K,

o„>BA",       A>\,B>0;

soLx=xl/an< oo.

Proof. Since any surface of genus > 2 covers T2, any cover of S is a cover of T2,

so the previous corollary applies.

This shows that the criterion developed in Theorem 4.3 cannot be applied to

coverings of compact surfaces of genus > 2, i.e., it will not detect coverings with

H21(K) = 0.

5. L2-harmonic one-cycles and random walk. For any simplicial complex K we can

consider a random walk along the edges of the complex. A particle is initially at a

vertex v0. In each unit of time the particle moves from the vertex it is on to an

adjacent vertex, with equal probability for all adjacent vertices. The random walk is

transient if the probability of returning to v0 is less than one and recurrent if the

probability of returning to v0 is one. In this section we will investigate the relation

between this random walk and the first L2-cohomology group. In particular we show

the following

Theorem 5.1. If the random walk on a surface K is transient, then the first

L2-cohomology group is nontrivial, i.e., H2(K) # 0.

Theorem 5.2. If the random walk on a planar surface K is recurrent, then the first

Lr-cohomology group is trivial, i.e., H2(K) = 0.

As a consequence we have

Corollary 5.3. The random walk on a planar surface is recurrent if and only if

H21(K) = 0.
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To show the first theorem we will need some results concerning random walks.

First we will recall the definition of the Green's function g(x, y) associated to a

transient random walk on a complex K with boundary dK (which may be empty).

For a complex with a boundary, the boundary is treated as an absorbing barrier for

the random walk, i.e., once the particle reaches a point on the boundary it stays

there forever. The definition of g is essentially that of Courant, Friedrichs and Lewy

[CFL, Chapter 1, §3].

Let g„(x, y) be the probability that a particle, having started at x and moved n

steps, will be at y and have never reached a point on the boundary, with g0(x, y) =

8XY (Kronecker delta). Then define

g(x, .y) =  £ gn(x,y).
71 = 0

With this definition g represents the expected number of times a particle leaving x

will encounter y before it reaches the boundary. (We will see later that this sum

converges if and only if the walk is transient.) Accordingly g(b, y) = 0, where b is a

boundary point. For interior points,

g„+i(*. y)" — L s«(z' y)*
* z~x

where nx is the number of vertices adjacent to x and z ~ x means that z is adjacent

to x. That is, a particle going from x to y in zz + 1 steps must, on its first step, pass

through one of its neighboring vertices, each with equal probability \/nx. Summing

over zz we obtain

g(x, y) = — £ g(z,y)    forxïy,
nx z~x

g(y,y) = 1 + — £g(z,y).
y z~y

As calculated in §2, the Laplace operator, A, on 0-cochains is

àu(x) = nxu(x) —   £ u(z).

Thus for fixed y0, &g(x, y0) = nydxr for interior points x. By analogy with the

smooth case, we call g the Green's function for the complex (modulo the boundary).

This says that g has the mean value property at all points except y0 and the

boundary. That is, the value of g at a point equals the average of the values of g at

its neighbors. Hence, for a finite complex, g can have a maximum only at y0 (it is

nonnegative and has value 0 on the boundary), so for all x, g(x, y0) < g(y<), Jo)-

We need to know that the sum E^L0 g„(x, y) converges if and only if the walk is

transient. To this end we will use the following lemma concerning discrete Markov

processes, of which our random walk is an example. (See, for example, Kemeny.

Snell and Knapp [KSK, §16, Chapter 4].)
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Lemma 5.4. The random walk is transient if and only if g(x, y) is finite. Also, if

g(x, y) is finite for some particular values x andy, then g(x, y) is finite for all possible

x andy.

Using Lemma 5.4 we can show that g(x, y) gives rise to an L2-flow along the

edges of the complex. That is, we will show that for fixed y, 9*g has finite L2-norm.

Let Sn be the set of all vertices zz steps or less from y, and let gs(x, y) be the

Green's function for the region S„ with boundary 95„. First we will show that if

either hmn^,aogs(x, y) or g(x, y) exists then both exist and are equal. Any path

from x toy which is n steps or less in length must stay within S„, so

77

t, gi(x, y) < gsJix, y).
( = 0

This shows that if lim„^00gs (x, y) exists then so does g(x, y). Also, since the

chance of reaching y from x without hitting the boundary of Sn is less than the

chance of reaching y without hitting the boundary of Sn+1 => Sn, and both these are

less than the chance of reaching y with no restrictions, we have

8s„(x> y) < &s„+1(*. y) < s(x, y).

If g(x, y) is finite, then

7Í

g(x,y)=   lim   £g,(x, y) ^   lim gs(x, y) ^ g(x, y),
77-»00,_g n -» 00

so the g5's are bounded and increasing, and therefore g(x, y) = ]im„^,o0gs(x, y)

exists and equals g(x, y). Our desired result then follows.

