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FINE AND PARABOLIC LIMITS FOR SOLUTIONS

OF SECOND-ORDER LINEAR PARABOLIC EQUATIONS

ON AN INFINITE SLAB

BY

B. A. MAIR1

Abstract. This paper investigates the boundary behaviour of positive solutions of

the equation Lu = 0, where L is a uniformly parabolic second-order differential

operator in divergence form having Holder-continuous coefficients on X= R" X

(0, 7"), where 0 < T < oo. In particular, the notion of semithinness for the potential

theory on X associated with L is introduced, and the relationships between fine,

semifine and parabolic convergence at points of R" X {0} are studied.

The abstract Fatou-Naim-Doob theorem is used to deduce that every positive

solution of Lu = 0 on X has parabolic limits Lebesgue-almost-everywhere on

R" X (0). Furthermore, a Carleson-type result is obtained for solutions defined on a

union of parabolic regions.

0. Introduction. Let £ be a second-order linear parabolic differential operator

having divergence structure on X = R" X (0, T) where 0 < T < oo. The coefficients

of L are assumed to be such that the classical fundamental solution exists, the results

in [2] for classical solutions hold, and the solutions of Lu = 0 form a strong

harmonic space in the sense of Bauer [3].

In the particular case of the heat operator Ax - 9/3i, Doob [11] proved the

almost everywhere convergence through parabolic regions of quotients of positive

solutions on X. Hattemer [16] showed that if £ c R", « is a solution of the heat

equation on X, and for each b e £, u is bounded on a parabolic region with vertex

b, then u has finite parabolic limits almost everywhere on £ (cf. [7]). Results of

Kemper [20] imply a Carleson-type result for solutions of the heat equation (i.e.

Hattemer's result holds if u is only upper or lower bounded on each parabolic

region).

For certain parabolic operators with divergence structure, Johnson [19] proved the

Lebesgue-almost-everywhere convergence through parabolic regions of positive solu-

tions on X.

In this paper, Johnson's result for £ is deduced from the abstract Fatou-Naim-

Doob theorem. Also, a Carleson-type result is established for solutions of Lu = 0

defined on a union of parabolic regions. The methods employed in this paper were

inspired mainly by those in [6,21 and 22].
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Basically this paper shows that all the ideas introduced by Brelot and Doob in [6]

for the study of nontangential convergence for quotients of positive solutions of

Laplace's equation can be used to study parabolic convergence for positive solutions

of certain parabolic equations. In particular, semithinness, which was not used in

[22], is seen to be also useful in the parabolic case. As in the case of Laplace's

equation, to prove the local theorem it is necessary to obtain a suitable relationship

between the ideal boundaries of X and certain subsets of X (cf. [21]). This is done in

§7 by using the integral representation theorem in [18] and on adaptation of the

methods used in the appendix of [21].

I would like to thank Professor J. C. Taylor of McGill University for suggesting

this problem and the stimulating discussions we had.

1. Preliminaries. Throughout this paper 0 < T < oo and zz e N are fixed and X

denotes the infinite slab

R"x (Q,T) = {(x,t): (xx,x2,...,x„)&Rn,0 <t <T).

The lower boundary R" X (0} will be identified with R". The linear second-order

uniformly parabolic differential operator £ with divergence structure is defined by

LU=L,dx-, H*''^   +V^'°3^ + C(*'°"~^'
i, j—i     j v ' '     / = i j

where the coefficients are bounded, Holder-continuous real-valued functions on

R" x [0, T]; da¡j/dxk exists and is Holder-continuous for any i, j, k e (1,2,..., zz);

(a¡j) is a symmetric matrix and there exists a constant Af > 0 such that

7J

£  aiAx,t)yiyj>M-l\\y\\2,       \atJ(x, t)\ < M
í.7-1

for all z, / e{l,2,...,zz}, (x, f)e R" X [0, T] andy e R".

For any open U c X, let %(U) be the set of real-valued functions u which are of

class Q2 with respect to x, of class 6' with respect to t, and satisfy Lu = 0 on U.

The following properties hold.

(PI) (X, %) is a strong harmonic space in the sense of [3] (cf. [15,3,10, Exercise

3.3.5]). A function in %(U) is said to be harmonic on U.

(P2) The classical fundamental solution T for the operator £ exists and there are

positive constants P,px,p2 such that

£-'M/1 < r < PW2   onJXI,

where Wt is the fundamental solution for the operator/?,-Ax - 3/3? for z = 1,2. That

is,

W,(x, t;y,s) = j [4/>i*('--0r/2exp

(cf. [2, Theorem 7]). For each b e R", let Kh(x, t) = T(x, t; b,0) for all (x, t) g X.

II* ->c
4p,(t-s)

,   if t>s,
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(P3) For each nonnegative harmonic function u on X there exists a unique Borel

measure /x on R" such that

u(x, t) = \Kh(x, t) dki(b)    for all (x, t) e X.

(i is called the representing measure for u. Conversely, if ju is a Borel measure on R"

such that u(x, t) = JKh(x, t) dfi(b) is finite for all (x, t) e X, then « is a nonnega-

tive harmonic function on X(cf. [2, Theorem 12 and Corollary 12.1]).

(P4) For each b e R", Kh is a minimal harmonic function on X (cf. [2, Corollary

12.2]).

(P5) jKh(x, t) db = 1 for all (x, t) e X (cf. [1]). That is, Lebesgue zz-dimensional

measure represents 1.

These properties, together with basic results in axiomatic potential theory (cf.

[3,10]) imply that hypotheses (l)-(ll) in [26] are satisfied. The following result is

therefore a consequence of the Fatou-Naim-Doob theorem (cf. [26]).

