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DIFFUSION APPROXIMATION AND COMPUTATION

OF THE CRITICAL SIZE

BY

C. BARDOS, R. SANTOS AND R. SENTIS

Abstract. This paper is devoted to the mathematical definition of the extrapolation

length which appears in the diffusion approximation. To obtain this result, we

describe the spectral properties of the transport equation and we show how the

diffusion approximation is related to the computation of the critical size. The paper

also contains some simple numerical examples and some new results for the Milne

problem.

Introduction. The computation of the critical size and the diffusion approximation

for the transport equation have been closely related and this is due to the following

facts. First, the computation of the critical size is much easier for the diffusion

approximation than for the original transport equation. Second, for the critical size

one can consider a host media X = nXQ with X0 given and 17 a positive number. The

problem of the critical size is then reduced to the computation of the parameter zj. It

turns out that when the transport operator is almost conservative, the critical value

of the parameter 17 is large and it is exactly for this range of value that the diffusion

approximation is accurate.

On the other hand the "physical" boundary condition for the diffusion approxi-

mation is of the form

(1) q(x) + l^(x) = 0,       x^dX

(q denotes the density of particles, dq/dv is the derivative of q according to the

outward normal, and / is a number which is called the extrapolation length). To the

best of our knowledge there is no mathematical proof of the relevance of (1) for a

general X; we will describe in §IV how to justify the introduction of the extrapola-

tion length and we will give some numerical results (§V) in the very simple example

of the slab, which show the importance of (1).

The mathematical tools that we use in this paper are the following:

1. The spectral theory for the transport operator.

2. The justification of the diffusion approximation with the introduction of a

scaling factor e, related to the mean free path.

3. The study of the asymptotic behaviour of the principal eigenvalue of the

transport operator, as it was done by one of the authors (Sentis [16, 17]).
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Since we will use a scaling argument we will assume that the coefficients of the

transport equation are independent of x and that the collision function f(v, v') is

rotationally invariant. This will lead to explicit results.

We do not consider the most general case but the situation that we describe is rich

enough. It contains the essential tools and will be easy to generalize to other cases.

I. Notation and spectral theory for the transport operator. The function u(x, v, t)

denotes the density of particles (neutrons) which at time t are located at the point x

with the velocity v, x belongs to a bounded convex open set R^ (N = 1,2,3) with a

smooth boundary dX; v belongs to the space of velocities F which will denote a ball,

a sphere or a spherical annulus of R'*',

V- (0 < ö <|i;| < ¿> < +oo);

Fis provided with the canonical probability measure (denoted by dv).

We assume that the boundary is absorbing. This means that no neutron leaving

the media will be able to come back. Since the boundary is smooth, the exterior

normal v(x) is defined everywhere and the boundary condition is then

(2) u(x,v,t) = 0   for x g dX, v g Fand v(x) ■ v < 0.

In the media, u(x, v, t) satisfies the transport equation

(3) y~ + v ■ Vu + a lu -(1 + y)jf(v,v')u(x,v',t)dv'\ = 0.

o is a positive constant which describes the absorption of the media; f(v, v') is the

cross section function. We assume that / is rotationally invariant, symétrie with

respect to v and v', strictly positive and normalised:

f(Rv,Rv')=f(v,v')   VflG 0(F);1V(zj,zj')g VX V,

f(V, V)=f(v', V), 0<7T,^f(v, V') < 7TU,

(5) ff(v,v')dv' = l.
Jy

The rotation-invariance property is satisfied by any function / which depends only

on the modulus of v and v' and of the angle of the vectors v and v'. With the relation

(5), y denotes the distance of the state of the media to the conservative configura-

tion, it, and itu are cosntants. We will denote by K the integral operator

(6) Ku= ff(v,v')u(v')dv'.
Jy

K is a compact operator in any LP(V) (1 < p < oo) and a selfadjoint operator in

L\V).
For any p we introduce the unbounded operator Ap (the letter p will be omitted

whenever it is not explicitly needed) which is defined by the formulas

D(Ap) = {ue L"(XX V)\v Vu&Lp(Xx V);u(x,v) = 0

V(x,zj)g (dXx V)_),

lO(V) denotes the group of the rotations leaving invariant S
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where (dX X V)_= {(x, v)edXX V/v(x) ■ v < 0},

(8) Apu = -v ■ Vu.

Therefore, one can write the transport equation as an abstract evolution equation

according to the formula

(9) du/dt = Apu - ou + a(l + y)Ku.

The operator T = A — a + o(l + y)K is the generator of a strongly continuous

semigroup e'^ in Lp(X X F)forl </? < oo. For;? = + oo it defines a semigroup

of bounded operators but it is not continuous with respect to t. (All these results are

classical and can be found in any textbook on transport equations (cf. also Bardos

[3] for a complete treatment of the boundary condition).) For the description of the

spectra 2(7j,) in Lp(X x V) of the transport operator we introduce the number a*

given by the formula

(10) a* = a   ifOGF,       a* = + oo    ifOíF,

and we have the following

Theorem 1. (i) The spectra 2(7^,) is contained in the half-plane Re À < ya.

