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RATE OF APPROACH TO MINIMA AND SINKS—
THE MORSE-SMALE CASE

BY

HELENA S. WISNIEWSKI1

Abstract. The dynamical systems herein are Morse-Smale diffeomorphisms and

flows on C°° compact manifolds. We show the asymptotic rate of approach of orbits

to the sinks of the systems to be bounded by an expression of the form A"exp( - DN),

where D may be any number smaller than C = minP{l/mlogJac DPfm\W"{P)}.

Here the minimum is taken over all nonsink P in the nonwandering set of/, and m is

the period of P. We extend our theorems to the entire manifold, so that there is no

restriction on the location of the initial points of trajectories.

1. Introduction. The dynamical systems herein are Morse-Smale diffeomorphisms

and flows on compact manifolds of finite dimension. Determining the asymptotic

rate of approach of orbits to sinks amounts to comparing the Riemannian measure

of the entire manifold to the measure of the set of points whose orbits remain

outside a neighborhood of the sinks after N iterations for diffeomorphisms, or time

T for flows.

Let P be a fixed point for / which is either a source or a saddle and let U be a

neighborhood of P on M. If x e U, then unless x is on the stable manifold of P, the

orbit of P under / will leave U. This is simply the familiar fact from the stable

manifold theorem that for U small enough Ç\x=Qf~"(U) is the local stable manifold

of P. The volume lemmas of Bowen and Ruelle [2] and Fried and Shub [5] add to

this statement that the measure of C\x=0f~"(U) decays exponentially with the rate.

By this we mean that the exponential constant is related to the logarithm of the

Jacobian determinant of the unstable part of / at P. However, these results are local

in nature; they only concern the rate at which orbits leave a neighborhood of P. We

prove the related global results for all Morse-Smale diffeomorphisms and flows.

Throughout the paper M will be a C°° compact Riemannian manifold, and ju, will

be a measure derived from the Riemannian metric on M. For r > 1, let Diff(M) be

the set of Cr diffeomorphisms of M. For the definitions of nonwandering point,
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568 H. S. WISNIEWSKI

stable and unstable manifold, and Morse-Smale diffeomorphism we refer the reader

to [7,10]. Here we define nitrations.

Definition. Let /e Diff(Af). A filtration for / is a sequence of compact

manifolds with boundary such that

M= MkZ) Mk_x d ■ • • d Mx d M0 = 0

(dim Mi = dim M, for z = 1,... ,k) and f(Mk)c int Mk. Given a filtration, K¡ =

n„6Z/"(M, - int Mt_x) is the maximal invariant set contained in (A/, - M¡_x). If

Kt-, = £2 n (Af, - M,_,) for all z, we say that the filtration is a fine filtration for/.

Finally, if we are given closed invariant sets which are disjoint Ax,...,Ak, we say

M = Mko> Mk_x d • • - 3 Mx d M0 = 0 is a filtration for Al5..., A* if A, = K¡.

Definition. S(i, j, N) = M, - /""(int Af}).

Given a filtration we may assume without loss of generality that Mx contains all

the sinks. We will denote (M¡ - int Af.) by Af [/', j].

Definition. JacDfPj = Jac(Df: E£ -> E$).

The following theorem is our main result.

Theorem A. Let f be any Morse-Smale diffeomorphism on M. Let I be the least

common multiple of the periods of the periodic orbits off. Let 8 > 0 be given. Then for

all N, and i > j we have

p(S(i,j,N))^K(l +8)Nexp((-C/l)N)

with K > 0 independent ofN, and

C/l = Min{l/mlogJacZ);,j/m|IF"(^)),

where the minimum is taken over all nonsink Pj in the nonwandering set for /, />. not a

sink and fmpj = pj.

The proof of Theorem A consists of 3 parts and is presented in detail in §4. The

following is a sketch.

(1) First let g = /'. Then g is a Morse-Smale diffeomorphism with S2(g) = Fix(g).

Once the result is obtained for g, its extension to/is immediate.

(2) We know from [10] that g has a fine filtration: AÍ = Mr d Mr_x d • • • d Mx

d Af0 = 0 such that the maximal invariant set contained in int(Mx - M¡_x) is a

fixed point which we label P¡. Also Px, P2,...,PS for 1 < s < r are sinks. So for

simplicity we define a new filtration by

M = A/r_í+1 c Mr_s c - - - c M2 c Mx c M0 = 0

where Mx = Ms, M2 = Ms+X, etc. Thus all the sinks of g are located in Mx.

