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TWISTOR CR MANIFOLDS AND

THREE-DIMENSIONAL CONFORMAL GEOMETRY

BY

CLAUDE R. LEBRUN1

Abstract. A CR (i.e. partially complex) 5-manifold is contructed as a sphere bundle

over an arbitrary 3-manifold with conformai metric. This so-called twistor CR

manifold is show to capture completely the original geometry, and necessary and

sufficient conditions are given for an abstract CR manifold to arise via the

construction. The above correspondence is then used to prove that a twistor CR

manifold is locally imbeddable as a real hypersurface in C3 only if it is real-analytic

with respect to a suitable atlas.

Introduction. There is a very beautiful interplay between the conformai geometry

of Riemannian manifolds and complex analysis, examples of which are found both

in the classical theorem asserting the existence of isothermal coordinates on a surface

and in the theory of self-dual Riemannian 4-manifolds (Penrose [1976], Atiyah et al.

[1978]). Intermediating between these two theories is a relationship between 3-

dimensional conformai geometry and CR (partially complex) manifolds of dimen-

sion 5. In this paper, we will explain this relationship, focusing on the imbedding

problem: When can these partially complex manifolds be realized as real hyper-

surfaces in complex 3-manifolds?

The idea of associating a CR manifold with a conformai Riemannian 3-manifold

originated with Penrose [1975,1983], who, starting with a real-analytic space-like

hypersurface in a real-analytic Lorentzian 4-manifold, constructed a real hyper-

surface in a complex 3-manifold. If the space-like hypersurface is totally geodesic (or

merely all-umbilic), Penroses's CR manifold coincides, in our terminology, with the

"twistor CR manifold" of the conformai structure induced on the space-like

hypersurface.

After establishing notation and conventions in §0, principal results on CR

manifolds are reviewed and the notions of CR vector bundle and CR contact form

are introduced. In §1, a general machine for constructing involutive distributions is

produced, and in §2 this construction is used to associate to every conformai

Riemannian 3-manifold a CR 5-manifold. The CR manifolds arising in this way are

characterized abstractly in §4 in terms of properties presented in §3. Then, in §5, it is

shown that these CR manifolds are isomorphic to real hypersurfaces of complex
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manifolds only in the case that the original conformai structure is analytic with

respect to a suitable atlas.

The author would like to acknowledge the many helpful conversations with Roger

Penrose which originally stimulated this paper, and to thank the Mathematical

Sciences Research Institute for providing an atmosphere conducive to completion of

this work.

0. Preliminaries, (a) CR manifolds. Let X" be a smooth manifold, and let

CTX:= C ® R TX denote its complexified tangent bundle. A distribution of complex

m-planes D on X will mean a smooth rank m complex bundle D -* X together with

an inclusion D ■-» CTX. We will say that D is totally complex if D n D is the zero

section 0X c CTX, where the overbar denotes complex-conjugation in CTX. We will

say that D is involutive if [S(D),ê(D)]cz «?(£>)—that is, if the space of smooth

sections of D is closed under Lie brackets. If D is totally complex and involutive,

and if zz = 2m + 1, we will say that (X, D) is a CR (zz-) manifold and say that D is a

CR structure for X. Following a standard abuse of terminology, we will say that X is

a CR manifold if D is understood.

Example. Let WlN be a complex N-manifold, and let x2N~ï c 2)? be a smooth

real hypersurface. Let T"$Jl c CTWl denote the holomorphic tangent bundle of 371,

the +i eigenspace of the almost complex structure tensor /, spanned in local

coordinates (z1,...,zN) by (d/dz1,...,d/dzN). Then T"$R is an involutive, totally

complex distribution on Wl. One easily checks that D:= CTX n T'Ti has constant

rank N - 1, and it is immediate that this distribution is totally complex and

involutive. Thus, (X, D) is a CR manifold.

CR manifolds given in this way will be called imbedded CR manifolds. If, near

each x e X, (X, D) is isomorphic to an embedded CR manifold, we will say that X

is locally imbeddable; if a global isomorphism with an imbedded CR manifold exists,

then M will be called imbeddable. For the CR manifolds of interest in this paper,

local and global imbeddability will turn out to be equivalent.

Note that any real-analytic CR manifold is imbeddable, as readily follows from

either Cauchy-Kowalewski or the Frobenius theorem applied to a complexification.

Let (X, D) be a CR manifold. Then, letting êp:= <f(ApCT*X) denote the sheaf

of smooth /7-forms, we may define locally free subsheaves of <f ° modules

£p-q:= {w ^S'p+q\v0 A vx A  ■•• A uqJw = 0,VvQ,...,vqe £>}

for p, q nonnegative integers, and set Sp-~x := {0 e £}. Then d(£p-q) c £p-q+\ If

we now define the smooth ( p, q)-forms $p'q by

£p-i-= Sp-q/Sp+l-q-1 =é'(ApD± ®AqD*),
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there is a natural family of maps 3 defined by the requirement that the diagrams

0 0
î Î

->      sp-q -» sp-q+l    ->

î               î
d              - d «       ,,

...       _»         íf/'w —» iPp-i+l
d

T î

î î
0 0

should commute. Setting Qp := Ker(3: <f-0 -+ (f'1), we have constructed a cochain

complex

0 -» tip -» Spf> i t^'1 -!!»...-* ff'"1 -* 0

for each p, called the /zí/z 3 complex of (í,í). We will often call the 0th 3 complex

simply the 3 complex of X. Elements of fí° are called CR functions. Note that /:

X -» C is a CR function iff f*D c span(3/3z). In the same vein, a smooth mapping

/: Xx -> X2 between CR manifolds (Xx, Dx) and (X2, D2) will be called a CR

(respectively, anti-CR) map iff*Dx c Z)2 (respectively, f*Dx c D2).