(ii) For p = 2, the half-plane Re À < -a* belongs to the spectra of T .

(iii) 2' = 2(7^) n {A/Re X > -a*} is a set of eigenvalues of finite multiplicity

(eventually empty) independent of p, with no accumulation point (except eventually on

the axis Re À = -a*).

(iv) For t > 0 one has

(11) 2(e'T')n{z/Rez>e-<°'} = e'T.

(v) When 2' is not empty the number A = sup{Re X\X g 2'} is a simple eigenvalue

of Tp and the corresponding eigenvector is a function of constant sign which does not

vanish outside the set (dX X V) and A is the type of the semigroup e'Tp (i.e.),

(12) A= lim (Log\e'T'\)/t.
t—> OO

(vi) For X large enough (containing a ball of radius R (big enough)) the set 2' is not

empty.

(vii) The type A(X) is an increasing function of X. It is continuous with respect to the

domain X in the following sense: When the measure of the set (X U X')\(X n X')

goes to zero, A(X') converges to A(X).

This theorem is now classical and we will only give some comments and some

references for the different statements.

The point (i) is a direct consequence of the perturbation theory for strongly

continuous semigroups (cf. Kato [10]).

(ii) was observed for the first time by Lehner and Wing [14] and proved in full

generality by Albertoni and Montagnini [1].

(iii) For Re X > -a* the operator XI - Ap + a can be inverted and X belongs to

the spectra of T if and only if 1 belongs to the spectra of the operator HÁ p defined

by

HKp={Xl-Ap + o)-1a(l+y)K.
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According to Vidav [19] for Re X > -o* the mapping À -» Hx   is holomorphic in

the space of compact operators. And the inverse of 1 - Hx is given, whenever it

exists by the relation

(13) (1 - ÄX J"1 - (1 + Fx J(l - fl?J_1.

Therefore (iii) is a consequence of the Shmulyan theorem [18]. Since X g 'S.' is

characterised by the existence of a nonzero solution up g Lp(X x V) of the

equation

(14) up - HKpup = 0,

we have S.' C 2' forp > q. On the other hand, (14) yields

(15) u\ = H»ïlu\,       u\<ZÜ(XXV).

With the regularising properties of the kernel Hx+l (N large enough) one can

deduce from (15) that u\ belongs to LX(X x V); therefore, 2{ = 2'M and the proof

of (iii) is complete (cf. Mokhtar Kharroubi [15] for the original proof and the

details),

(iv) For any generator T of a strongly continuous semigroup we have

(16) e'2(r)c2(e'r)

and the difference S(e'T)\e'2(T) may contain zero and any point of the continuous

spectra of e'T. On the other hand, any nonzero eigenvalue of e'T belongs to e'2(r). It

has been proved by Vidav [20] that e'T has no continuous spectra in the region

{z\ \z\ > e~'a'}; therefore, the relation (11) holds.

(v) Assume that 2' ¥= 0 ; then according to the weak Krein-Rutman theorem [12,

Theorem 6.1] applied to the operator Hx in LP(X x V) we know that A is an

eigenvalue of Tp, and from the relation (11) we conclude that A is the type of the

semigroup e'T". From the weak Krein-Rutman theorem we conclude also that there

exists, for A, at least one nonnegative eigenvector wA.

The proof of the simplicity of the eigenvalue A and of the strict positivity of ux

(outside the set (dX X V)) is a consequence of the inequality (valid for any

(jc, zj)g XX V)

(17) (Hxfg(x,v)> I ig(x, v) dx dv C[\ - e-«*<*.a*>/»],

where b and C are positive constants (for the proof, which follows an idea of Bardos,

see, for instance, [17]). The strict positivity of it, in (17) is compulsory for this last

statement. In Mokhtar Kharroubi [15] one finds a counterexample with it, = 0 and a

principal eigenvalue which is not simple.

(vi) To prove this point it suffices to show that the type of the semigroup e'T is

greater than -o*. On the other hand, it is clear that for any positive data tp, the

solution of the equation (9) with u(x, v, 0) = <p(x, v) is greater than the solution of

(18) -r- = Au — ou + ir¡o(l + y) / u(x, v') dv

with the same initial data.



(21) q(x)-TT,(\ + y)fdvi'(X'V)ë>i'q(x-vt)dt = 0.
J v    Jn
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Therefore, one has to show that there exists X > -a and ux * 0 which is the

solution of the equation

Xux + Wux + aux - 77/(1 + y) I ux(X, v') dv' = 0,
(19) Jv

U\(x,v)\(dXxV)_=0.

Or with ju, = (X + a) > 0 and q(x) = fvux(x, v') dv',

(20) q-{p-Apy\l(l + y)q = 0.