We then make use of

Theorem B. Let f be a Morse-Smale diffeomorphism on the Cx compact manifold

M with ß(/) = Fix(/). Let p.be a measure derived from the Riemannian metric on M.

Let 8 > 0 be given. Then for each Pt; e fi(/), i = s + l,...,r, there is a compact

neighborhood U(P,) such that with UN(Pi) = {x e U(P¡): fk(x) Í Mx for k^N}.
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Furthermore

p(UN(Pt))^K(l + 8)Nexp(-CN),

where K > 0 is independent of N and exp(C) = miny=J+1    ({JacD/"Py}.

This means that fi(UN(Pj)) decays exponentially with N.

We note that Theorem B establishes Theorem A in the special case that the

trajectories are constrained to begin in a neighborhood of a periodic point. Theorem

B and the technical lemmas needed are proven in §3.

(3) Next consider: S(i, 1, N) = M, - f~N(int Mx). We write

S(i,l,N) = S(i- l,l,TV)uS(z,z- \,N)uAN,

where AN is the set of points in M[i, i - 1] whose trajectories enter M¡_x but do not

reach Mx through N iterations. We proceed by induction so that the volume estimate

for S(z - 1,1, TV) is assumed known. By the filtration we show that the measure of

S(i, i - 1, TV) is related by bounded factors to the measure of UN(PI). Again by the

filtration we show that AN subdivides further into two parts—one whose orbits pass

to Mi_x in a bounded number of iterations and one where orbits enter U(P¡) again

in bounded iterations. The measure of the first is thus related by bounded factors to

/i(S(z - 1,1, TV)) and the measure of the second is related by bounded factors to

ll(Un(Pj)). Thus we obtain the result for ¡x(S(i, 1, TV)). Since 5(1, j, N) c S(i, 1, N)

the proof is completed.

In §2 we begin the body of the paper with an example of a Morse-Smale

diffeomorphism whose rate of volume decay is exactly that given in our theorems.

§5 concludes the paper with the proof that our results carry over to the case of

Morse-Smale flows.

Without the assumption of transversality, we found the exponential constant to be

more complicated and to yield a slower overall rate of decay. This is the case for

general C2 Axiom A systems with no cycles. For Axiom A systems we found the

exponential constant relates to the topological pressure of /. We refer the interested

reader to our paper [11].

This manuscript is part of my doctoral dissertation. I would like to acknowledge

my advisor Professor Michael Shub for presenting me with this topic and for his

valuable suggestions. I wish to thank Professor Edgar Feldman for providing me

with funding, through his National Science Foundation Research Grant. I also wish

to thank Professor Richard Sacksteder for many helpful conversations and Diego

Benardette for his proofreading.

2. An example with transversal intersection. Consider the torus T2 c R3 which is

tilted back with respect to the horizontal plane. Let the gradient field on it be of the

form

X= -grad(zz),

where h is the height function of points in relation to the horizontal plane. So the

flow is downward. Fix time / to t, and consider the diffeomorphism xT. Now

consider a diffeomorphism g described as follows: let g = id on the torus except in a
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small band. In this band g moves points along their level curves, g rotates the level

curves in the following manner: the uppermost curve rotates 0 radians, the lower-

most rotates 2m radians, and the curves in between rotate from 0 to 2ti going down

the band. Set h = X ° g. The effect of h is to push g down causing repetition of the

pattern resulting in the transversal intersection of stable and unstable manifolds

(Figure 1).

Figure 1

The intersection between P3 and P2 is illustrated in Figure 2. We note that in the

figures, P4 is the source, P3 and P2 are the saddles, and Px is the sink.

In Figure 2 there are an infinite number of such intersections tending forward to

P2. The X Lemma of Palis [6] tells us that WU(P3) in a neighborhood of P2 becomes

close to WU(P2) in both distance and slope. In fact, it contains W"(P2) in its

closure.

Next in linearized neighborhoods of P3 and P2 the local diffeomorphisms can be

given by

X=X0exp(y),   X= X0exp(-y),

{**} y=y0exp(-a),    Y=Y0exp(ß),

respectively. The logarithms of the eigenvalues are y, -a, -y, ß. For sets moving

from P} to P2, the transversality property causes the two unstable directions to

become aligned. This is shown in Figure 2, where we only consider one point of

transversal intersection outside the nieghborhoods for clarity.

By the transversality property the height of the set which comes into the

neighborhood of P2 is independent of the number of iterations for which it stays in a

neighborhood of P3. So only W(P2) influences the set in the neighborhood.