Theorem 1.1. Let u, v be positive harmonic functions on X represented by measures

/t, v, respectively. Then u/v has fine limit dii/dv v-a.e. on R".

For the reader's convenience, the concept of fine limit is now defined.

Definition 1.2 (cf. [13,26]). (i) For any nonnegative superharmonic function u

on X and E cz X, the reduced function ofuonE is defined on X by

REu(x, t) = inf{w(;ï, t): wis nonnegative, superharmonic on Xand w > uon £}.

REu denotes its lower semicontinuous régularisation and is called the balayage of u

on E.

(ii) A set £ c X is said to be thin at b e R" if REKh*= Kh or, equivalently,

REKb * Kb-

(iii) The fine filter at b, <5(b) = {£ c X: X\ E is thin at b). Limits along this

filter are called fine limits.

Throughout this paper, C denotes a general positive constant (not necessarily the

same at different occurrences) which may depend on zz, P, px, p2 and other

constants.

Remark 1.3. The function c is bounded, hence there exists a constant q > 0 such

that c < q. Then, for sufficiently differentiable u, L(eq'u) = eq'(Lu - qu). Hence

L(tei') < 0.

Now, in the case of the potential theory associated to the Laplacian, the comple-

ment of a Martin neighbourhood of a point on the Martin boundary is thin at that

point. The following lemma establishes a similar result for parabolic potential theory

onl

Lemma 1.4. For any ¿ëR" and neighbourhood UofbinR" + ], the set X\U is thin

at b.

Proof. Let b and U be as in the hypothesis. Then there exists 8 > 0 such that

{(x, t): \\x - ¿z|| < 8, 0 < t < 8} c U. Since T < PW2 and e~x ^ (2-mm\)^2\-"'/2
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for m = 0, zz + 2, it follows that

Kb(x, t) < Ct < Oe9'   for ail (x, t) e X\ U.

Then, by Remark 1.3, RxxuKb(x, t) ^ Oe^'for ail (x, t) e X Hence RxxuKh(x, t)

-» 0as(x, 0 -+ b, so RxxuKh * #,,.
A useful characterisation of thinness is provided by the following result (cf. [23,

Théorème 4; 17, Lemma (5.1)]).

Proposition 1.5. Let E cz X and b e R". 7/ £ « i/zz'zz af Z> then for any sequence

(Um) of neighbourhoods ofb in R"+ ' decreasing to (b) and (x, t) e X,

lim Â£(m)tf6(x, t) = 0,
777-»OO

tv/zere E(m) = £ n i/m.

Conversely, if there exist (x, t) e X and a sequence {Um} as above such that

\imm_xRE,m)Kh(x, t) = 0, then £ is thin at b.

Proof. Assume £ is thin at b. Define

u(x, t) =  lim RE(m)Kh(x, t)   for each (x, t) e X.
771—7 00

Then u is nonnegative and harmonic on X because RE(m)Kh is harmonic on X\ Um

and the Doob convergence property for a decreasing sequence of harmonic functions

can be applied. However, RE(m)Kh is a potential for each m, hence u = 0.

Conversely, if limm_<0OÄ£(m)Ä'/,(A;, t) = 0 for some (x, i) e Jf, then there exists m

such that RE,m)Kh(x, t) < Kh(x, t), so £(zzz) is thin at b. Hence £ is thin at b by

Lemma 1.4.

The solution of the Dirichlet problem in the sense of Perron-Wiener-Brelot (cf.

[10, p. 18]) plays a major role in examining the relationships between fine, semifine

and parabolic limits. Results in [2] show that Kb db is the harmonic measure on X.

2. Semifine and parabolic limits for arbitrary functions. In [6] Brelot and Doob

defined "semi-effdement" at a point of R" for classical potential theory on X. In

order to define semithinness at a point of R" for parabolic potential theory, it is

necessary to modify their definition so as to take account of the " parabolic scaling"

of the heat equation.

In the remainder of this paper, y denotes a fixed number and 0 < y < 1.

Definition 2.1. (i) For any deR" and zzz e N, define

Rjb) = {(x, t) e X: \\x - b\\ <ym,t< y2m),

and

Jm(b) = Rm(b)\Rm+](b).

Jm(b) will be denoted by Jm when the context determines b.

(ii) A set £ c X is said to be semithin at b e R" if there exists (x, t) e X such

that \imm^xREr,jKh(x, t) = 0.

(hi) For each b e R", %(b) = {£ c X: X\E is semithin at b) is called the

semifine filter at b. For any function/, semifine lim/(/>) denotes the limit of/along

S(¿z). Similarly, semifine lim sup f(b) denotes the lim sup of / along %(b) and

semifine lim inf/(/>) denotes the lim inf off along %(b).
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Remark 2.2. (i) For any (x, t) and (x0, t0) g X, there exists a g R such that

u(x, t) < au(x0, t0) for all positive harmonic functions u on X (cf. [2, Theorem H]).

Hence, £ c X is semithin at b g R" iff there exists t0 g (0,7) such that

\imn^xREnJmKh(x, t) = 0 for all f e (0, i0).

(ii) It is clear from Proposition 1.5 that 9(b) c S(/3) for all zj g R",

Definition 2.3. (i) For any a > 0 and £ e R", the region

P(b; a) = {(x, t) e X: ||x - b\\2 < at)

is called the parabolic region with aperature a and vertex b. For any 8 > 0, P(b; a, 8)

denotes P(b; a) n {(x, 0 g X: t < 8).