The integration over the velocity space gives the equivalent relation

rt(x,u)_

'v   Jo

In (21), t(x, v) is defined by the relation t(x, v) = Inf{z > 0\x - tv g dX}. Now,

we denote by 8 the constant 77,(1 + y) and we compute the operator E defined by

(22) Euq = (dv (Kx'0)i#q(x - vt) dt.
Jy     Jq

When F is a sphere of radius r we have

, 1      s\x-x'\n/v

(23) E^=h-—x^x')dx'
J Y I     1 7|
x    \x — x I

and when F is a spherical annulus we have

(24) Epq = f-—  / e—-dr)q(x') dx'.
x\x — x'\        \ " I

Now in both cases Eß is a selfadjoint positive operator and the existence of a

nonzero ux is equivalent to the existence of a number jtt > 0 such that I/o =

1/77/(1 + y) is an eigenvalue (or the principal eigenvalue) of Eß. Now the principal

eigenvalue is equal to the L2-norm of the operator E^. The kernel of E^ is a

continuous decreasing function of ¡x going to zero when ju goes to infinity; therefore,

the principal eigenvalue of E^, p(Efl), is also a decreasing continuous function of ju

going to zero with ju, going to infinity. We have only to show that for X large enough

(containing a ball of radius R) there exist a ¡i > 0 such that p(E^) is large enough

(bigger than S"1 = 1/77,(1 + y)).

We use the Rayleigh-Ritz principle with a test function <p equal to 1 in a ball of

radius R contained in X and equal to zero outside this ball. We denote also by

£^(1 • |) the kernel of the operator E^. We have

(25) p{Ell)>^¡ dxíí       E¿\x - x'\) dx]
R" J\x\<R/2      \J\x'\<R I

>%( dxl ^(WH
R    J\x\<R/2     J\y\<R/2

2

!As usual Cy, C2,. ■. will denote several constants which depend only on the dimension of the space.
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In the case of the sphere (E^ given by (23)) we have

(26) pW>C2( -Ç^dy
J\y\<R/2\y\'

>  Ü2  Í ëW    A

/* J\y\<**/2\y\*~*

Now we choose ju0 such that one has

(27) £/      -~dy >ô- = (77,(1 +y))-1
mo-vi<i|.h

and with R > 2/ju0 we will obtain

(28) pW >tJ      n^nJ\y\<ti0R/2\y\"

NJ\y\<i\y\N-1

and the proof of the existence of the eigenvalue A^), for X large enough, is

complete. The computation in the case of the spherical annulus (E given by (24))

can be done in a similar way; it is left to the reader. Some analogous computation,

for more general cross sesction, and absorbtion functions can be found in Mokhtar

Kharroubi [15].

Now let X' 3 X be two open bounded convex sets. We denote by Tx and Tx, the

corresponding transport operators (with identical absorbing coefficient a and identi-

cal cross section/(z;, z/)) is the two spaces LP(X x V) and LP(X' x V); for any

function m defined in A' X F we denote by <p its extension by zero in X' X V:

<p(x, v) = q>(x, v) if x g X and tp(x, z;) = 0 if x g X' \ X. And we denote also by

<p\x the restriction to X of any function defined in X' X V. If Xis large enough the

operator Tx has a principal eigenvalue A(X) and a corresponding positive eigenvec-

tor cp(x, v); now <p(x, v) is also a positive function and ((e'TX')<p) is also positive.

By a comparison argument it is easy to show that one has, for every (x, v) g X X V,

(29) ((eí7>)<p)(x, v) > (e'T*<p)(x, v) = e'A<*V(*, v).

This proves that the type of the semigroup is an increasing function of the domain.

Finally, the continuity with respect to X of the function A(X) can be found in

Mokhtar Kharroubi [15].

II. The diffusion approximation. We introduce in this section a parameter e and we

will consider in A' X F the transport equation

9"f    1 "f -(i + e2y)KuF    n
(30) ~T1 + -v Vzzf + a^-^-^^-^ = 0

9/       e e2

with the usual absorbing boundary condition. The parameter e is a scaling factor and

the reason why we choose their order of magnitude will become clear in §IV, which

is devoted to the computation of the critical size. Following Larsen and Keller [13]
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or Blankenship and Papanicolaou [5] we introduce a formal expansion of the

solution ue:

(31)

ue(x, v, t) = u0(x, v, t) + eux(x, v, t) + e2u2(x, v, t) + e3u3(x, v, t) +

This leads to the relations

(32) u0 - Ku0 = 0,

(33) v • Vu0 + a(zzj - Kux) = 0,

(34) -y2- + v ■ vux + o(u2 - Ku2) - ayKu0 = 0,

(35) -—- + v • vu„+1 + o(un + 2 - Kun+2) - ayKun = 0   forzz^l.

K is a selfadjoint strictly positive operator; therefore, according to the Harris-

Krein-Rutman Theorem (Harris [9, Chapter III]) its principal eigenvalue (in L2(V),

for instance) is simple. From the relation

(f(v,v')dv' = l;      f(v,v')>0,
Jy

we deduce that the principal eigenvalue is 1 and that the corresponding eigenvector

is the function lt,: v -* 1. Therefore the kernel of the operator I - K coincides with

the space (of one dimension) spanned by the constant and therefore for any

g g Ker(7 - K)± there is a solution of the equation

(36) (I-K)u = g.