When Jf is an imbedded CR manifold, the equation 3/ = 0 defining fi° becomes

the restriction of the usual Cauchy-Riemann equations to the hypersurface. Hence

the terminology "CR (i.e. Cauchy-Riemann) manifold". Note that the operator we

denote by 3 is called 3^- by most authors in order to distinguish it from the analogous

Cauchy-Riemann operator of a complex manifold.

The cohomology of the 3 complexes of a CR manifold is generally nontrivial even

locally (Lewy [1956]). As a consequence, Hq(êp-") * Hq(Slq) in general. It is for this

reason that one must exercise particular care in defining CR objects like vector

bundles, as we will attempt to do in (c).

(b) The Levi form and the extension problem. Let ( X, D) be a CR manifold. Recall

that by definition D + D has codimension 1 in CTX. Define a complex line-bundle

E -* X by E := CTX/D + D, which inherits a complex conjugation ": E -» E from

CTX. We may now define a Hermitian form

Ü:D X D ^ E,

called the Levi form of (X, D), by requiring that

C(íz, w) = i([v, w])

for any smooth sections v, w of D, where the brackets ( ) denote the equivalence

class modulo D + D. Thus if </> is a real local 1-form orthogonal to D and D then, in

the local trivialization of E induced by <i>,

Ü(v, w) = i(d<p)(v, w)

for v,w e D.
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If S is definite as a quadratic form, we will say that ( X, D) is pseudoconvex. If 8 is

nonsingular, inducing an isomorphism D -* D* ® E, but is not definite, we will say

that (X, D) is anticlastic—i.e. bending in two opposite directions. (Unfortunately,

there seems to be no standard term for the latter case.) It is with manifolds of the

anticlastic type that this paper will concern itself.

Suppose that X c Wl is an imbedded CR manifold. Then every holomorphic

function on Wl restricts to a CR function on X, and an examination of power-series

representations immediately reveals that the restriction map &m -» QPX is injective. A

Cauchy-integral technique (Bochner [1943], Lewy [1956]) allows one to conclude

(Wells [1966]) that if X is anticlastic then this restriction map is surjective not only

on the level of germs but also on the level of global sections, provided that "OR is

taken to be a suitably small neighborhood of X.

It now follows that the local and global imbedding problems for anticlastic CR

manifolds are equivalent. Suppose that X is an anticlastic CR manifold covered by

open sets Í7- on which imbeddings <f>-: Uj -» C^ are specified. Then the component

functions of

are restrictions to <¡>k(U¡ n Uk) of holomorphic functions on some neighborhood of

<t>k(Uj■ n Uk) in CN; therefore fy ° <p~kl is the restriction of a biholomorphism

%-Vjk^VkjczCN.

Hence an ambient space 30Î may be constructed by gluing together regions in CN

with the transition functions <PJk.

Also note that, for X c 2)c an imbedded CR manifold, there is a natural

restriction map <P(ApT'*Tl) — ñf By considering local trivializations of APT'*3R,

one sees that sections of ßjf extend to a neighborhood of X as sections of

B$¡ := 0(ApT'*Tl) if X is anticlastic. In this respect there is no essential difference

between CR forms and CR functions.

(c) CR vector bundles. Let ( X, D) be a CR manifold, and let V -» X be a complex

vector bundle. A linear map V : S(V) -» S(V ® D*) will be called apre-d operator if

v(/a) =/Va + a 8 3/

for a e <f(K),/ e <f. Thus, V is a sort of "partial connection" on V, with covariant

derivatives only defined for complex directions in D.

For every pre-3 operator v on V -* X, there is a natural family of associated

first-order differential operators

^p-q:Sp'q(V) -^£p-q+l(V),

whereSp~q(V):= Sp-q ®g$(V) = S(V ® A^Z)-1 ®AqD*); these may be defined by

setting vp'9(a ® ^) = ( Va) A «f. + a ® 3<p for a e #(F), «i> e <f ''•'', where A is the

product induced by A : Sr(V) ® ̂ J -♦ á,r+s(F). We will now define V to be a 3

operator if v^V0'0 = 0; i.e. if our partial connection is flat. We will often simply

use the notation 3: Sp-q(V) -» <fp-q+ï(V) to denote vp-q for an understood fixed 3

operator V. The pair ( V, V ) will be called a CR vector bundle.
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With the above definition, the "Leibnitz rule" for d implies 32 = 0, and we have a

family of complexes

0 -» Q"(V) -* £pfi(V) -> Sp'\V) -» Sp2(V) -»••■,
a a

where QP(V) := KerfÜ''0] is the space of CR/»-forms with values in V.

Example 1. Let Vp := APD± c APCTX. Then the standard 3 operator 3: SpS) ->•

SpX may be reinterpreted as a 3 operator V : $(Vp) -» «?oa(Vp); the fact v oa V 0,° = 0

is the standard statement that 32 = 0. Thus (Vp, 3) is a CR vector bundle.