(ii) A real-valued function / is said to have parabolic limit X at b e R" if

{f(xn, /„)} converges to A for every sequence {(x„, tn)) which converges to ¿> within a

parabolic region.

(iii) 9(b) = {E cz X: for each a > 0 there exists <5 > 0 such that 9(b; a, 8) c £}

is called the parabolic filter at b.

It is clear that parabolic convergence at b is equivalent to convergence along 9(b).

Proposition 2.4 (CF. [6, Théorème 1]). For each b e R", 9(b) c S(6). Hence,

any function having parabolic limit at b has the same semifine limit at b.

Proof. For each m g N, let

5;, = {.veR":y'" + 2<||.y-Z7||<y"'-1},

»m(*.0= / KY(x,t)dy   and   um(x, t) =( Wx(x, t; y,0) dy

for all (x, t) g X Then, by using the fact that P~]WX < T and the transformations

y^Bm^y^m-'\y-b) + b^Bx,

(x, t) e Jm -+ (y-""""(x - b) + è,y-2<m-')/) G /,,

it is clear that

inf{vjx, t): (x, t) g Jm) > Cinf{wm(x, z): (x, t) g /J

= Cinf [ux(x, t): (x, t) g /,} > 0

for all /zz. Now, Let £ g 9(b), £ = A"\ £ and 0 < e < 1. Then there exists m0 g N

such that m > w0 and (x, ?) g £ n 7m implies ? < e||x - ¿>||2. Since e~x < zz!A_" for

all X > 0, it follows that

Kh(x, t) < Cr/2||x - b\\-2"   for all (x, t) g a\

Now, (x, t) g 7m implies

y2(m+1)^ f" <y2"'    or   y",+ 1 < ||x - 6|| < ym,

which implies

Kh(x,t)^ C{t\\x-b\\-2)"y-"(m+X)   or

^(x,z)<C{i||x-/3||-2}"/2y-"<m+".
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Therefore, for m > m0 and (x, t) g £ n Jm,

Kh(x, t) < Cy-"(m+,)e"/2 < Cy-"(m+V/2tJm(x, t).

Now,

vm(x,t) < Cr"/2(volume of Bm) = cr"/2y"<'"-|)(l - y3").

Hence, for m > zzz0 and (x, t) e A",

RFnJKb(x, t) < Cy"2"(l - y3")r"/V/2.

It follows that £ is semithin at b.

3. Nonsemithin sets. For classical potential theory on x, it is known (cf. [6,

Théorème 3]) that if {(ym, tm)) converges to b within a cone, then for any a > 0 the

so-called " bubble" set,

00

U {(x,t):\\(x,t) - (ym,tm)\\< atm)
771=1

is not semithin at b.

In the case of the potential theory for the heat equation on X, Koranyi and Taylor

[22, Proposition 4.1] proved that if tm |0, then for any a > 0, the set Ux=x{(x,tm):

||x - ¿z||2 < atm) is not thin at b. This is a special case of the following result.

Proposition 3.1. Let {(ym, tm)) be a sequence in P(b; a) which converges to b g R"

and let ß > 0. Then U X1= ,((x, tm): ||x - yj\2 < ßtm) is not semithin at b.

Proof. For each m e N, let Em = ((x, tm): ||x - ym\\2 ̂  ßtm) and £ = U x=xEm.

Fix (x0, t0) G X and m0 G N such that Zm < Z0 for all m > zzz0. Then, RE \

dominates the solution of the Dirichlet problem on the half-space {(x, t): t > tm)

corresponding to the characteristic function of £„,. Therefore, by using P~^W^ < T

and Proposition 1.6, it follows that for m > zrz0,

Ä£„,l(x0,z0) > C(Z0 - Zj   7exp-V -1_J-   (/?rj"/2.
| 4Pl(^_í7«) j

Hence,

liminfz;"/2Ä£ l(x0,?0) > 0.
771 -» 00

Since ||x - è||2 < 2(||x - >>J|2 + ||j>m - b\\2), it is clear that

REmKh(xo^o)>Crm"^REm\(x0,tQ).

Hence there is a constant 5 > 0 such that RE^Kb(x0, t0) > 8 for all sufficiently large

zzz.

Now, for each m ^ zrz0, put Tm = {k g N: EmC\ Jk* 0). E c P(b; X) where

X = max{2(a + ß),\). Hence k g tm implies X~ly2{k+]) ̂  tm ^ y2k, which implies

t_ is contained within an interval of fixed length 1 - (logA)/(21og y). Therefore,
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there exists q g N, independent of m, such that the cardinality of Tm < q. Now, for

all sufficiently large m,

£„,= U Emnjk  so  REKb< E REmnjKb.

Hence, for all sufficiently large m, there exists k(m) such that REnJ m Kb(x0, t0) >

8/q. This proves £ is not semithin at b.

Remark 3.2. It is interesting to note that, by using a similar argument, it can be

shown that if {(ym, ?„,)} converges to b within a cone, then U ^=,((x, tm): \\x - ym\\

< ßtm) is not semithin (in the classical sense) at b. This exhibits a smaller

nonsemithin set than the standard "bubble" set.

4. Semifine and parabolic limits for harmonic functions. In [22, Theorem 4.2],

Koranyi and Taylor used the fine limit theorem and a reduction theorem [22,

Theorem 1.2] to deduce Doob's result (cf. [11]) that every positive solution of the

heat equation on X has finite parabolic limits a.e. on R". The following theorem uses

their method to obtain the same result for the linear second-order parabolic

differential operators £ introduced in §1, thus deriving Johnson's result (cf. [19])

from the theory of fine convergence.