Since Ker(7 - K)x is the space of the functions g(v) with mean value zero,

fvg(v) dv = 0. For any g with mean value zero there exits a unique function u, with

mean value zero, which satisfies the equation u - Ku = g. In particular, since we

have fyV,dv = 0, we introduce the function D,(v) which is the solution of the

problem

D, - KD,(v) = Vj,     f D,(v) dv = 0.
Jy

We denote by D(v) the vector of components D,(v) (1 < i < N) and for the

solution of (33) we have the expression

(37) ux(x, v, t) = —— ■ Vu0(x, t) + Wx(x, t),

where Wx(x, t) is a function independent of v.

The function u2(x, v, t) is given by the relation (34) and this equation will admit a

solution if and only if

// du0 \-jj-h Wux - oyKuQ \ dv = 0;

that is to say,
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In (38) appears a second order operator 3 which is defined by the expression

With only the hypothesis 0 < 77, < f(v, v') < 77u, one can show that the quadratic

form defined on R" by the formula

(39) qU) = Lfv,DJ(v)^Jdv
ij    v

is positive nondegneerate. Therefore S¿ is a second order elliptic operator. On the

other hand, with the rotation-invariance property one can obtain a more explicit

expression for this quadratic form and for the functions D,(v). Indeed, for any

rotation R g 0(F) we have

(40) Rv = D(Rv)- ff(Rv,v')D(v')dv'.
Jy

In the integral of the right-hand side of (40) we make the change of variable

v' = Rv" and obtain

(41) Rv = D(Rv)- ff(Rv, Rv")D(Rv") dv"
Jy

= D(Rv) - (f(v, v')D(Rv') dv'
Jy

(by the rotation-invariance off(v, v')). Therefore we have

(42) D(Rv) = RD(v).

This leads to the relation

(43) q(Rt) = Z'f^DjiuXRSMRÜjdD
ij     v

= {(v ■ Rt)(D(v) ■ R(t)) dv
Jy

= ( (R*v ■ t)(R*D(o) ■ f) dv
Jy

= ( (R*o - t)(D(R*v) ■ t) dv
Jy

= ((v'-t)(D(v')-t)dv'
Jy

(with v' = R*v). From the formula (43) we deduce that q(£) is rotation-invariant

and we have

U2.(44) qU) = ej:ti

This implies the relation

(45) f o,Dj(o) do = e¿u.
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Equation (38) is then the diffusion equation

(46) -^ - k0Vu0 - ayu0 = 0,

where kQ is a positive constant given by the formula

(47) k0 = e0/a.

Remark 1. The integration, with respect to v, of equation (30) gives

(48) ^f + -eV^-oyqe = 0

with qe(x, t) = fvue(x, v, t) dv and ¿7¡ = fvv ■ ut(x, v, t) dv, and it is natural to

deduce by "physical arguments" that ^, which is a current, is approximately

proportional to the gradient of the charge qe. Therefore the above computation

appears to be a rigourous proof of these arguments.

On the other hand, with the maximum principle one can obtain, for the solution

of the inhomogenous transport equation

m $+±.-v, +¿(/-a+ *)*)*-*,
WAX' v>t)\oxxv)_= gc,       wt(x,v,0) = <pf,

the following uniform (with respect to e) a priori estimate: for any (x, v, t) g X X V

X R+ we have

(50) \we(x, v, t)\ < eay' sup |<pf(x, o)\
(x,v)

+ eay'{ sup \he(x,v,s)\
\(x,v,s)eXX VX[0,t]

+ sup \gAX>V'S)\)-
(x,v,s)e(dXXV)_X[0,t] I

With this inequality and the formal asymptotic expansion, one can prove the

following

Theorem 2. We assume that the initial data u(x, v,0) is independent of v and we

denote by ue(x, v, t) and u0(x, t) the solutions of the transport equation

(51) ^+l1vVue + f2(l-(l+e2y)K)u 0,

"Âx>v,t)\tfxxv)_= 0

and of the diffusion equation, with the Dirichlet boundary condition,

(52) -^ - zc0Aw0 - ayu0 = 0,     uo(-,t)\dx = 0

with the same initial data u(x, v, 0) = u(x, 0). Then we have the uniform estimate

(53) \ue(x, v, t) - u0(x, t)\ < eey'C(u,)).
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The proof of this theorem can be found in Blankenship and Papanicolaou [5]. One

introduces the function

w£(x, v, t) = ut(x, v, t) - u0(x, t) - e -Vzz0 + w(x, t)\ - e2u2(x, v, t),

where w(x, t) is arbitrary and u2(x, v, t) is a solution of (34); then one can ue (50)

and the fact that on (dX X V)_ one has

(54)

we(x, v, t) = ue(x, v, t) - u0(X, t) + e-Vu0 + w(x, t)\ - e2u2(x, v, t)

= el-—^ ■ Vu0 + w(x, t)) + 0(e2).