To show that 9*g has finite L2-norm we proceed as follows.

I|9*2s„ll2 = (a*fo„'3*fo„> = (ss„>"*Ss„) = (&„. A^„> = nygSa(y,y)

since gs(b, y) = 0 for b e 35„ and Ags = nv8xy for interior points. By Fatou's

Lemma

||9*g||2 =11 lim 9*gjf <   lim ||9*gsJ|2 =   lim nygsJ(y, y) = nvg(y, y).
" 77 -» OO " 7J->00 7|->00

Thus we have the following lemma.

Lemma 5.5. If the Green's function g(x, y) is finite, then for a fixed y, 9*g has finite

L2-norm.

Finally, we will make use of the following lemma concerning L2-flows.

Lemma 5.6. Let F be an L2-flow containing only sinks, i.e. dF = ¿Za¡af, where

a, > 0 for all i. Let a set of sinks, i.e. a zero-chain B = E/3,o,°, be given such that

0 < Z>, < ajor all i. Then there exists an L2-flow G such that dG = B and \\G\\ < ||.F||.

Proof. The restriction that a¡ > 0 for all z is equivalent to saying that F

considered as a flow contains only sinks (no sources) with a¡ being the amount of
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flow originating at vertex o,°. The flow G we want is simply one which again has no

sources, and whose sinks all lose less flow than the corresponding sources of F. We

can create G by following the flow back from the sinks along the edges of the flow F,

always making sure that the flow along each edge of G is less than the flow along the

corresponding edge of F. This can be done since at each stage the flow going out of a

vertex from G never exceeds the flow going out of that vertex from F, so there will

always be edges available along which to send incoming flow, again without

exceeding the flow along any edge of F. (Conceptually it may be easier to reverse the

flow on F, so that we have only sources and no sinks. Then we simply follow along

the edges of F, reversing again when we are done.) In this way we produce a flow G

such that 9G = B. In addition, the flow of G along any edge is less than or equal to

the flow of F along that edge, so for all edges o1, \{G,ol)\ «j \{F, o')|; hence

l|G|| < ||F||.
We can now prove the first theorem.

Theorem 5.1. If K is a surface with a transient random walk, then H\(K) + 0.

Proof. Since the walk is transient, the complex has an L2-Green's flow, i.e., a flow

9*g with 99*g = nv8xv. From this we will construct two L2-cycles whose intersection

number if nonzero. By Lemma 3.9 this will show that H\(K) + 0.

First we fix a basepoint j>0. Then let Rn = {x\g(x, y) > \/n}. Suppose there is an

n so that dRn consists of more than one connected component. By the construction

of the /vn's, if b is a vertex in dRn and z is a vertex outside of Rn but adjacent to b,

then the flow along the edge connecting b and z flows from z to b (Figure 5.1). We

can assume that the surface is planar (otherwise H\(K ) + 0 automatically). Thus

each component of dRn bounds a separate component of the complement of Rn.

Choose two components of dR„, a and ß. Let fa and fß be the total flow into Rn

through a and ß, respectively, and let Ca and Cß be the restrictions of 9*g to the

components of the surface bounded by a and ß (see Figure 5.2). We will construct a

new cycle C with flux one into Rn through ß and flux one out of Rn through a.

Outside of Rn, C is Cß/fß - Ca/fa. Inside we connect up the flow coming in through

ß with the flow leaving through a (subdividing the simplexes of Rn, if necessary).

This defines the cycle C. Let d be the cycle defined by going around a with a flow

one. Then #(c -d)= ±1, so H¡(K) * 0.

Figure 5.1
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Figure 5.2

Figure 5.4

On the other hand, dRn may have only one component for all n. Consider the unit

L2-Green's flow (l//i )3*g. This flow must have a flux of one into any region

containing^. Choose zz so that 9*g/zz,, has norm less than g outside of R„. The total

flow coming into Rn must be one. Thus on the complement of Rn, 9*g is a flow with

no sources, and sinks only along R„. Starting at some point on dR„, we divide dRn

into four segments ax, a2, a3, and a4 each with a total flow \ coming in through it

(some vertices may be partially in each of two adjacent segments). We are going to

construct two cycles each with a flow of \ going into R„ through one of the segments

and leaving through the opposite segment (see Figure 5.4).
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Using Lemma 5.6 we can construct four flows b¡, i = 1,2,3,4, on the complement

of Rn such that b¡ has no sources, and sinks only along a,, and with ||/3,|| < ||9*g|| on

the complement of Rn. Define cx = ¿»3 - bx and c2 = bA - b2. Then cx has total flow

\ into a3, while c2 has total flow \ out of a2 and total flow 5 into a4. Inside of /?„,

we connect up the flow into a3 with the flow out of ax as before, subdividing if

necessary, and likewise we connect the flow into aA with the flow out of a2. This

defines the cycles cx and c2. Inside of Rn, they pass through each other with flows \

so their intersection number is j¿. Outside of Rn, #(cx ■ c2) < \\cx\\ \\c2\\. Recalling

that \\bj\\ < ||9*g|| outside Rn, we have

#(ci-c2)<||c1||||c2||-||és-*1||||ftí-é2||

<4||9*g||2,   outsider,,,

< 4/81.