Using the diffeomorphisms given in (**) we show that the area of the set whose

orbits remain in the neighborhood of P3 for exactly n iterations and in the

neighborhood of P2 for at least m iterations equals 4e2 exp( - ßm) exp( - yn).
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Figure 2

D = [eexp(-y),e] X[-e,e]

To see how this estimate is obtained consider the following illustrations. First
consider the linearized neighborhood of P3, in Figure 3.

Figure 3

A = Set of points which stay in the neighborhood of P$ for exactly /? iterations

= [fexp(-y(n + 1)), Eexp( - yn)] x[-E,e],

f"(A) = [fexp(-y), e] x[-Eexp(-a/i),exp(-a, n)]

\k

I I f"(A)

+

XT
/N

Figure 4

B =f" + l(A). The height of B = width A = e(1 - exp(-y)). Due to the transversality condition, the

height is independent of the number of iterations the set was at P3.

B = [-£,-eexp(-r)]x[-(e/2)(l-exp(-y),e/2)].

¥ WrïI
!̂
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Figure 5

B' = Set of points which stay in the neighborhood of P2 for m iterations. It is denoted by the shaded

strip.

^ <■

Figure 6

Translate the set B' back to P3. "Go back" n iterations at P3.

I
Let   E = {f'in+u}(B').   The   width   of   E = 2e exp(-ßm) exp(-yn).   The   area   of   E

4e2exp(-/8m)exp(-y7r). Take ß — y and call it C.

Furthermore, to obtain the area of the set in the neighborhood of P3 whose orbits

do not leave the neighborhoods of P2 or P3 through TV iterations, sum over n and m

in the relation TV = n + m + 1. Considering the number of ways to add zz + m we

have the area = L"=04e2exp(C)exp(-CN), so we obtain that the area =

4e2(exp C)(N + l)exp(- CTV). We note that this example is a Morse-Smale diffeo-

morphism.

3. The Proof of Theorem B. We prove Theorem B in two stages. First we consider

submanifolds of M in a neighborhood U(P) of P e Q(f) which are of the same

dimension as W(P) and C1 close to W"(P), showing that the volume of these

submanifolds in UN(P) decays exponentially. Secondly, we cover UN(P) by a C1

system of such manifolds and use Fubini's Theorem to arrive at our result for

UN(P).
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For P e ti(f) we know that TPM splits into the direct sum decomposition

TPM = E5 e E",

with stable (Es) and unstable (£") subspaces. Let ( , ) be a Riemannian metric on

M adapted to/; that is for v = (vs, vu) e TPM,

lll^/(OIMIIHII and lll^/(^)lll>^1W
when 0 < X < 1 is independent of P and |||w|||2 = (w, w).

We introduce a modified metric ( , ) on M by (v, w) = (vs, ws) + (vu, wu) and

denote the stable and unstable seminorms (vs, vs)1/2 and (vu, vu)1/2 by ||c||^ and II^IL-

Then the norm defined by (v, v)1/2 is

n n     (ii ii2 .ii n2)1/2

For a subspace V C TPM, v(e) = [v e V: \\v\\ < e). For small e > 0 we can find a

C1 chart </>: TPM(e) -» A/ such that:

(1) <i>(0) = P and £>0<i>: 7>M -» T^A/ is the identity;

(2)<¡>(Es(e))c Wfcaad
(3) HEu(e)) c W?

where W^ and WP are the stable and unstable manifolds at P. The map F =

<j>~1 o/o 0 represents / at P in this coordinate system (Bowen and Ruelle [2] and

Fried and Shub [5]). Such a chart can be chosen for each element of ß(/) and we

assume that e suffices for all P e 2(f).

In Proposition 1 the slope of a smooth manifold TV of T¡M(e) with dim(TV) <

dim(P") at a point zz e TV refers to the supremum of the quotients ||z/||/||z;"||, taken

over all tangent vectors v = (vs, v") to TV at zz. To say that N has slope less than or

equal to to relative to E" means that for all zz e TV, the slope of TV at zz is less than or

equal to to.

Definition. P,(e) = {x e M: d(x, P,) < e}.

In the remainder of the paper, for P, e ß(/), let T¡M = TPM, Ef = EP and

E," = E"P.

Definition. The graph transform T, defined on C1 functions g from £¿"(e,) to

£/(£,) is defined by graph T,(g) = Fi (graph g) with F¡ = <p~l ° / ° #,.

We assume that e is small enough so that we have C1 charts as specified and graph

transforms.

Proposition 1. For e, 8 > 0 andO < « finite there exist constants e„ uj} i = 2,...,r,

such that

(1) e, < e.