One of the main consequences of Theorem 2 is the fact that the operator Te = A/e

(a/e2)(7 - (1 + e2y)K) converges to the operator k0A + ay with the Dirichlet

boundary condition in the following sense:

Let 77 be the projection operator from L2( X X V) on L2( X) defined by

vf(x) = f f(x,v)dv.
Jy

Then for any a ^ 0, we have the strong convergence in the space of the bounded

operators on L2( X X V)

(Tc - a)"1 -» (zc0AD + ay - a)_177

and one can prove

Theorem 3 (Sentis [17]). When e goes to 0, the principal eigenvalue3 AE of the

operator Te converges to the principal eigenvalue Ad of the operator (/c0AD + ay) with

the Dirichlet boundary condition.

As it will appear below, the error between Af and A d is of the order of e and this

is mainly due to the choice of the Dirichlet boundary condition for the diffusion

operator, an improvement of the error will lead to the introduction of the extrapola-

tion length.

Since we have 2(TE) c {A|Re X < ay} and 2(¿0AD + ay) c {X\X < ay}, we

will introduce a positive constant C > ay and study the order of the error between

(oE = AE - C and ud = Ad - C. The principal eigenvalue wE of Te - C is also the

principal eigenvalue of its adjoint (T* - C) which is simple. Let ^ be the eigen-

value of (T* - C) corresponding to wE and normalized by

ll^Ellz.:!(A'xn = 1'       *f ^ 0.

Following Sentis [17] we denote by 0 the principal eigenfunction of k0AD + ay - C

normalized by\\<p\\,2,X)=\,<p^0, and we introduce the solution of the equation

(55) (rE-C)zE = w¿$;       zEG7>(rE).

3A real eigenvalue of an operator is said to be its principal eigenvalue if it is greater than the real part of

any spectral value.
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Now we have4

(56) ud(<i>,%) = ((Te-C)ze,%) = (zt,(Tt- C)*%) = <oE<zE,*E>.

From (56) we deduce the relation

(57) w</<$, *E> = <oE<zE - Í», %) + coE($, *e>

and the relation

(58) »,-«,-«„<*.-*,*,>/<*,*,>.

One can show (cf. Sentis [17]) that % converges to $ in L2(X x V) and since these

functions are choosen of norm 1, we have

1 (z — 0 ^ \
(59) hm}u - „,) = „„lim < '        '   «'

Therefore the last step is the study of the limit in L2(Xx V) of the expression

(ZE - $)/£ and at this point will appear a boundary layer and a corrector related to

this boundary layer which will introduce the extrapolation length.

III. The construction of the corrector for the stationary solution and for the

principal eigenvalue. Since we are concerned only by the eigenvalue of the operator

Te it will be sufficient to consider the stationary solution of the transport equation.

Keeping in mind that the spectra of Tt lies in the half-space Re X < ay, we introduce

a constant C > o y and consider the solution ue of the equation

Cut + ~v • V« + ^(/-(l + e2y)K)ut = g,
(60) £ e

ue{x>v)\(dxxv)_= 0.

We assume that the right-hand side of (56) is a function g(x) independent of v and

smooth. With the usual expansion

(61) ue = uQ + etZj + e2zz2 + e3«3 + he,

we obtain the equations

(62) zz0 - 7ûz0 = 0,

(63) v ■ Vu0 + o(I - K)ux = 0,

(64) Czz0 + v ■ V«i + a(7 - K)u2 - ayKu0 = g,

(65) Cux + v ■ Vu2 + a(I - K)u3 - ayKux = 0.

With the same argument as in the evolution equations described in §11, we deduce

that u0 is the solution of the Dirichlet elliptic equation

(66) (C-ya)zz0- k0Aw0 = g,       «olaA^0

and that ux is given by the relation

(67) Wi(.x, v) =-• Vzz0 + w

with w being a function depending only on x g X.

4( ■ , ■) denotes the scalar product cm L2(X X V).
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Now u 2 is given by the relation

(68) a(7 - K)u2 = g +(ay - C)u0 + -v ■ v(D ■ Vu0) - v ■ Vw.

The relation (64) and the compatibility condition (66) implies that u2 is the sum of

the function -D(v)/a • Vw and of the solution h(x,v)of the equation

(69) (I-K)h = ^v v(D- Vu0)-k0Au0.

The right-hand side of (69) is an even function of v and thanks to (36) we see that h

is also an even function of v. Equation (65) can be written as

(70) o(I - K)u3 =-(C - oy)l-^l- Vu0+ w)

-ay(I - K)l-—vu0 + w   - WI h - — Vw ,

and for the solvability condition of the problem (70) we obtain

(71) (C - ay)w - k0Aw = 0.

Therefore, w satisfies the same equation as zz0 but, up to now, no boundary condition

is prescribed on w. With any w satisfying (71) one can construct a solution u3 of (70)

and therefore, for the function

rE = ue - u0 - e(-D(v)/a ■ VuQ + w) - e2u2 — e3w3,

we have the equation

CrE + - • zjvrf + ^-(1 - K)x[ = e2d(x,v),

(72)

■UdXxV). l^-- Vu0-w)+e28(x,v).

u0 is a smooth function which is zero on 3^; therefore all the tangential deriva-

tives of u0 on dX are all also zero, and the second equation of (72) turns out to be

the equation

(73)        tJil^^^i£i^^-wy^ix,v).