Example 2. Let F be a vector bundle on X equipped with a family of local

trivializations such that the transition functions are matrix-valued CR functions.

Then letting 3 act on sections of V by componentwise differentiation makes V a CR

vector bundle.

CR bundles of the above type will be called locally trivial.

Example 3. Let X c 2)c be an imbedded CR manifold. Then every holomorphic

vector on W restricts to A1 as a locally trivial CR vector bundle.

(d) CR contact structures. If y2m+1 is a smooth manifold, and if P c TY is a

distribution of real 2w-planes, one says that P is a contact structure for Y if the

Frobenius integrability obstruction

F:PX P-> TY/P

: (v,w) -»([iz,w])

is nondegenerate. An equivalent way of stating this is that P is a contact structure iff

the tautological line-bundle valued 1-form v: TY -* L = TY/P satisfies v A (dv)A m

+ 0, where dv may be computed in terms of any local trivilization of L. In point of

fact, dv\p = F is a well-defined L-valued 2-form on L, so L®(m+l) is canonically

isomorphic to A2m+lTY via v A (dv)A m. The 1-form v (or sometimes its representa-

tion in terms of a local trivialization of L) is called a contact form on Y.

Example. Let (X, D) be a CR manifold with nondegenerate Levi form. Then

TX n (D + D) is a contact structure for X. Warning: This is not a "CR contact

structure" in the sense we will introduce presently.

In analogy to the above a holomorphic contact structure on a complex (2zzz + 1)-

manifold Wl is defined to be a holomorphic distribution of 2w-planes P c T"$R with

nondegenerate Frobenius integrability obstruction

F-.PX P-> T'Wl/P

: (v,w)^([v,w]).

Equivalently, a holomorphic contact structure is a holomorphic line-bundle valued

1-form 0: T'tSR -> Lwith 0 A (30)Am # 0. Clearly L®(m+1) = A2m+1T'*W.

Now if X c aft is a smooth hypersurface, we may consider the restriction of a

holomorphic contact structure to X. An abstraction from the resulting object results

in the following

Definition. Let (X, D) be a CR (Am + l)-manifold and let L -> X be a CR

line-bundle. Then a 1-form

6 e &(L):= Ker[3: <f10(L) -» ¿U(L)]
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will be called a CR contact form if 6 A (dd)A "' # 0. If 6 g ß^L) and f? e ti\L) are

two such forms, we will say they are equivalent if there exists an isomorphism ^:

L -» L with

0 = *°0:crA-^L.

An equivalence class of CR contact forms will be called a CR contact structure for X.

Clearly L®m+1 s A2m+1(r;0 as CR line-bundles, where T'X:= CTX/D. As in

the smooth and holomorphic cases, there is a one-one correspondence between such

structures and appropriate distributions.

1. Hamiltonian distributions and CR structures. Let M be a smooth zz-manifold,

and let %:= CT*M denote the complexified cotangent bundle of M; let it: SE'-» M

denote the canonical projection. Let A c CTSf denote the antiholomorphic tangent

bundle of the fibers of it. Thus, if (jcy, j = 1,...,«): U -» R" is a coordinate system

for U C M, and if xJ, £ , ij , ?, are the functions on ir_1[^] given by

jcj := 7T*x7: x -* xj(it(x)),

f/:= J3/3^:x_>(x'9/9*y)'

£y:= Refy,   7)/= Imf,-,

then^4|w-i[{;j is spanned in the coordinates ((xy),(|y),(r/y)) [j = l,...,zz] by {3/3^}.

If 9C-* M were given as an abstract complex vector bundle, some added piece of

information would be necessary to identify ^"with CT*M. This extra information is

supplied by the canonical 1-form 6 of X, given by the formula

(0>w)L«=<r= (x,it*xw),

where w is any vector field on 3L'. In the former local coordinates for tt~1[U], we have

0 = T,"=x^jdxj. We will be particularly concerned here with the 2-form w := dd,

which we will call the Hamiltonian form of 3C; thus, a, which is given by u =

E"=, i/f ■ A dxJ in our local coordinates, is the complexified analog of the usual

symplectic form of T*M (cf. Weinstein [1977]).

Let TX\= CT3C/A, and let T*%denote its dual Ax c C7*^. Then the contrac-

tion map

ju: C7T^ Cr*^": w -» ío(w, •)

has image in F*Tand has /I for its kernel. Thus, z/ze induced map Ju: F#"-> T'*$fis

an isomorphism. This fact will be central to the discussion.

Now consider a codimension 2 submanifold <& cz <%. If, for every p g M, the real

variety <3Ti 77-1(/?) is a complex hypersurface in the complex vector space ir~l(p),

we will say that *& is an energy surface. If, in addition, the conormal bundle

N* c T*(w~l(p))\9nv-¡( ^ of <3Ti 77"'(p) relative to ir~l(p) contains no nonzero

covector corresponding to a real vector under the natural double-dual identification

of T*(ir~l(p)) with ir*CTM\„-,{ . for every p g M, we will say that *& is generic.

Let ¿3 denote the restriction of w to an energy surface <^, and let £> denote the

kernel of J-:C7W^ CT*<&.
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Proposition. D is an involutive distribution of complex n-planes on <&.

If ^is generic, D contains no nonzero real vectors.