Theorem 4.1. Let b g R" and u > 0 be harmonic on P(b; ß, 8) for some ß, 8 > 0.

Then, for any a < ß,u has limit 0 alongS(b) restricted to P(b; a) implies u(x, t) -» 0

as (x, t) -» b within P(b; a).

Consequently, if u > 0 and satisfies Lu = 0 on X, then u has parabolic limit dfx/db

for a.e. b G R", where ju is the representing measure for u.

Proof. Suppose there exists a sequence {(ym,tm)) converging to b such that

ll>m ~ b\\2 < atm, and a constant X > 0 such that u(ym, tm) > X for all m g N. Let t?

be such that a < rj < ß. Then by putting Í2 = {x g R": ||jc - z3||2 < t]t), fl' = (x g

R": ||x - b\\2 < at) in the Harnack-type inequality of Aronson and Serrin (cf. [2,

Theorem H]), it follows that there is a constant A, > 0 such that u(x, It) > Xxu(y, t)

for all 0 < t < min(l,<5/2)» II* - b\\2 < «^ Il y ~ b\\2 < at. Hence, u > A,A on

£ = U "_,{(x, 2tm): \\x - b\\2 < atm), which is not semithin at b. Hence u does not

have semifine limit 0 at b.

Consequently, for any b g R", u has fine limit 0 at b implies u has parabolic limit

0 at b. The theorem is completed by using Theorem 1.2 in [22] (cf. §8).

5. Parabolic and fine limits almost everywhere. In [6] it was proved that if /:

X -» R and £ c R" is the set of points at which / has a finite nontangential limit,

then / converges finely a.e. on £. However, the method used there is rather involved.

The simpler method developed by Hunt and Wheeden (cf. [17, Theorem (5.7)]) will

be used here to prove an analogous result.

Lemma 5.1 (cf. [6, Théorème 8]). Let A c R" and W c X be such that for each

b e A, W contains a truncated parabolic region with vertex b. Then X\W is thin at

a.e. b G A.
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Proof. By considering parabolic regions of rational aperature and height, it

suffices to consider the case when, for each b g A, W contains the region P(b; a, 8)

with a, 8 fixed. Furthermore, in this case, P(b; a, 8) is contained in W for every

adherent point b of A. Hence A can be assumed to be closed.

Let v be the solution of the Dirichlet problem on X corresponding to the

characteristic function of A. Then, by the Fatou-Naim-Doob theorem, v has fine

limit 1 a.e. on^4. Therefore, for any 0 < X < 1, the set Ex = {(x, t) g X: v(x, t) < X)

is thin at a.e. b <e A. Now, suppose (x, /) G X\ W and t < 8. Let D = (b G R":

||x- b\\2 < ai}. Then

< 1 - Crn/2e-a/4l"(at)"/2 = 1 - C < 1.

Hence, X\ W c Ex U {(x, t) & X: t ^ 8} for some choice of A.

The main result in this section will now be stated.

Theorem 5.2. Let f be a real-valued function on X and A c R" the set of points at

which f has a parabolic limit \p(b) at b g A. Then f converges finely to \p a.e. on A.

Proof. Fix an a > 0. Then for each b g A and m g N there exists a positive

rational number 8m(b) such that |/(x, t) - \p(b)\ < \/m for all (x, t) g

P(b; a, 8m(b)). By dividing A into a countable number of subsets, one can assume

8m(b) = 8m for all b g A. For b g A, m g N, define

(O      Qjb)= U {P(y,a,ôm):y e A,P(b; a,8m) n P(y; a,8m) * 0).

Then

Qjb) - U{P(y;a,8m):y<EA,\\y-b\\2^ 4a8m),

which contains Wm n {(x, t) g X: ||x - b\\2 ^ a8m, t < 8m), where Wm =

Uy<EAP(y; a, 8j. Hence X\ Qm(b) is thin at b if X\ Wm is thin at b. Now, by

Lemma 5.1, for each m there exists Dm c A having zero Lebesgue measure such that

for all m g N, X\ Wm is thin at each b g A \Dm. Therefore, for all m g N,

*\ Qjb) is thin at each b^A\U x=]Dm and from (i), Qm(b) c {(x, t) g X:

|/(x, f ) - xp(b)\ < 3/m). The result follows.

Remark 5.3. It is clear from the proof of the above theorem that / converges finely

to \p a.e. on A if at each b g A, f has parabolic limit \f/(b) relative to some parabolic

region P(b; a(b)).

This remark corresponds to that made by Brelot and Doob for the case of the

Laplacian (cf. [6, p. 412, footnote (11)]).

6. Semifine and parabolic limits for solutions of the heat equation. In case £ is the

heat operator, this section improves the first part of Theorem 4.1 by using a stronger

Harnack-type inequality.

In [6, p. 401], it is stated that the Harnack constant 0(p), 0 < p < 1, for which

u(x)/u(y) < 0(p) for all ||x - ^|| < pa and for all positive solutions u of Laplace's

equation on (x g R": ||x - y\\ < a), has the property that linip^f^p) = 1. This
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plays an important role in [6, Théorème 3 and 17, Theorem 5.5]. The next result

demonstrates a Harnack-type inequality for positive solutions of the heat equation

Avzz - u, = 0 on X in which the Harnack constant possesses an analogous property.

As this result is proved only for solutions defined on all of X, the local nature of

Théorème 3 in [6] is lost in this case. In view of this, it is interesting to ask if the

Harnack constant for solutions defined only on a finite rectangular domain pos-

sesses a similar property. This is an open question.

Proposition 6.1. (i) For each p > 1 there exists 6(p) such that for all positive

solutions u of the heat equation on X,

u(x,pt) > 0(p)u(y,t)   if\\x - y\\2 < (p - 1)2Z.