In (72), d(x, v) and ô(x, v) denote two smooth functions independent of e. We

observe that the dominant factor comes from the boundary term and is of order e.

So in order to obtain an approximation of ue of order e2 we have to build a

boundary layer term. Since SA' is smooth and compact we assume the existence of a

number Ô > 0 such that the variable x g dX; y = (x - x)v(x) gives a set of

coordinates for the layer

{x g X,d(x,dX)^ô).



COMPUTATION OF THE CRITICAL SIZE 629

Let r) = y/e = (x - x)/e • v(x) and we consider (following Bensoussan, Lions and

Papanicolaou [4]) the boundary layer equation (in the variables tj and v, x being only

a parameter)

rXh

v v(x)^- + a(l - K) = 0   inR-xF,

(74) 8m
b(0, v,x) = -D(v)v(x)-^(x)    forz;- v(x) < 0.

This problem is the classical Milne problem. In the present case it is not an easy

problem because it corresponds to the conservative case which implies that 0 is in

the spectra of the operator

T= v v^- + o(I - K)

defined in L2(R~x V) with the domain

D(T) = jzzG L2(R"X V)\v v^- G L2(R"X V), u(0, v) = 0 for v ■ v < oj.

The main theorems concerning this problem can be found in some explicit cases in

the classical books on transport theory (cf. Chandrasekhar [7]); in the general

situation they are proved by Bensoussan, Lions and Papanicolaou [4]. The method of

[4] relies on probabilistic tools. In Appendix 2 we will prove these results using only

the tools of fundamental functional analysis. The main results (which are proved in

Appendix 2) are summarized in the following (where V_= {z; g V\vN < 0} .

Theorem 4. (i) For any function <p g Lx(V_) there is a unique bounded solution

u G L°° (R _ X V) of the problem

(75) vN~ + o(I - K)u = 0,    u(0, v) = y(v)   for v a V_.

(ii) When 7) goes to -oo, u(i], v) converges exponentially fast to a constant G(<p).

(iii) The mapping <p -» G(<p) is a linear continuous mapping from LX(V_) to R.

(iv) When tp is positive, u and also G(<p) are positive.

(v) Let DN(v) be the component of D(v) in the Nth direction. Then G(DN) = -L is

a negative constant.

Now for the function w(x), which is a solution of (71), we request the boundary

condition

(76) w\dx = -G(DN)^.

(71) and (76) define a classical Dirichlet boundary value problem which has a unqiue

well-defined solution w. Then for

(77) x(^' V. v) = b(t], v, x) - w(x)
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we have

v v(x)^ + a(l - K)x = 0   inR X F,
OT)

(78) x(x,0,v) = -D(v)-p^-w(x)   îotvp(x)<0,
a av

x(x,r¡,v) -» 0   exponentially fast for tj -» -oo.

The last condition of (78) shows that x is a boundary layer term. For

/ l-D(v) \       2 3 (.   x- X      /A.     1
sc = ue -   zz0 + e -• Vu0 + w I + £ u2 + e wE + ex\x,-• v(x), v

we have the relations

cs. + -v • Vse + ^-(1 - K)sc = £2f?E(x, u),

(79) £ £2

\(dXXV)_ = E2S(x, v).

In (79), 8 is the smooth function which appears in (72). Since (8/3tj)x(í, tj, v)

converges to zero exponentially fast, when tj goes to -oo, we see that, for any

compact set X' c X, we have

sup sup \de(x, v)\ < C   (independent of e).
xeX' vev

Therefore, for any p (1 < p < oo) we have the estimate

(80) lkclli.''(A,xi') < e Cpi

where Cp denotes a constant depending on p but independent of e, and from (79)

and (80) we can deduce the following theorem which is an explicit version of the

results of Bensoussan, Lions and Papanicolaou [4].

Theorem 5. Assume that g is a smooth function defined on X and let ue be the

solution of the transport equation

cue + -Wuc + ^(ue-(l+e2y)Ku[) = g(x)    in X X V,

ut\(dxxv)_~ 0;

then in any LP(X X V) space (1 < p < oo) we have the estimate

(82)
, -D(v)

"£-   "o + £ —*-VMo+ w < e¿Cp-
LP'XXV)

The constant Cp depends on p but is independent of e and the functions u0 and w are the

solution of the two Dirichlet elliptic boundary value problems

(83) (c- ay)u0- k0Au0 = g,        u0\dX = 0,

(84) (c-ay)w-A:oAiv = 0,     w\^=--~^-
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Remark 2. Since we have JyD(v)vwdv = 0, an approximation up to the order

two in e of the density jyUe(x, v) dv is given by the function he = u0 + ew.

Remark 3. The function üt satisfies the elliptic equation

(85) (c- ay)izE- zc0AzîE = 0   in*

with the boundary condition

(86) Üc + £
kzzh
a   dv

= £ , L dw

a  dv
on3A".