Corollary. If M is a 3-manifold and %/cz CT*M is a generic energy surface, then

D is a CR structure for <&.

Definition. The distribution D of the proposition will be called the Hamiltonian

distribution of CU/.

Proof of the Proposition. Let us begin by checking that D has constant

dimension zz. To this end, let A c CTSC denote, as before, the antiholomorphic

tangent bundle of the fibers of 3t~-> M, and introduce B:= A n CTW, which is a

distribution of complex (zz - l)-planes on <&. Defining T,(W:= CT*W/B, we need to

show that the kernel C of

]-: r^-> F*^:= B1

has constant dimension 1. But w is a skew form on the odd-dimensional complex

bundle T'<W, and so C must be nontrivial at every point of <&.

Since j u is an isomorphism, the dimension of the kernel C of J - cannot exceed the

codimension of V&c (T'3C)\9, which is one by hypothesis. Hence C has constant

dimension 1 and D has constant dimension zz.

Secondly, we must show that D is involutive—which will follow rather easily from

the fact that ¿3 is a closed form. Indeed, if v and w are complex vector fields on 'W

satisfying djw = h'Jw = 0, then

[í/,w]jw = Lv(wiû>) — wiLL,u> = -wJí[vid¿¿ + d(vJú)] = 0.

Lastly, we must verify that if <^is generic then D contains no nonzero real vectors.

Letting/: A •-* T'SCbe the canonical inclusion and letting r. tt*CTM = A* be the

tautological double-duality isomorphism, one readily checks that

CTX     ^     tt*CTM

A1        -» A*
j'

is commutative by inspecting the appearance of w in the previously used local

coordinates. If D contains a real vector v =t 0, tit*(v) is real (in the sense featuring

in the definition of a generic energy surface). Moreover, v G A, so v is transverse to

the fibers of it and hence nr*(v) ¥= 0. But since v g D, u(v, ■) is normal to <&, and

hence -/*Ju(i>) = ttt^z; is an element of the holomorphic cornormal bundle of the

relevant fiber of <& -> M. This implies that <& is not generic, so the claim follows by

contraposition.   D

2. The twistor CR manifold of a 3-manifold. Now let M denote a smooth

3-manifold equipped with a smooth Riemannian conformai structure—i.e. endowed

with a class [g] of Riemannian metrics of the form

[g]= {/g|/G<?(M),/>0},
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where g is some fixed smooth Riemannian metric on M. Associated to every

Riemannian metric g there is a "cometric" g~l, which may be considered as a

positive definite quadratic form on T*M, defined by g~1(g(v, ■), ■) = v, Vz; g TM.

By bilinear extension, g'1 becomes a complex quadratic form on CT*M, and we

may define a 7-manifold

N:= (tG Cr*M|g"1(T,T) = 0, t#0),

as well as the 5-manifold N which is the projective image of N: N := N/C*, where

the nonzero complex numbers C* act freely on Ñ by scalar multiplication. Clearly

both N and Ñ depend only on [g], and not g itself; moreover, [g] is determined by

either. (We may characterize N abstractly as a nonsingular conic subbundle of

P(CT*M) which is complex-conjugation invariant and contains no real points; every

such subbundle arises from a unique [g].)

I claim that Ñ c CT*M is generic in the sense of §1; thus, by the Corollary to the

Proposition, the Hamiltonian distribution of Ñ is a CR structure. We also see that

this distribution projects to give N a CR structure; this CR 5-manifold wll be called

the twistor manifold of (M, [g]) as an indication of the relationship of this object to

the work of Penrose.

To see that N is generic, we may identify T*M, m g M, with R3 by choosing an

orthonormal basis, thus inducing an identification of N n CT*M with

\(zx,z2,z,,) G C3-{0}

Under this identification, the conormal bundle of the fiber of N over m is spanned at

(Zj, z2, z3) by the real and complex parts of Ey_1z/dzy-. For this conormal space to

contain a "real" covector (that is, a covector normal to z'R3 c C3) would require the

existence of a g C* with

0 = ^{azjdZj + azjdzj)

j

Jd/dyk = i(azk- azk),       k = 1,2,3.

(We have followed standard conventions in coordinatizing C3 by (x¡:= Rez-} U

{y¡ := Im z7}.) Hence (az/) + 0 would have real components and satisfy E3=1(azy)2

= 0, yielding a contradiction. So Ñ is indeed generic, and its Hamiltonian distribu-

tion is a CR structure.

We now consider the projectification P: Ñ -» N := N/C*. Since the scalar

multiplication map

zzia: Ñ -» Ñ:y -» ay,       a g C*,

has the property that m^O = ad and hence (taking exterior derivatives) zn*w = aw, it

follows that D:= ker(J5) is invariant under the action of C*. The fibers of P are

contained in the fibers of it, where D coincides with B:= A C\ CTÑ; the fibers of P

just being the straight complex lines through 0 in the fibers of $"-> M, we see that

D n CT[P'l(a)] is 1-dimensional for every a g N. Hence fl:= P*i> is a distribu-

tion of complex 2-planes on TV. As w g D can have its imaginary part tangent to
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P~l(a) only if its real part is also tangent, fl contains no real vectors. Also, notice

that the distribution /J is involutive because D is. Therefore /J is a CR structure.