Further, limp_x 8(p) = 1.

(ii) For each 0 < p < 1, there exists <t>(p) such that for all positive solutions u of the

heat equation on X,

u(x,pt) < <p(p)u(y,t)    if\\x - y\\2 < p"'(l - pft.

Further, limp_>1^>(p) = 1.

Proof. For the heat equation,

Kh(x,t) = (Atrt)-"/2exp(-\\x-b\\2/At)

for all (x, t) g X.

\\y-b\\2     \\x-b\\2\

At Apt     /'

The triangle inequality implies

p(p- \)\\y - b\\2 + p\\x - y\\2 >(p- l)||x - ö||2,

which implies

i^-e^-p-'iix-zzi^-ip-ir'nx-^ii2.

Hence,

Kb(x, pt) > p-"/2exp{-||x - y||2/4(p - \)t)Kb(y, t)

>p-"/2exp((l -p)/A)Kh(y,t),   if ||x - >-||2 < (p - ift.

Set 6(p) = p"/2exp((l - p)/4) and 4>(p) = (B(p-x))-\

In the case of zz = 1, this result can be deduced from Theorem 1 in [25].

Theorem 6.2 (cf. [6, Théorème 6]). Let übe a positive solution of the heat equation

on X having Xas a parabolic cluster value at b g R". 77zezz

semifine lim inf u(b) < À < semifine lim sup u(b).

Consequently, for any b G R",

fine lim u(b) = À => semifine lim u(b) = X <=» u has parabolic limit Xat b.

Proof. The second part of the theorem is a direct consequence of the first part.

To prove the first part, consider X < oo. Let {(ym, tmy) be a sequence of points in a

parabolic region P(b; a) converging to b such that for all ô > 0 there exists

Kh(x,pt)

Kh(y,t)
p-"/2exp
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M(8) G N such that X- 8 < u(ym, tm) < X + 8, if m > M(8). For each m g N and

p > 1, define,

£m,P = {(x,ptm):\\x-ym\\2 ^ (p- lftm}.

Now, since 6(p) -» 1 as p -» 1, for any ô > 0 there exists p > 1 such that X - 28 <

(X - 8)6(p). Then from Proposition 6.1(i), u > X - 28 on the set £ =

UmSîM(S)£mp. Since by Proposition 3.1, £ is not semithin at b, it follows that

À < semifine lim sup u(b).

For the first inequality, one proceeds in a similar manner. For each m g N and

0 < p < 1, define,

Fm.P = {(*, Ptm): ||x - .pj2 < p-'O - pftm).

Then w(x, i) < <t>(p)u(ym, tm) if (x, t) g £m p, which implies that for any 8 > 0,

there exists 0 < p < 1 such that u < X + 28 on a set which is not semithin at b.

To complete the proof, consider X = oo. Then only the second inequality needs to

be examined. Fix p > 1 and let {(ym, tm)) be a sequence of points in a parabolic

region P(b; a) converging to b such that u(ym, tm) tends to oo. Then for any 8 > 0

there exists M(8) g N such that u(ym, tm) > 86(p)'1 if m ^ M(8). Hence, by

Propositions 6.1(1) and 3.1, u > 8 on a set which is not semithin at b.

Rfmark 6.3. This theorem shows that Doob's result (cf. [11, Theorem 5.2]), in the

case h = 1, can be deduced directly from fine convergence without having to use a

reduction theorem (cf. Theorem 4.1 ; [22, Theorem 4.2]).

7. A local fine limit theorem. If A' is a Brelot space (satisfying the Axiom of

Domination) and W is an open, connected subset of X, Koranyi and Taylor [21]

obtained a Borel isomorphism between a subset of the Martin boundary of X and a

subset of the Martin boundary of W. This Borel isomorphism preserves the null sets

for the representing measure of a harmonic function on X and the representing

measure of its restriction to W. This relationship was used in [6 and 22] to obtain

local Fatou theorems from the fine limit theorem.

In [21] it was asked whether a similar result holds for strong harmonic spaces. This

section presents an affirmative answer to this question for "regular" subsets of

strong harmonic spaces.

In this section let (Y, %) be a strong harmonic space, Wan open subset of Y, and

r a reference measure (i.e. z* is a regular Borel measure such that Y is the smallest

absorbing set containing the support of r) on Y such that the following conditions

are satisfied.

(*) r(Y) < oo and the restriction of r to W (denoted by s) is a reference measure

on W.

(**) RY\wu is continuous on Y for every nonnegative harmonic u on Y.

Clearly (**) holds if every boundary point of Wis regular.

The following notations will be used.

%+(Y) is the set of all nonnegative harmonic functions on Y endowed with the

topology of uniform convergence on compact subsets of Y.
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%r(Y) = {u G %+(Y): Judr < oo};

%}(Y) = (u G %+(Y); Judr < 1}.

A(T) = {u g 5C+(T) : u * 0, tz is a minimal harmonic function on Y);

Br(Y) = {u<E A(Y): fudr= 1}.

9Hr(T) is the set of all finite Borel measures on %lr(Y) which are supported by

à.(Y)C\%l(Y).
Observe that measures in ^Str(Y) are regular since %,(Y) is a compact metrisable

space. By using the Choquet-Meyer existence and uniqueness theorem, Janssen [18,

2.5] obtained the following integral representation theorem.

Theorem 7.1. For every u G %r(Y) there exists a unique lî g 9Hr(7) such that

u(x) = }h(x) dii(h)for all x G Y. (fi is called the representing measure for u.)