Since L is positive, the problem (85) (86) (for c > ay) is always well posed. The

corresponding self adjoint operator is defined by the coercive quadratic form on the

space H\X),

(87)      a(<jp,,F) = k0( V<p • V*dx +(c - ay) f y^dx + -y- í y^dx.
JX JX eL Jdx

We can now state the following

Proposition 1. Let g be a smooth function on X and ue be the solution of the

equation

(88)
cme + -zj- VME + 4(7-(l + e2y)K)ue = g,

e £

t*t(x,v)\i9Xxy).=1 °

and let ue be the solution of the equation

(c- ay)ûe - zc0AzîE = g   in X,

zîE + £- -p- = 0    ozz aX.
E        a   dv

Then for any p (1 < p < oo) with C depending on p but not on e we have the estimate

(89)
íA*")

< ¿Cp.f ue(x, v) dv - ûe
Jy

The proof of this proposition is a consequence of (85), (86) and the equations

((c-ay)-zc0A)(z7E-zîE) = 0   in X,

< £2C.
L o ,.       ,,

^-u^E-^Yv{u^~u^
SX

We will use the ideas described above for the construction of correctors for the

principal eigenvalue. Namely, from (55) we deduce that 3 E is given by

D
5E = $ - £— • V$ + ew + 0(e2)(90)

with w given by

(91) (c - ay)w - k0Aw = 0,    w
190

«x~aJv~ a v
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Therefore we deduce from (59)  the formula

(92) lim -(<oe - ud) = w^lim l-e-D ■ V<t> + ew,%)/e
f-»0 £ f—>0 \       a

- — • V<í> + w,<¡>) = »d(w,0)£a(^
a

which finally gives the asymptotic expansion

(93) uc = wd + eud(w,$) + 0(e2).

In fact, to obtain an expansion of order 2 for the principal eigenvalue of TF, one can

also directly use the operator (c - ay) - zc0A with the Robin boundary condition

(94) u + £- ^ = 0.
a dv

Namely, we have

Proposition 2. Let S¿e be the dissipative operator -(c - ay) + z<0A defined in X

with the Robin boundary condition; then the principal eigenvalue af of 2>e converges

when £ goes to zero, to the principal eigenvalue iod of the operator -(c - ay) + /c0A

with Dirichlet boundary condition. Furthermore, ¿5f admits an expansion of the form

(95) <5e = ad+ ea+ 0(e2)

and the coefficient ofe in (95) coincides with the coefficient of e in (93).

Proof. We introduce the principal eigenvalue and the principal eigenvector of ¿&e:

-(c - ay)$E + £()A$E = coE$E    (in X),

$E + £-L^-<i.E = 0    (on 3*).
a    av

We assume that the L2 norm of 3>E is equal to one; wE is negative and with the

Raleigh-Ritz principle one can show that wE is an increasing function of e. It

converges to a value ¿3. On the other hand, <|>E is positive (see, for instance, Amann

[2]) and converges strongly in L2( X) to a positive function $ which is the solution of

the problem

(97) -(c - ay)<j> + zc0A$ = ÛJÔ,     $\3X = 0.

This proves that 4> = $ and ¿3 = ud. Next we introduce the solution jE of the

equation

(98) 2thf = Wrf$

and we have (cf. (55)-(59))

(99) corf($, Of) = (0EaE, $£> = <3£, 9,%) = «f<8« - *, $f> + coE($, 4»E>

or

(100) "Lllk^-JLZ*^

5A11 these results are due to Sentis and are described in [17] without application to the critical size.
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The proof follows the construction above in a fairly simpler fashion.6 We need only

the expression up to order two of the solution of (98). We notice that (0( - §)/e is

the solution of the elliptic problem

(101)

—-1-e-Lt—-= -L^é   on SX.
e a    dz»      £ a    av

Comparing with (84), it may easily be seen that (aE - 4>)/e -* w. Then (100) yields

(°>d - «e)A -» UAW> $)i.Hxy   Q.E.D.
Coming back to the original principal eigenvalues Ae = +c + wc, Ad = +c + ud,

AE = c + wE, we can summarize the above results in the following

Theorem 6. Let Tc denote the transport operator

Teu = - — V ■ Vu--(u — (l + e2y)Ku)
e e2

defined in L2(X X V) with the absorbing boundary condition

U(X, »)|(8ATXK)_= 0.

Let Se denote the dissipative operator zc0A + ay defined in L2(X) with the Dirichlet

boundary condition; finally, let 2dt be the elliptic operator zc0A + ay, defined in L2(X)

with the Robin, E-dependent boundary condition

1 , 3"     n
u + e-Lt- = U.

a    dz»

We denote by AE, Ad and ARf the corresponding principal eigenvalues of these three

operators; then

(i) AE converges to Ad when e goes to zero,

(ii) AE admits an expansion up to the order e of the form

(102) AE = Ad + ed + 0(e2),

(iii) AE admits, up to the order e, the same expansion.

IV. Application to the computation of the critical size. As we have seen in the first

section, the transport operator

(103) Tu = -v Vu- a(7-(l + y)K)u,

with absorbing boundary conditions, has its spectra in the region Re X < ay.