Thus, in summary, we have associated to every smooth 3-manifold with conformai

structure (M, [g]) a CR 5-manifold N by means of the Hamiltonian form of CT*M. In

what follows, we will first characterize z'zz abstracto all CR manifolds that arise via

this process, and then answer the question: when can N be realized as a hypersurface

in a complex manifold? The answer to the latter question will turn out to be that N

can be so realized iff (M,[g]) can be given a real-analytic structure. Note that if

(M,[g]) is real-analytic, so is (N,JX); thus nonimbeddability appears in the largest

number of cases conceivable!

The reader may note that we have already narrowed our scope more than might

be considered strictly necessary; for in the above construction of N we might have,

for instance, chosen to consider submanifolds of P(CT*M) defined by homogeneous

polynomials that are not quadratic, or have chosen to also consider the case when M

has a higher dimension simply by choosing a more general definition of a CR

manifold. We believe, however, that the main results of this article will justify these

restrictions; generalizations will be left to the reader's imagination.

3. The structure of twistor CR manifolds. So far, we have constructed a CR

5-manifold (A7,/!) for every 3-manifold M with conformai metric [g]; the 5-manifold

N in the construction is just the space of null directions in the complex cotangent

bundle CT*M. In this section, we identify several important properties of (N,Jl)

which, as we will see later, suffice to characterize CR manifolds arising via the

construction.

Before going any further, however, it is best to point out that the manifold N is

familiar to the reader in another guise. Suppose, for simplicity, that M is oriented

and that a particular metric g has been chosen to represent the fixed conformai class.

Then we may identify TV -> M with the sphere bundle SM -» M, given by

SM:= {z;G TM\g(v,v) = 1}.

To see this, let e g <f(A3TM) be the positive unit 3-form, so that e(x) = ex A e2 A e3

for (ex, e2, e3) an oriented basis for TXM, x g M. Then e may be used to identify

TM with A2T*M by contraction. But N maps diffeomorphically onto the unit

sphere-bundle of A2T*M via

i<f> A (p~ Re <b A Im <b

\\i<P A 0|| ~ ||Re</> A Im011 '

Moreover, this map is conformai on the fibers of N -* M, since SO(3) acts

simultaneously as a family of holomorphic maps on the fibers of N and as a family

of isometries on the fibers of SM acting transitively on the unit vectors in TS2.

Notice that in the nonorientable case we must replace SM with the unit sphere-

bundle of A2T*M =TM® A3T*M.

We now list some properties of ( N, J\).

(a) N is foliated by Riemann spheres. The fibers of it: N -* M are all projective

complex lines P,, since by construction these fibers are nondegenerate conies whose

antiholomorphic tangent spaces are contained in /J.
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(b) The Levi form of ( N, fl) is nondegenerate. In fact, the orthogonal space of

/J + /J in CT*N is spanned by the standard contact form E3=1 PjdxJ on the sphere

bundle SM under the above correspondence, since

b[7í-*[í,]/l] = spaní»

and kerTr* c fl + fl. (Here (?: CTM -* CT*M: v -» g(zj, ■).)

With (a) this implies that ( TV, /I) is anticlastic. For the only alternative would be

for TY to be pseudoconvex. Yet if v is a holomorphic vector field on one of the Pj's

foliating N we have [v, v] = 0, and hence ü(ü, v) = 0, so 8 is not a definite form.

(c) (N,R) has a CR contact structure orthogonal to the foliation (a). The 1-form

d = I?j=xÇjdzJ on CT*M, when restricted to Ñ c C7/*M, is an element of «f1,0 = #10,

since zj g Dq => \)(<n*v) = a<p for some a g C, so that

(o,ü)|(J) = (<í),77*í;) = g-1(<í.,a<í.) = 0

because <j> g Â => g_1(</>, <p) = 0. Moreover, 30 = 0 since D:= Ker(j~ = jrffi). So

0 g ñ1. But, letting mtt: Ñ -» Ñ be scalar multiplication, m*0 = ad. Let L -» A be

the unique CR line-bundle such that Ñ -» A is the frame bundle for L*. Thus Â,

equipped with the new C*-action a <-* mx/a, is L - 0N, the frame bundle of L. Then

there is a unique 1-form 0 G S2X(L) with P*0 = 0. This 1-form is orthogonal to the

fibers of N -> M, since 0 is orthogonal to the fibers of Ñ -> M. Moreover, 0 A i/0 #

0, since 0 A dd J= 0. Hence 0 is a CR contact form on A of the desired type.

(d) N had an anti-CR involution p: N -> A7, where by involution we mean p2 = 1N,

and by anti-CR we mean pJX = ZL This map is just the complex conjugation

CT*M -* CT*M, restricted to N and projectivized; this is well defined because

g_1(0, 0) = g'l(tj>, <t>) and anti-CR because complex conjugation on CT*M takes u

to ¿J. Notice that p acts without fixed points.

In the SM picture, p becomes the antipodal map on the fibers of SM -» M.

(e) The involution p respects the foliation (a) and CR contact structure (c) in the

sense that p maps every leaf of the foliation into itself, and

P*[^] = 0T,

where 0X c C77V is the kernel of 0: CTN -* L. The latter assertion follows from the

fact that complex conjugation CT*M -> CT* takes 0 to 0.