(2)<ûj>wi/3fori<j.
(3) IfL e Hom(£,", £/), ||£|| < w„ and v e 7;A/(e,), //zezz

(*) JacD„(P|zj + graph L) > JacZ)0(F|£,u)/(l + 8).

(4) For g a C1 function from E"(e¡) to Ef(e¡), slope g < w, implies that slope graph

r,(g) < c
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(5) TjM(ei) is contained in a neighborhood V¡ of the origin in T¡M such that for all

Pk e ß(/) either Wku n W* = 0 or <p~\(Wku) n TiM(el)) Cx-fibers over the inter-

section of<p~l(Wk) with E- in V¡, each fiber having dimension equal to the dimension

of W" and slope no greater than to,/3.

(6) For i > j, if W" C\ Wf * 0, then given any C1 function h ofE,u(e¡) to Ê/(e,.)/or

which slope graph h < to, and (/>, graph/¡) n Py(e7) # 0, then </>/lf >,-(graph h)

C1 -fibers over (^>/1W") n £"/, vvz'r7z the fibers having slope less than or equal to \f/j.

Proof. Before beginning the proof we consider the following definition and

lemma.

Definition [6]. Let /e Diff(Af) and P be a hyperbolic fixed point of /. We

denote by LS(P) and LU(P) the local stable and unstable manifold of P, for

s = dimension LS(P). Let Bs be a cell neighborhood of P in LS(P), such that

f(dBs) c int Bs. The existence of such a cell Bs follows from the fact that/|LS(P)

is a contraction. The embedded annulus in LS(P) whose boundaries are Bs,f(dBs),

is called a fundamental domain GS(P) of WS(P).

We note that WS(P) = U„eZ/"(Gs(P)) U P. Any neighborhood NS(P) of GS(P)

in M, disjoint from LU(P), is called a fundamental neighborhood associated with

WS(P).

Dually we can define GU(P) and NU(P).

Lemma (1.11 of [6]). Fix a cell neighborhood Br of P in LU(P). There exists a

neighborhood V or P, such that rV"(Pi)r) V = 0, or W"(P¡) n F w azz r-ce//

fiberbundle over WU(P¡) n V n LS(P) with the fibers C1 close to Br. (P, £Û(/),)

Moreover, the fibering can be chosen to be C1.

We now begin the proof of Proposition 1. For simplicity we assume that/has one

sink. The proof is by induction using [5]. Let z = 2. Take e2 < e and 0 < to2 < to so

that (*) holds in T2M(e2). Furthermore take e'2 < e2 so that if g: E2(e'2) -* E2(e'2) is

a C1 function with slope < u2 then the graph transform of g by /, T2g, also has

slope < co (Fried and Shub [5]). This satisfies (l)-(4) of the proposition, for i = 2.

Next we consider (5). By the preceding results we can take e2 < e'2 so that

T2M(e2) is contained within the neighborhood V of P2 guaranteed by Lemma 1.11

of [6] for P, e S2(/), with r = dim LU(P). Thus, if $2\Wku) n r2Af(£2) is not

empty we get that it C'-fibers over its intersection with E{, with all of its fibers

having slope no greater than co2/3.

By taking T2M(e2) properly contained in V we can get the C1 fiber structure.

Thus (5) is satisfied, and this completes the proof for z = 2, since Px is the sink.

Assume that e , to, have been chosen as to satisfy (l)-(6) for/ = l,...,z — 1 < r.

We show how to choose e¡ and to,. First take e, < e and 0 < to, < to < 1 so that the

Jacobian inequality (*) of Proposition 1 holds. Then take to, < to, and to, < w,-i/3

(this implies to, < w/3 for/ < 1). Next choose ej < £, so that the graph transform T¡

satisfies \\Dh\\ < to,. Then ||£>r,(/z)|| < to for h e C\ h: £,"(e;) -» Ef(e'¡) (Fried and

Shub [5]).

For the next step observe that if any orbit of/leaves the neighborhood $¡(T¡M(e'¡))

of P- on M then there is a bounded number of iterations TV, by which (1) the orbit is
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in a neighborhood of the sink Px or (2) the orbit has entered (and possibly left) one

of the neighborhoods <pj(TjM(Ej)). Thus we suppose that TV is a C1 submanifold of

TíM(e'í) and that /*</>,-TV n P/e) * 0, for some A: < TV,, By taking TV in a tubular

neighborhood of E"(e'¡) we get that <$>~lfk<p¡N n TjM(ej) inherits a C1 fiber struc-

ture over its intersection with Ej in Vj from <j>j~lW".