Hence, the total intersection number of cx and c1 has absolute value at least

16 SI    **  U-

To prove Theorem 5.2 we need the following lemmas.

Lemma 5.7. Let K be a finite complex with boundary dK, and let y0 be a point in the

interior of K. Of all flows h terminating at y0 and originating at the boundary (i.e.,

9/z = 9(9*g) = nv 8XY in K°), the Green's flow 9*g has the least L2-norm.

Proof. Let h be any flow as described above, and 9*g the Green's flow with

h * 9*g. First we note that 9(9*g) = 9/z in the interior of K, and that g is zero on

dK. Then we have

(d*g,h) = (g,dh) = (g,dh)K<>+ (g,dh)dK

= (g,99*g)„=(9*g,9*g> = ||9*g||2,

and therefore

0 < \\h - 9*g||2 = \\h\\2 - 2(h,d*g) + ||9*g||2 = \\h\\2 - ||9*g||2.

So||/z||2> ||9*g||2.    Q.E.D.

From this we can establish the following method of detecting a transient random

walk.

Lemma 5.8. Let K be a complex which contains an L2-flow h having a sink or source

only at one vertex y0, i.e., dh = c8XY, with c =# 0. 77zezz the random walk on K is

transient.

Proof. First we scale h so that c = nv. Then let S„ be the set of all vertices zz steps

or less from^r,. For any n, h satisfies the conditions of Lemma 5.7, so that

Il9*«s.ll < H*lk < IIa»*'

where gs is the Green's function on Sn with basepoint y0 and || ||s and || H^ are

norms restricted to Sn and K, respectively. Also recall that

\fi*gs,}\2 = nyogs„(yo>yo)-
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Hence nVogSa(y0, y0) = ||9*gs ||2 ^ \\h\\2K. Thus gSn(y0, y0) is bounded and increas-

ing as zz increases, so lim„^x gs (y0, y0) exists.

Referring to the discussion preceding Lemma 5.5, we see that g(y0, y0) is finite

and therefore by Lemma 5.4 the random walk is transient.

Just as Lemma 3.9 provided a useful way of finding nontrivial L2-cycles, Lemma

5.8 can be used to detect transient random walks.

Lemma 5.9. Let K and L be complexes with K having a transient random walk, and

suppose there exists a bounded chain map <p: C*(K) -» C*(L) and a y0 e K such that

4>(y0) = E"_! a¡z¡, where a¡ > Ofor i = 1,.. .,n,for some finite set {z, }"=1 of vertices

of L. Then the random walk on L is transient.

Proof. Let F = <í>(9*g(x, y0))- Then

dF= d(<bd*g) = <¡>(dd*g) = nY<t>(y0) = n,0Lfl,z,.

By Lemma 5.6 there exists an h such that dh = axzx, so Lemma 5.8 implies that the

random walk is transient.   Q.E.D.

Since chain derivation and its inverse both satisfy the criteria of Lemma 5.9, we

obtain the subdivision invariance of a random walk.

Theorem 5.10. If K' is the barycentric subdivision of a complex K, then the random

walk on K' is transient if and only if the random walk on K is transient. The same is

also true of the dual complex K*.

Finally, we can use Lemma 5.8 to prove the second theorem on random walks.

Theorem 5.2. Let K be a triangulation of a planar surface. If the random walk along

the edges of the complex is recurrent, then H-)(K) = 0.

Proof. Suppose H\(K) + 0, i.e., K has a nonzero L2-harmonic one-cycle u. By

Lemma 3.13 there exists a nonzero L2-harmonic cycle u with zero period over every

finite cycle. Let y0 be a vertex through which t< has nonzero flow. From u we will

construct an L2-flow h terminating at y0. Starting at yQ we construct, as in Lemma

5.6, a flow h having y0 as its only sink. Because u has zero period over every finite

cycle we can never encounter y0 during the construction and hence we obtain a flow

satisfying the conditions of Lemma 5.8. Therefore the random walk on the complex

K is transient.   Q.E.D.
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