4. The characterization theorem.

Theorem . Let (Ñ, fl) be a smooth CR 5-manifold with nondegenerate Levi form and

a smooth foliation by Px's. Then the space M of leaves of this foliation is a smooth

3-manifold. This manifold admits a Riemannian conformai metric [g] such that (N,Jl)

is isomorphic to the twistor CR manifold of (M, [g]) iff there exists a CR contact form

on N orthogonal to the foliation and respected by an anti-CR involution preserving the

foliation.

Proof. Because the leaves of the given foliation are compact, the space M of

leaves is Hausdorff. If m: Ñ -> M denotes the canonical projection, and if x G M,

then a sufficiently small neighborhood U(x) has as its inverse image if~l[U] a
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disc-bundle over the leaf ¿r~1(x), since the leaf is compact and some neighborhood

of the leaf admits a foliation transverse to the given one. The given foliation defines

a flat connection on this disc-bundle; the fact that the leaf if~l(x) is simply

connected then implies that the holonomy of this connection is trivial. Each fiber of

the disc-bundle is therefore mapped homeomorphically onto the neighborhood

U(x). The collection of all such mappings then defines an atlas, making M a smooth

manifold and riV^Ma smooth Pj-bundle.

If -n: N -* M is isomorphic to the twistor CR manifold of (M, [g]) for some [g], Ñ

admits the required extra structures by §3. We now suppose these extra structures

exist and prove that, conversely, Ñ is the twistor CR manifold of a suitable

conformai metric on M.

Let 0 g tilN(L) denote the CR contact form of (Â,fl), where À: L -> Ñ is some

CR line-bundle. Further, let A: (L* - Of¡) -> N denote the dual principal C*-bun-

dle, 0 = X*0 the C-valued CR 1-form corresponding to 0, and

%:= 7tX:(L* -Of})^M

the canonical projection. By hypothesis, (d,v) =0 for all vectors v satisfying

■n + v = 0. Hence for all j^ g (L* - O^) we have dr = #*[<i>(y)] for a unique (¡>(y) g

Cr*M, x := -n(y). This defines a smooth map

Ô>: (L* - Of¡) ̂ CT*M
■ y*4>(y),

which we may projectivize to yield

$:Â^P(C7/*M)

:\{y)~[*{y)]

since $ is homogeneous of degree 1. By construction, 4*0 = 0, where 0 denotes the

canonical 1-form of CT*M, as in §1.

We will now examine the restriction of $ to a fiber of #. To this end, let f be a

holomorphic vector field oni_1(x), and choose a local holomorphic trivialization of

the holomorphic line-bundle L\s-i,x), so that 0 becomes an element of CT*M

depending on y g if'l(x). Then this dependence is in fact holomorphic, since 30 = 0.

But while vidd = 0, we also have vid ¥= 0, since 0 A dd ¥= 0 while v <£ fl and

fj0 = 0. Hence $| ff-i(JC) is a holomorphic immersion of if~1(x) = Px in P(CT*M ) =

P2 _

For clarity, set Px = ñ l(x) and K:= (R\P)/ T'PX. As a smooth vector-bundle,

we therefore have it | P = T'PX + K. Since S( v, v) = 0, the Levi form

S: TWX X K-* (C7W/(fl + ¿))|Pv = C

induces an isomorphism K = T'*PX. Letting T'Ñ := CTÑ/JÍ, we have

Cx(T'Ñ\p) = cx(CTÑ\Px) - cffllpj = -2q"(rpJ = 4.
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(The odd-degree Chern classes of the complexification of any bundle must be

elements of order 2!) But 0 A dd is an isomorphism between A^T'Ñ and L®2. Hence

q(L|pJ = |Cl(A3rW|pJ = kcx(T'Ñ\p) = 2.

From this we may deduce that the curve $[PX] c P(CT*M) is a nondegenerate

conic. For since $|p is an immersion, no projective line can contain $[PX]; there are

no degree 2 immersions S2 -» S2! But 0|p is therefore an imbedding, since if/is a

holomorphic function on P(CT*M) homogeneous of degree 1—i.e. if / g

CTXM— and if the zero locus of /is the tangent line of $[Px] at $(y), then

$*/e/7°(Px,0(2))

has a double zero at y and hence is nonzero elsewhere. ($*/ cannot vanish

identically since $[PV] cannot lie entirely in the projective line /= 0.) $[PV] is

therefore defined by a nonsingular quadratic form g~l, determined up to overall

scale by (Ñ,R).

The added requirement that 0 is respected by an anti-CR involution p: Ñ -> Ñ

guarantees that g~l may be chosen to the pseudo-Riemannian; for 4>(p(y)) = <b(y)

follows from p*0 = 0. Since dim M = 3 is odd, so is the signature of g"1; we may

therefore take the signature of g~l to be positive for all x. Since 0[A] is a smooth

manifold, g~l may be chosen to vary continuous in x over small neighborhoods Ua

covering M; setting g~l := La\^ag~la, where g'1 is a positive signature choice for g~l

on Ua and where \pa is a partition of unity subordinate to {Ua}, then produces a

pseudo-Riemannian cometric on M for which

<D(À) = N = {[^ e P(Cr*M)|g-H<í»,<í>) = 0).