If we choose the width of the tubular neighborhood of E"(e'¡) small enough, say

e*, we can insure that since k < TV,, that the slope of the fibers of <p~lfk<p¡N -

(p~l(W¡u) relative to E" is no more than to, larger than the slope of TV relative to E".

Because we are assuming via the induction hypothesis that the slope of <?~l(W")

relative to E" is not larger than w/3, the slopes of the fibers of 4>]~lfk<$>¡N, relative to

E" is bounded by to/3 + to, + (slope TV relative £,"). Beginning with an TV with

slope to,, relative to E", gives that the slope of the fibers of ^>~xfk^>1N, relative to E",

is less than or equal to to/3 + 2to,- < w. Using e* for the neighborhood of P, in T¡M

satisfies (6). So we only need to prove (5). But here we argue as for i = 2 to get

e, < e* so that (5) is satisfied.

Thus the e„ to, have been chosen as to satisfy (l)-(6), and the proof of Proposition

1 is complete.

Proof of Theorem B. For simplicity assume that there is exactly one sink. We

note   that   the   following   T¡M(e)  is   defined   in   terms   of  the   norm   ||i>|| =

max{|M|„ ||f||u}.

Given 8 > 0, let 8' < 8. Then we can find for all i = 2,... ,r a pair (e,, w,) which

satisfy (l)-(6) of Proposition 1 with 8' in place of 8.

Take e > 0 such that e < min e, and consider the compact neighborhood of 0 in

r,A/, c1P,A/(e) = cl(£,"(e) + E,'(e)). Then take U(P,) = <f>,.(cl T,M(e)). These are

our neighborhoods of the fixed points. Fix i and let Sw = (¡>/l(UN(Pi)); S^cz

el T¡M(e).

We prove that v(SN) < K(\ + 8)Nexp(-CN), where v is the ordinary Lebesgue

measure in Tt M. Passing back to the measure p. on M involves only multiplication by

constants bounded away from 0 and oo.

For v e cl ¿7(e) consider the linear variety Hv = {(u, v) e 7^Af: u e E"). Con-

sider the subgraphs SN n Hv. These are compact sets which cover SN in the sense

thatSN = UveEsM[SNDH0].

We appeal to Lemma 2 in order to get an area estimate for the subgraphs

(SN n Hv).

Lemma 2. For i > 2, if h: cl £"(e,) -» Es(e¡) is a C1 function with \\Dh\\ < to,, then

area(graph h n SN) < K(\ + 8)Nexp(-CN),

where K > 0, exp(C) = min2<7</{JacT)/:'(Pjr)}, and area refers to the induced r-

dimensional measure along graph h, where r = dimension (Eu).

Proof. The area measures are induced by the Riemannian metric induced by the

inner product (v,w) = (vu, w") + (vs, ws). The proof is by induction on z. If i = 2,

we argue as in [5]. If x e SN, then Fkx e cl T2M(e) for k = 0,... ,TV - /, where / is

a fixed integer representing the maximum number of iterations for an orbit leaving
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U(P2) to enter Mx, the neighborhood of the sink(s) on M (recall F = ¡p/1 ° / ° <j>2).

The same statement thus applies to Fk (graph h n SN). Moreover we know that

successive iterates of (graph h n SN) are themselves graphs of C1 functions of

cl £2"(e) to cl E2(e) with slope < to2. This is because e was chosen to insure that the

graph transform of h, T2h, is a C1 function with slope < to2.

Thus P^^graph h n SN) is indeed the graph of a C1 function of cl E"(e2) into

cl Es(e2) with slope < u¡ so that

(I) areaiP^-'(graph h n SN)) *s K, where K is a constant depending only on e

and to2. Moreover,

K>\ 3acDv(FN-'\v + £2") dpr.
•'graph A n 5N

But the Jacobian inequality (*) holds in cl T2M(e). That is if £ e Hom(£2, £2) with

||£>£|| < to2 and v e cl T2M(e) we have

3acDv(F\v + graph L) > (1 + S')'1 JacD0(F\E2u).

Here 0 < 8' < 8 is the constant in the proof of Theorem B.

We apply this inequality repeatedly to get from (I) the following:

K> (1 + f3')"'V+/JacZ)0(£/v-/|£2")area(graph/z n SN)

so that

area(graph/z n SN) «S K(l + ô')A'~'(Jac£'0(£A'-/|£2"))~1.