Conversely, if¡i G <3ILr(y) and u(x) = jh(x) dxi(h)for all x g Y, then u g %r(Y).

Now, by letting "§" (resp. "9") in [26] be the set of nonnegative, r-integrable

superharmonic functions (resp. z--integrable potentials) on Y, it follows from

axiomatic potential theory that all the hypotheses in [26] are satisfied except for (9)

and (10), which assume Theorem 7.1 with <9\Lr(Y) replaced by the space of positive

Borel measures on A(T) n %}(Y). However, this does not alter the results in [26].

Hence one obtains the following version of the Fatou-Naim-Doob theorem, by

means of elementary measure and lattice theory (cf. [18, p. 118]).

Theorem 7.2. // u and v are positive, r-integrable, harmonic functions on Y, then

u/v has fine limit dii/dv v-a.e. on Br(Y), where ft. and v are the representing measures

for u and v, respectively.

Now, if 7 is a Brelot space, then Dirac measures are reference measures and for

any A c Y, and nonnegative superharmonic m on Y, (x g A: RAu(x) < u(x)) is a

polar set. This does not hold for parabolic potential theory. However, hypotheses

(*), (**) allow one to apply the methods used in the appendix of [21] to the case of

strong harmonic spaces.

Set

Br(Y,W) = [h g Br(Y): Y \ W is thin at h)

= {h g Br(Y): RY\wb is a potential}.

Proposition 7.3 (cf. [14, Theorem 1; 21, Theorem A.l]). (i) For each h g

Br(Y,W),h-RyXWh(=A(W).
(ii) If h, k G Br(Y, W) are such that h - RY\Wh and k - RY\wk are proportional

on W, then h = k.

Proof. To prove (i) let h g Br(Y, W) and w g %+(W) be such that w < h -

RY\Wh on W. Define

.   N      \w(x) + RYsXVh(x),    ifxG W,
v(x) = \    ,   -,

\h(x), ifx£ W.

Then, by using (**) it follows that v is a continuous superharmonic function on Y,

which is harmonic on W. Since u>0, v = u + p where zz g 3C+(7) and p is a
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continuous potential on Y which is harmonic on W. Now, 0 =$ v < h, hence

0 «s u < h and then the minimality of h, u = ah for some 0 < a < 1. Also the

properties of p and the minimum principle in [3, Korollar 2.4.3] imply RY^wp = p.

Therefore, by the additivity of the reduced function,

RY\Wh = RY\Wv = Ry^u + RY\Wp = aRYxxvh + p,

sop = (1 - a)RY\Wh on Y. Hence,

w = u + p - RY\Wh = a(h — R-y^^h)    on W.

(ii) is a consequence of the uniqueness of the Riesz decomposition.

Lemma 7.4.

Br(Y,W)= ih^Br(Y): JRYXH/hdr< 1

Proof.

¡RY\Whdr = 1    iff   h — RY\Wh = 0   r-a.e.

This holds iff £ = {x g W: h(x) = RY\Wh(x)} contains the support of í iff £ = W,

by using (*). The result follows.

Now, for each p g N set

Br(Y,W,p)=lheBr(Y): JRrxwhdr*i 1 - ±

Then Br(Y, W) = U ~=]Br(Y, W, p) and, since the map h g %+(Y) -> ¡RY^wh dr

is lower semicontinuous, Br(Y, W) is a Borel set.

Definition 7.5. Define the map t|/: Br(Y, W) -* BS(W) by

t(h) = C(h)(h - RyXlyh),

where

c(h)'] = j(h- RYxxvh) ds = 1 - JRY\Wh dr.

The proof of the next result is similar to that of Proposition A.2 in [21] except that

results on uniform integrability (cf. [9]) are needed in this case.

Proposition 7.6. \[> is a continuous infective mapping on each Br(Y, W, p).

Proof. \p is injective on Br(Y, W) by Proposition 7.3. Let [hm) converge to h in

Br(Y, W, p). Since %\(W) is compact, there exists u g %\(W) and a subsequence

{hl(m)) such that {hi(m) - RY\Whi{m)) converges to u in %¡(W). Then, for all

X G   W,

u(x) = h(x) -   lim RY\Wh,(m)(x) < h(x) - RYXWh(x).
771—> 00

Hence u - a(h - RY^wh) on W for some 0 ^ a < 1. Now, {/z,(m)} g L'(z-) con-

verges pointwise to h, and for all m, fhi(m)dr = 1 = fh dr. Therefore, {hi(m)} is

uniformly integrable with respect to r (cf. [9, Theorem 4.5.4]). Since 0 < hj(m) -

Ry\whnm) < hitmv il follows that (/z,(m) - RY\whnm)) [s uniformly integrable with
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respect to 5. Therefore, by another application of Theorem 4.5.4 in [9],

um   ¡hnm) - RY\wh,(m) ds = fu ds.
771 —* 00 J J

Consequently, a > 0 and limm_00c(/t,(m)) = a"'c(/z). Hence, {^(hj{m))) converges

to\p(h).

The proofs of the next two results are the same as those of Corollary A.3 and

Proposition A.5 in [21].

Corollary 7.7. If E c Br(Y, W) is Borel then ^(E) is Borel.

Theorem 7.8. Let v g %r(Y), v be the representing measure for v, and <o be the

representing measure for v \ w. Then for any Borel set E c Br( Y, W),

tc(t(E))=(c(h)-'dv(h).
JE

Hence, v(E) = 0 « w(^(£)) = 0.

The following result is a restatement of Exercise 5.3.1 in [10] (cf. [21, Lemma

A.7]).