To finish the proof, we need merely notice that (<P-1)*0 = 0, the contact form of

N, and that the kernel of

J9A^:C77V-(A2Cr*A0®L®2

is the Hamiltonian distribution R of N. But the kernel of

j¿A£/9~:crA-(A2cr*A)®¿®2

is just ¿. Hence 4>*â = ZI, and $ is an isomorphism of the CR manifolds (Ñ,JX) and

(N,JX). But we finally may conclude that the constructed metric g is positive-definite,

for otherwise fl would contain nonzero real vectors.   D

5. The nonimbeddabilty theorem.

Lemma. Let (N,R) be the twistor CR manifold of some smooth conformai Rieman-

nian  3-manifold (M,[g])  and let it:   N -> M be the  canonical projection.  If

Pv := tt~1(x), x g M, and v -» Px is the holomorphic (normal) vector bundle given by

v:= (CTN\P)/{TPx + fllrj

then v = Jif® Jf as a holomorphic bundle, where Jf is the hyperplane line-bundle

(cx(Jif)=\) on PX = PX.
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Proof. In §4 we saw that cx(T'N\p) = 4. Hence

cx(v) = cx[(T'N\p)/T'Px] = cx{T'N\p) - cx(T'Px) = 4-2 = 2.

As the general rank-2 holomorphic vector-bundle on Px is jé*"8* © J?"82

(Grothendieck [1957]), we have

for some j g Z. Let V cz T(PX, &(v)) be the set of sections with zeros. If we had

j # 0, then V would be a vector subspace of T(0(v)). Yet the canonical projection

Px X CTXM -» v induces an inclusion CTXM -> r(<3>(z7)) with the property that the

section corresponding to v g CTXM has a zero iff g(v, v) = 0. (This follows from

the equation

(ff*fl)l[b(w)]= span(w),

where w satisfies g(w, w) = 0.) Hence Fis not a vector subspace, forcing/ = 0.   D

Knowing this, we are now in a position to prove the

Main Theorem. Let (M, [g]) be a smooth conformai Riemannian 3-manifold, and

let (N,Jl) be its twistor CR manifold. Then (N,U) is imbeddable iff M admits a

real-analytic atlas for which [g]is represented by a real-analytic metric.

Proof. Suppose that (N, J\) is imbeddable as a real hypersurface in a complex

3-manifold ¡T. Let 2>c denote the space of all P,'s holomorphically imbedded in ST

with holomorphic normal bundle (T'ST\P )/T'Px isomorphic to$P© Jf.

Since Px is a rigid manifold and Jf © Jifisa rigid bundle

[H1{0((JP® 3HC ) ®(jPejP)*)) = C4 8 Hl(Px, 0) = 0],

9JÍ" is open in the space of all holomorphic compact curves in ST. Since

Hl(6(j^®3e)) = 0,

it follows (Kodaira [1962]) that 33c is a complex manifold with tangent space at

"if g TI given by

Y(<#,c9(v)) = r(p1,(P(jr©jr))s c4,

where v is the holomorphic normal bundle of # c 3~; the manifold topology is,

moreover, just the compact-open topology on 2JÎ (Douady [1966]). The strategy of

the proof is to now construct a complexification of M as a complex hypersurface 3JÎ

in the complex 4-manifold 9JÎ and then show that [g] has an analytic continuation to

W.
Recall that (N,R) comes equipped with a CR contact form 0 g ñJ(L) respected

by an anti-CR involution p: N -> N commuting with the projection N -* M. Since

L®2 = A37'A = (A3T'$~)\N, Lisa locally trivial CR line bundle, and extends as a

holomorphic line-bundle L on some neighborhood of iV in J because N is

anticlastic. In the same way, the L-valued l-form 0 then extends as a holomorphic

¿-valued contact form 0 on some neighborhood of N. Similarly, p extends to a

fixed-point free antiholomorphic involution p of some neighborhood of N. Let us

call the common domain of these objects ^ c ST, and let Wl0 c 3JÎ be the space of

those curves #g SÔ? lying in^.
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If J^denotes the complex 5-manifold given by

<F:= {(^,^)G5-0x3Jf0|jG^},

and if a: J*"-» J¡¡ and ß: J^-» 9Jc0 are the canonical projections, we may define a

holomorphic line-bundle k -* J5" by setting k* := ker[/?*: T'¿F^> T"3R0]. The re-

striction of zc to every fiber of ß is the cotangent bundle of the fiber and has Chern

number -2. On the other hand, the restriction of a*L to any fiber of ß has Chern

number + 2 by our previous calculation of the Chern number of L on any fiber of it.

Hence zc ® a*L is trivial on the fibers of ß, and we may define a line-bundle

£^9Jc0by

0(E):= ß%(6(K® a*L));

i.e.

Ex:= T(ß-\x),(9(K® a*L))

for all x G 9Jc0. But a*0 g T(Q, 0(a*L 8 T'*Q)) defines a canonical section of

zc <8> a*L by restriction to the fibers of ß, and thereby defines a canonical holomor-

phic section /of E. Let 9JÎ c 9Jc"0 be the zero locus of/.

Suppose that <€ g 9JJ. Then 0 is orthogonal to TYand hence defines a section

0 g T(^, 0(i»* 8 ¿)) = r(P!, 0(1) + 0(1)).

Because 0, and hence 0, has no zeros, contraction with 0 yields an exact sequence

O-íC^z-^L^O

of holomorphic vector bundles on (€, where C<g denotes the trivial line-bundle. (The

kernel of v -* L must be trivial because cx(v) = cx(L) = 2.) Note that since

HlC%, 0) = O, J¿ induces a surjection

r(«\ 0(z7)) - r(«\ 0(l)) = r(pl5 0(2)).