Now since/is assumed to have only fixed points,

Jac D0(Fn-'\E2u) = JocD0{F\E2)N~'.

Then by redefining K,

area(graph/z n SN) < K(\ + 8')N(JacDQ(F\E2u))~N.

By observing that the properties of <f>2 allow us to show that JacDf(P2) =

Jac D0(F|£2"), we are done with the z = 2 case.

Now assume that the result has been proven for all i < k, where k > 2 and prove

it holds for graphs in cl TkM(s). Here the situation for (graph h C\ SN) is different

because x e SN does not imply that FNI(x) e cl TkM(E), where / is some fixed

integer. In fact on M an orbit beginning in U( Pk ) may leave U( Pk ) and enter some

U(Pj) before reaching V. Therefore we must consider N + 1 separate subgraphs of

(graph hn SN). We let Bm be that subgraph of (graph h n SN) for which Fm+lBm n

cl TkM(E)= 0, and FmBm C cl TkM(e) for 0 < k < m (i.e. Bm leaves TkM(e) at

exactly the (m + 1) iteration). Thus (graph h n 5^) - Ek = \Jx_0Bm where the

union is disjoint. We shall modify Bm slightly, replacing Bm by cl Bm. Then

graph(/z n 5'A/)cU^=0Pm with the union no longer disjoint but consisting of

compact sets. Furthermore we only need to consider a finite union

(graph h n SN)<z AU B0U BXV ■•■ BN_X

where A is the closure of that portion of graph(/z C\ SN) which remains in cl TkM(s)

for at least TV iterations. Since all these sets are disjoint except on their boundaries
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we have

N-l

area(graph h D SN) = area(A) + £ area(Bm).
771 = 0

Furthermore we know by the arguments used in the i = 2 case that

area(A) < K(\ + 8')Nexp(-CkN),

and also that

area(Pj < (1 + Ô')marea(£mBm)exp(-Qzn),

where Ck = Jac Df(Pk). Consider area(£mPm). The compact set <pkFmBm c U(Pk)

passes out of U(Pk) on the next iteration, that is/(<#>^£"'Pm) n int t7(P^) = 0.

Subgraphs of <j>kF"'Bm may pass under further iterations of/to any U(P¡) for/ < k

or to Mx. However, since <pkBm c UN(Pk) any subgraph passing to Mx must be in a

Pm with m < TV - / for a fixed integer /. To define the subgraph of <pkF"'Bk we

perform the following procedure. <pkFmBm is contained in the closed fundamental

neighborhood (associated to Wk) given by DK = U(Pk) - int flU(Pk). Consider

Dk n lJx=xf~"(U(Pk_x)); this is in fact equal to Dk n ü'„"z\f'"(U(Pk__x)) for some

fixed /A _ 1 representing the maximum number of iterations for an orbit of Dk to enter

U(Pk_x) for the first time. Hence the intersection of Dk with inverse images of

U(Pk_x) is compact. We also know that the subgraph of <pkFmBm in this intersection

is compact.

Now the iterates of <i>kFmBm n Ulnk=\r"(U(Pk_x)) under/may not enter U(Pk)

at one iteration precisely, but for simplicity of notations we will assume this is the

case. In any event we are faced with at most another finite decomposition of

(¡>kFmBm into subgraphs identified by which iteration they first enter U(Pk_x).

Hence we assume that f'<f>kFmBm c U(Pk_x). Since FmBm is the graph of a C1

function with slope ^ uk, in cl TP M(e) we know from Proposition 1 that

{^if'4>kFmBm)n{clTPk_M(e))

is a C1 fiber bundle over (¡>klxfl<pkFmBm intersected with Esk_x in the fundamental

neighborhood associated with W given by Bk_x(E) — f(Bk_,(e)). Furthermore the

fibers are the graphs of C1 functions from a closed subset of c\ Ek_x(E) into

c\ Ek_x(E) and all of the slopes «s wA_1. By the induction hypothesis the area

(dim£A"_!) of any fiber is bounded by K(l + 8")N-'~mexp(-C(N - I - m))

where 8" is between 8' and 8 and C is the appropriate minimum Jacobian. From this

we deduce the area(dim£t") of <f>k}xf'<pkFmBm by using Fubini's theorem, which

applies due to the C1 fiber structure. Thus

area{$-kl_xf><pkFmBm) < K(\ + 8")N'exp(-CN')

for TV' = (N - I - m), and where we have redefined K. We now translate this back

to cl TkM(E) and thus find that for a subgaph of FmBm its length is bounded by

(**) K(\ + 8")"'exp(-CN)

where again K is redefined to account for bounded factors in the translation, and