Lemma 7.9. Let u be a nonnegative superharmonic function on Y and A c W. Then,

(rW)a{u - ry\wu) = rau(y\w)u - ry\wu   °n w>

where Rw is the réduite operator with respect to the space W.

For any h g Br(Y), the fine filter (on Y) at h will be denoted by 9(h) and its

restriction to W by 9( h )\ w.

For any k g Bs(W), the fine filter (on W) at k will be denoted by 9w(k).

Then, by using Lemma 2.12, 9(h)\w = 9w(^(h)) for all h g Br(Y, W).

Consequently, the main result of this section follows from Theorem 7.2 applied to

W and Theorem 7.8.

Theorem 7.10. Let u > 0 be s-integrable, harmonic on W, and v > 0 be r-integra-

ble, harmonic on Y with representing measure v. Then the limit ofu/v along 9(h)\ w is

d¡i/du(\¡/(h))for v-a.e. h g Br(Y, W), where /x, w are the representing measures for u,

v\w, respectively.

8. A reduction theorem. In this section let % be a set of nonnegative functions on a

set Z such that:

(i) % + % c DC;

(ii) % contains constants;

(iii)/,g <=%,g>f=* g -fe%;
(iv) % is a lattice with respect to the usual ordering of functions (denote lattice

operations by A, V ).

Let (B, 9H, v) be a measure space such that for each fjefi there exist two filters

§¡(b) and @2(b) on Z. For any / g %, b g B and i g (1,2}, let S,-limsup/(6) (resp.

0,-liminf/(/>)) denote the lim sup (resp. liminf) of/along §¡(b). §¡-limf(b) denotes

the limit of/ along §¡(b) if it exists. Further, assume the following conditions are

satisfied.
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(v) For all/ g DC, g,-lim f(b) = /(/, b) is finite for v-a.e. b g B.

(vi) For each /, g e DC, l(f A g, b) = min{l(f, b), l(g,b)} and l(fv g,b) =

max(/(/, zj), l(g, b)) if /(/, /j) and l(g, b) exist.

Theorem 8.1. Assume for each /g DC, g,-lim/(6) = 0 => g2-lim/(¿>) = 0 /or

v-a.e. b^B. Then, for all f G DC, g2-lim f(b) = /(/, b) for v-a.e. b G B.

Proof. Fix / g DC. For any positive rational number p and integer zz 3* 0, let

Epn = {b^B: np*i /(/, b) < (zz + \)p) and £, = U ^=0Epn. Then for each p,

v(B \ Ep) = 0 (by condition (v)). Now, for any p and zz, the conditions on DC imply

np - f A np and /V (zz + l)/z - (zz + l)p are in DC. Hence, for any b g ¿J

condition (vi) implies

l(np - f A np,b) = 0 = /(/v (zz + l)/> - (n + 1)/?, ¿>).

Then, by the hypothesis, there exists a set £    c E „ such that Z7(£p „) = 0 and, for

all b G Epn\ Fpj„

S2-lim(/A np)(b) = np,   g2-lim(/V (n + l)p)(b) = (n + l)p.

Now,/ A np < / < / V (zz + l)p. Hence, for all b g Epn \ Fp n,

np < g2-liminf/(6) < g2-limsup/(z3) < (zz + l)p,

which implies

|/(/, z3) - (g2-liminf/(6))| < p,   \l(f, b) - (§2-limsupf(b))\ < p.

Hence, S2-lim/(z3) = /(/, b) for all ft e £ = n /^X U ^„^ „), and it is clear

that v(B~\E) = 0.

This result was proved in [22, Theorem 1.2] in case h > 0 is harmonic on a space

Z; DC = {u/h: u ^ 0 is harmonic on Z}; 5 parameterises the minimal harmonic

functions on Z; every nonnegative harmonic function u on Z is uniquely represented

by a measure iiM on (B, Gf[i) in terms of minimal harmonic functions; and

§x-limj¡(b) = -pi(b)    for itA-a.e. è g B.

9. A local Fatou theorem. Let £ be the second-order parabolic differential operator

defined in §1. This section establishes a Carleson-type local Fatou theorem for

solutions of Lu = 0 on a union of parabolic regions.

Lemma 9.1 (cf. [6, Théorème 8]). Let E c R" and W c X be such that for each

b G £, W contains a parabolic region with vertex b. Then, for a.e.b G £, W contains

parabolic regions of arbitrary aperature with vertex b.

Proof. It suffices to assume that for each b g £, W contains P(b; a, 8) for fixed

a, 8. Choose m0 G N such that l/m0 < 8. Let ß > 0 and for each m > m0, define

Em = {b g £: £(/j; ß, 1/w) c W). Let D denote the set of points of strong density

of £ (cf. [7, p. 49]). It suffices to prove that D c Um>mEm. If b £ £m for all

m ^ m0 there exists a sequence of points {(xm, tm): m > m0) c /'(zj; ß, l/m)\ W.

For each m > zrz0, define Fm = {y e R": ||>" - x„,||2 < atm). Then >> g £m implies

(x,„, tm) G £(>;; a, l/m). Hence £„, n £ = 0 for all zzz > t7z(). Now, the ball £„, has
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radius (atm)]/2 and is contained in the ball of centre b and radius (a1/2 + y{/2)tn{2.

Since tm -* 0, this implies b £ D.

The main result of this section will now be proved.

Theorem 9.2. Let £ c R" and W be an open subset of X which contains a parabolic

region Wh with vertex b for each b g £. Let u be a harmonic function on W which is

either upper or lower bounded on Wh for each b g £. Then u has finite parabolic limits

a.e. on E.