We shall now show that 9JÎ is a complex 3-manifold with tangent space given by

rc^, 0(L)) by showing that the defining function/of 9JÎ has a nonzero derivative in

the direction given by a section of C^. Indeed, let y: Px X Be -> ¿T0 be a holomorphic

map with y(P[ X {0}) = të'and

[y*(9/3z)]|/=oGr(^,0(c^))-{o},

where fie is a neighborhood of the origin in the complex z-plane C; and let w be a

local nonzero holomorphic vector field on Px x Be tangent to the first factor and

constant in the z-direction. Then, relative to any local trivialization of L,

Yz(y*d,w) = (y*dd)l[^,w)j + w/y*d,

'(¿'"
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recalling that C<# is the kernel of j§: v -» L. But since 0 is a contact form, dd is

nondegenerate on the orthogonal space of 0, which is spanned by y*(3/3z) and

y*(w) atz = 0. Hence

showing that the derivative at z = 0 of/along the curve z ^ y[Px X {z}] ^ $RQ is

nonzero. Hence df # 0 when / = 0, and 30? is a complex 3-manifold. Moreover, the

projection jg: T(<$, &(v)) -» !(%, 6(1)) takes T¿93c isomorphically onto

W 0(h)).
We may now define a holomorphic conformai structure on 9JÎ via the above

identification. By such a structure we mean a holomorphic line-bundle E c

027"*93c, where O denotes the symmetric tensor product, such that the "index-

lowering map"

bE: T'Wl -► T'*W <8> E*

: v >-> viJ

is an isomorphism, where J is the holomorphic section of(027,**93î)®£'* corre-

sponding to the section 1 of E <8> E*. Associated with such a structure is a

null-quadric distribution Q c P(7/'93c), given by

Q:= {[i]eP(rSB)|(b(r),»)-0 6£*}.

The intersection of g with every fiber of P(T'Wl) -» 93? is a nondegenerate quadric

—i.e. a conic curve for dim 33? = 3, the case of present interest. Conversely, any

submanifold of P(r'93?) intersecting every fiber in a nondegenerate quadric arises

from exactly one holomorphic conformai structure (LeBrun [1983]).

Let ß: J*"-» 33? denote the restriction of the Px -bundle /3:,F^9JÎ0to93?c33î0,

and define a holomorphic vector bundle T -> 93c by

6(T):= ßl{&(a*L)),

so that Tv= T(^,d)(L)) for all ÍÍG 33?. Then 0 identifies T with T'33? in a

holomorphic fashion by the previously considered map (contraction with normal

bundles). Since Tx = T(ß-\x), 0(a*L)) = T(PX, 0(2)) Vx g 93?, there is a canoni-

cal map

f:&^ P(T)

:y~r(ß-lß(y),%2v®(!)(a*L)),

where %y c 0¿-ij8(v) is the ideal of y; thus^has as its image those sections (up to

scale) with their two zeros coinciding. Since the image of,/meets every fiber of

P(T) -» 27c in a conic, and since T has been identified with T'Wl, this defines a

holomorphic conformai structure on 93?.

We now bring p into play. This antiholomorphic involution on ¿TQ will take P/s

with normal bundle_^© ^ antiholomorphically to P,'s with the same normal

bundle. Since p*0 = 0, Pj's orthogonal to 0 are taken to P,'s orthogonal to 0. Hence

p induces an antiholomorphic involution p: 93c -» 33?; p*7/'93c = 7/'93?, p2 = 1^.
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Since p respects 0, the null-quadric distribution defined by # will be taken to its

complex conjugate by p.

Let 93? be the fixed point set p. Then M is a real-analytic 3-manifold with

real-analytic conformai structure [g] induced by E; the space of complex directions

for this real-analytic conformai structure is just the restriction of the null-quadric

distribution to the " real slice" M. But there is a canonical conformai isometry

i:M-*M,   L*[g] = [g]

given by x -» Px, x g M\ Indeed, by the lemma P^ has the correct normal bundle

type in ¿7~0, is a fixed point of p, and z* takes complex null vectors to complex null

vectors because (0, tr*v), v g CTxM, has a double zero iff v satisfies g(v, v) = 0.

Thus, the imbeddability of (N, JX) implies that (M, [g]) is conformally isometric to

some real-analytic (M,[g]). Since, conversely, (N,R) will be real-analytic with

respect to a suitable atlas if (M,[g]) is, and since real-analyticity is a sufficient

condition for the imbeddability of a CR manifold, we are done.   D

The reader may note that when (M,[g\) is analytic, we have imbedded M in a

complex 4-manifold. This 4-manifold admits a real slice induced by p and comes

equipped with a self-dual Einstein metric (with scalar curvature -1) singular at M.

For more details, cf. LeBrun [1982].

Finally, one may note that the existence of an atlas making a given conformai

metric [g] analytic is a nonvacuous requirement—provided, of course, that, as in the

present case, the dimension exceeds 2. For, by the use of partitions of unity, we may

construct metrics which are conformally flat in some regions but not conformally

flat elsewhere; this cannot occur for analytic metrics because of the principal of

analytic continuation as applied to the Schouten tensor. This gives us a large class of

nonimbeddable anticlastic CR 5-manifolds.
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