TV' = (TV - / - m).
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We repeat this procedure to determine the areas of the other subgraphs of FmBm

noting that / may change. Since there are finitely many fixed points then the entire

area of FmBm is of the form (**) with K modified to account for the number of

points and the different /. Then translating (**) back to the initial iteration zz = 0 we

immediately get

area(Pm) < (1 + 8')mK(l + 8")exp(-Ckm - CN')

for TV' = (N - I - m), where C is now the minimum of the Jac Df(Pj) for

1 < / < k. We redefine K to get

area(Pj ^ k(l + 8")Nexp(-CN)

and finally arrive at

area(graph h n SN) < area A + area B0 + ■ ■ ■ + area BN_X

< (TV + \)K(\ + 8")Nexp(-CN).

Since the exponential decay dominates algebraic growth we amy redefine K to get

area(graph/z n SN) < K(\ + 8)Nexp(-CN)

as desired. This completes the proof of Lemma 2.

Applying Lemma 2 we continue the proof of Theorem B. Since SN n Hv is

contained in a linear variety, the area (•), here denoted v", is an r-dimensional

Lebesgue measure. Thus we get

vu(S„ n Hv) < K(\ + 8)Nexp(-CN).

Now by application of Fubini's theorem,

y(SN)=f        [v"(sN n /£,)] dv'

or

v(SN) < K(l + o)'vexp(-CA)z/v(cl £/(e)),

v(SN) < /C(2E)dim£i(l + 8)Nexp(-CN).

Then redefine K as K(2E)dimEs; we then get v(SN) < K(\ + 8)Nexp(-CN).

Hence,

H(UN(P,)) < K(l + 8)Nexp(-CN),

where again K is redefined. This completes the proof of Theorem B.

4. The Proof of Theorem A. Let g = /'. Then g is a Morse-Smale diffeomorphism

with S2(g) = Fix(g). We will prove Theorem A for g by induction on z in the

quantity ju(5(z", z" - 1, TV)).

From M. Shub [9, part (e), p. 496], we have that there exist zz, and mi such that

[g"'(Af,) - g~m'(int M¡_x)] c £(P,). Let £, = z?, + m¡. Then it is evident that x e

Mj implies either

(1) g"<(x) e U(P,)
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or

(2) gLix) e M,_x.

Thus from the definition of S(i, i - 1, TV + £,) we have

5(z,z-l,TV + L,)cg-".(L/w+m,(P,)).

Let z = 2. We consider 5(2,1, TV); 5(2,1, TV) = 5(2,1, (N - L2) + £2) so

S(2,l,(TV-£2) + £2)cg-^_fl2(P2).

Thus by Theorem B,

p(S(2,l, TV)) < K*p{uN.ni(P2)) < K*tf(l + 8)N-">exp(-C/l(N - n2))

for TV ̂ £2.

By redefining K we get

íi(S(2,1,TV))<a:(1 + S)A'exp(-C//TV).

Assuming that we have the estimate

¡x(S(i- 1,1, TV)) ̂K(l +8)Nexp(-C/lN)   for i < r

consider S(i, 1, TV). Then let AN be defined by

S(i,l,N) = S(i,i- \,N)uS(i- 1,1, TV) U^.

Note. If x e AN then x e Af [i, i - 1] and/N(x) e int A/,-.,.

Now /i(5(z" - 1,1, TV)) is known by hypothesis and p.(S(i, i - 1, TV)) is gotten by

a trivial modification of the 5(2,1, TV) case. So we consider AN. Next write

AN = Z) U £, where

Z) = {* e AN:gL'(x) e A/[z, i - 1]},

E= {x <EAN:gL'(x) e int Mt_x).

Then gL'(£) c 5(z - 1,1, TV - £,) and£ c g-¿<(5(z - 1,1, TV - £,)) so that

fi(£) < K'p(S(i - 1,1, N - Lj)), where AT'= max{Jacg L-} over M[i, i - 1],

Thus /*(£)< tf(l + 8)Nexp(- CN), by modifying K.