Proof. It suffices to assume £ is compact, Wh = P(b; a, 8) for all b g £, where

a, 8 are fixed, and W = ^Jb&EWb. Then, by constructing a barrier (cf. [12, Chapter

3, §4]), the boundedness of the coefficients of £ implies every boundary point of W

in R" x (0,8) is a regular boundary point of W. This implies that for every

harmonic u > 0 on X, Rx^wu is continuous on the intersection of the boundary of

W with X n ((x, t): t < 8). However, the continuity of RX\Wu at points on t = 8

does not follow. This difficulty can be avoided by considered the space X n ((x, t):

t < 8) instead of X. That is, it suffices to assume T = 8. Then condition (**) in §7 is

satisfied for the harmonic space X. Furthermore, by considering the sets {b g E:

u > -m on Wb) and [b G £: tz < m on Wb) for each m g N, one can assume

u > 1 on W. This condition will be useful in choosing a suitable reference measure.

Now, let t be a finite reference measure on W and fix a point ( y, tj) g X such that

y is outside the projection of W on R".

Define the measure r on X by

CSAn-A)/2r¡ ..   *\ J* j    if.ffdr = f>^2f(y,t)dt + f±dn

for every nonnegative Borel function / on X. Then }fds = ¡f/udr for every

nonnegative Borel / on W. Hence j is a reference measure on W. The strong

maximum principle of Nirenburg (cf. [24, Theorem 4]) implies that r is a reference

measure. The conditions on u imply r(X), s(W) and fuds are finite. Hence

condition (*) in §7 is satisfied.

It will now be shown that Br(X) can be identified with R". For each b g R",

define Q(b) = fKb dr. Now, for each b g R", Kb is a positive continuous function

on X, hence 0 < Q(b) < oo. Furthermore, Kb(x, t) < Ct~"/2 for all (x, t) g X and

f-7i/2 js /--integrable, hence Q is a continuous function on R".

Define the map ß: R" -> Br(X) by Sl(b) = Q(b)~lKb.

Now, let {bm) be a sequence in R" converging to b g R". Then it is well known

that Kb -» Kb pointwise. However, it can also be shown that Kbm -* Kb uniformly

on compact subsets of X (see Remark 9.3 below). This implies Í2 is continuous, and

it is clearly bijective. It remains to show that fi~' is continuous. To do this, a lower

bound for Q(b) will be needed. For any b g R",

¡Kbdr > fV-^Kb(y, t) dt > c/V2expi-^^ | dt

= C\\y - b\\~2  1 - exp «MW» Jy~b\v
Ap,8
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Hence, for ail (x, t) G Y,

o(*)(».,)«o ^-*exp|^iL-Mgi

x     1 - exp ¿(i-fr-*-"
Therefore, if a sequence {/3m} c R" approaches oo, iï(bm)(x, t) -» 0 for ail z <

min(/Z]/z2'5, ô) and x g R"-1 x R+. So the sequence {ß(/3m)} is not convergent in

Br(X). Hence, if (ß(z3m)} converges to ß(zj) in Br(X), the sequence {bm} must be

bounded. Since ß is continuous and injective, every limit point of {bm) is b.

Consequently, ß"1 is continuous and R" is homeomorphic to Br(X).

Property (P5) in §1 implies Q(b)~l db is the representing measure for the constant

function 1 on X. Now, from Lemmas 5.1 and 9.1, there is a set £, c £ such that:

(i) £ \ £, is of Lebesgue measure zero;

(ii) X\ Wis thin at every b G £,;

(iii) for each b g £,, H7 contains parabolic regions of arbitrary aperature with

vertex b.

Condition (ii) implies £, c Br(X, W), so £, is mapped injectively onto the subset

tK£,) of BS(W) by the map ^ defined in §7. Now, let Z=W,% = %S(W) and

5 = £, in §8. Since DC^W7) satisfies conditions (i)-(iv) in §8, it is easy to deduce

that %S(W) also satisfies these conditions. For each b e B and/ g DC, let /(/, b) =

d¡x(\p(b))/du, where ¡x (resp. w) is the representing measure for / (resp. 1) on

BS(W). For each b g B, let §x(b) = ^(/3)|^ and §2(b) = 9(b)\w. Since, £, c

J?r(JC H7), Theorem 7.10 implies, for all/g DC, g,-lim/(¿) = /(/, 6) for Lebesgue
a.e. b G 5. Now, it follows from measure theory that l(f,b) satisfies condition (vi)

in §8 (cf. [26, p. 160]). Now, since £, satisfies condition (iii) above, Theorem 4.1

implies, for all / g DC and b g B, g,-lim/(ft) = 0 => g2-lim/(6) = 0. The result

follows from Theorem 8.1.

Remark 9.3. Let (bm) be a sequence in R" converging to b g R". The literature

does not seem to explicitly state that Kh -» Kb uniformly on compact subsets of X.

A proof of this is now given under the assumptions made in the proof of the above

theorem.

Let {bm} be as above. Now, it is well known that W2(x, t; bm,0) -» W2(x, t; b,0)

uniformly on compact subsets of R" X R+, hence

¡W2(x, t; bm,0) dr(x, t) -* fw2(x, t; b,0) dr(x, t).

Therefore the sequence (W2(-,-;bm,0)) of functions is uniformly integrable with

respect to r. Since 0 < T < PW2, the sequence (Kb } of functions is uniformly

integrable with respect to r. Hence ¡Kb dr -* JKb dr. Recall that DCr'( X) is compact

(with respect to the topology of uniform convergence on compact subsets of X). The

result follows by considering subsequences of {[j'Kh dr]~]Kb }.
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