Finally for D we have g"D c C/(P,) but since any point in gND stays out of Af,

for TV - zz, iterations we have g"D c UN_n(P,). Hence n(D) < ii */x(t7A,_„ (P,)) or

ix(D) < ^#(1 + Ô)A,""'exp(-C//(TV-zz,))    forTV>£,,

By redefining ¿RT, we get

n(S(i, /, TV)) < p(S(i, i - 1, TV)) + íí(5(z - 1, /, TV)) + /*(£>) + /*(£)

<tf(l + 8)Nexp(-C/lN)

as desired. Since 5(z, /, N) c 5(z, 1, TV) this completes the proof for g. To extend

the result to / we note the following: if Üm(P¡) = [x e U(P¡): fkx £ Mx, k =

0,l,2,...,w), then

t/w(P,)c UMi)m [x e U(Pl):gkxtMl,k-0,1,...,N).
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HeacepiÛMi)) < K(l + 8)Nexp(-CN) or

p(UMi)) < [*0 + 8)l/'](l + 8)\xp(-C/l)N.

The proof is finished by noting that C/l is the minimum of the quantities

{l/zrzlogJacT)p f"'\rV"(pj)} where the minimum is taken over all pj in the non-

wandering set for/which are not sinks and fmpj = Pj.

5. Morse-Smale flows. The goal of this section is to prove a corresponding

theorem for Morse-Smale flows.

For x a fixed point of a flow <pt we define

<pu(x) = log Jac ¿»(h | £; -* £;.

For y a closed orbit of <p, with period t we define

*"(y) = l/T(min{logJacZtyT|£; - £,"}).

A fixed point x or a closed orbit 8 is an attractor of the flow <f>, if there is an open

set U containing it satisfying <j>,(U) cz U for all t ^ 0, and

Definition. Let X be a vector field on M, and denote by <¡>, its induced flow. We

say </>, is a Morse-Smale flow if X satisfies the following conditions [6]:

(a) S2( X) is the union of a finite number of fixed points xx, x2,...,xm and a finite

number of closed orbits yx, y2,...,yn of X.

(b) The x¡, y , are all hyperbolic.

(c) The stable and unstable manifolds of the x¡, yy have transversal intersection.

Theorem C. Let <J>, be a Morse-Smale flow on M. There is a filtration ^t = {M¡}r¡=x

such that:

(a) All at tract ors for <p, are in Mx.

(b) For all 8 > 0,

p(S(i,l, T)) < K(l + 8)Texp(-CT)

for i > 2, K > 0 independent of T, and C = min^ {<b"(Xj), <pu(yj)) where x¡, y7 are,

respectively, the fixed points and closed orbits of <f>, which are not sinks or attractors.

Proof. We show how to modify our previous arguments to this case.

If x is a fixed point of <f>t, then our previous work suffices to describe the behavior

of trajectories in the neighborhood of x by considering the time one diffeomorphism

g = «Pi-

If y is a closed orbit of <pt which is not an attractor, then TyM splits continuously

into E + Es + E" where £ is the one-dimensional bundle tangent to the flow and

dimension £" > 1. For g = <pT the time t diffeomorphism where t is the period of y,

y is a closed, infinite, nonhyperbolic set in fi(g). However, since Dg(y) expands E"

more rapidly that £, for any )»ey, then given e > 0 we can find 8, 0 < 8 < e, so

that if gk(x) e By(e) for 0 < k < zz but g"+1(x) í P,.(e), then d(gN+\x), y) > 8.

By compactness we can cover By(8) by a finite number of {P,.(E)}v,er
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The effect of this construction is to permit use of the previous established volume

and area estimates in the neighborhood of y by considering only a finite number of

neighborhoods covering y. If TV is a C1 submanifold of M in cl By(8), then TV

decomposes into a finite number of submanifolds determined by its intersections

with Pv(e). Let NY be a typical one. Then <t>/lNY is a C1 submanifold of TYM(e). If,

in addition, it is the graph of a C1 function of a closed subset of £"(e) into

£"(e) = £vs(e) + £v(e) with prescribed slope, then under iteration by 6 =

<í\ * ° g ° 4>y, it remains the graph of a C1 function of the unstable space £" into the

center stable space E". That is the graph transform properties from before apply

here [2]. Locally y behaves like a finite number of nonwandering points as far as the

area lemma (Lemma 2) is concerned.

The only other issue is that of transversal intersection. The stable and unstable

manifold of any two closed orbits, including fixed points, have transversal intersec-

tion. In the case of a closed orbit there is a third direction—the flow direction. We

actually need each unstable manifold to intersect each center stable manifold

transversally. This occurs since the stable and center stable manifolds intersect along

the flow. Hence the analogue of Proposition 1 is true for Morse-Smale flows. Also by

our previous remark the area lemma, Lemma 2, has an analogue. We thus prove our

volume estimates locally using fixed time diffeomorphisms g = <j>T and finish the

proof by normalizing the estimates by dividing the exponential constants by t when

necessary.
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