Furthermore, in the region -a < Re À < ay the spectra is composed of eigenvalues

of finite multiplicity. The number Ax = supXe2(n{Re À} is the type of the semi-

group, and for A x > -a it is an eigenvalue of multiplicity one. In this section we will

consider the transport operator in the open set i)X (tj > 0 eventually large) and we

will deduce from the results of the previous section the asymptotic behaviour of A

for tj going to infinity. Ax is an increasing function of X and we will use the

diffusion approximation to define the critical size, i.e. the value of tj > 0 for which

6Some analogous ideas have been used in Kesavan [11] and Ciarlet and Kesavan [8].



634 C. BARDOS, R. SANTOS AND R. SENTIS

one has A ^ = 0. Due to the factor y it is more convenient to study the transport

operator in the open set (tj/(1 + y))X. By a change of variable the eigenvalue

equation is then written in the open set X according to the formula

(104) —(1 + y)v ■ Vu - a(l -(1 + y)K)u = A„m,

with the same absorbing boundary condition. (104) is also equivalent to the equation

(105) -j]v Vu + rt2o(I - K)u=l    *     °Y Wu.

We will denote by A0 the principal eigenvalue of the operator zc0A defined in X with

the Dirichlet boundary condition and by A* the principal eigenvalue of the operator

k0A, defined in X with the Robin tj-dependent boundary condition

(106) u + ±k*¡L = 0m
tj a av

Now we can apply the results of Theorem 6 to equation (105) and obtain

Theorem 7. When the size of the domain t¡X goes to infinity, the principal eigenvalue

Av converges to ay. Furthermore, the following asymptotic expansion is valid:

(107) A, = ay + \(1 + y)A0 + \d + \o(\).
tj tjj        tj

On the other hand, the terms of order 2 and 3 in tj z'zz (107) are given by A* according to

the formula

(108) A   =ay + ±±lA* + ±o(l).

Remark 4. One can show (cf. Appendix 1) that ay is the type of the semigroup

exp(rT) when X = R". Therefore we have proved the continuity of this type for X

going to R".

We already know that the equation which gives the tj corresponding to the critical

size

(109) ay + LtlA» + ±o(l) = 0,

has only one solution tjc. But A* is a negative number which goes to A0 when tj goes

to infinity. Therefore 3 c satisfies the relation

(110) t,2 =-{l \l\K\l + /l + 4ayO(l)/((l + y)A*J2).

The number 0(1) which appears in the right-hand side of (110) is bounded

independently of y. Therefore, for y small enough we have

(111) °yO(l)/((l + y)A*J2 < 1/2

and from (110) we deduce the bound

(112) „e = fA*(l + y)/ay (l + yO(l)).
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Formula (112) shows that tjc is of the order of y 1/2 and therefore we finally have the

two formulas

(113) Tjc=f(l+y)A0/ay (1 + ^0(1)),

(114) î)c = f(l+y)A«/ay(l + y(0(l)).

Remark 5. It is interesting to compare the analysis done above and the justi-

fication of the diffusion approximation described by Larsen and Keller [13] or

Blankenship and Papanicolaou [5]. In [5,13] one starts with the equation

(115) ^ + h ■ Vu£ + i(j -(1 + E2y)K)ue = 0

and here we have considered the equation

(116) y + vVu + a(I-(l +y)K)u = 0

in the open set i]X(l + y). With e = (tj0/(1 + y))_1equation (116) turns out to be

the equation

(117) -^ + EWut + a(l-(\+y)K)uc = 0

and a change of scale in time; writing t = t/e2 reduces it to the equation

(118) ^f + ^VzzE + ^(7-(l + y)/C>E = 0.

Therefore we have shown that near the critical regime the mean free path is of the

order of e and that the correct scale in time is given by t = e2t. Finally, if the open

set TjAy(l + y) is almost critical, (113) or (114) shows that we have tj = 1/ -Jy or

£2 = y and this proves that near the critical regime the number y, which char-

acterises the cross section, is of the form y = £2y, with y of the order of the unity.

This seems to be the only rigourous justification of the scaling done by [5 and 13] in

the last term of (115).

In the §§II and III we have seen that in some sense the transport equation

(119) y + v^u + a(/-(l +y)K)u = 0

is closely related to the diffusion equation

(120) y - zV0Aw - ayu = 0

with the Dirichlet boundary condition and that the approximation is better when the

Robin boundary condition is used. For the critical size we will follow the same idea

using (113) and (114). With the numbers A0 and A* which appear in (107) and (108)

it is easy to compute the critical size for the diffusion approximation. Namely, we

have

Proposition 3. (i) Let A0 denote the principal eigenvalue of the operator kQA

defined in X with the Dirichlet boundary condition. Then the principal eigenvalue of the
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operator zc0A + ay, defined in pX with the Dirichlet boundary, is zero for p given by

the formula

(121) P, = V'-Ao/ay .

(ii) Let AR denote the principal eigenvalue of the operator zc0A, defined in X with the

p-dependent Robin boundary condition

(122) u + --^- = 0   ondX;
v p a av

then the principal eigenvalue of the operator zc0A + ay, defined in pX with the

p-independent Robin boundary condition

(123) u + -L^ = 0   onpdX,
a    ov

is zero for pR given by the formula

(124) pR = f-AR/ay .

The proof of this proposition is evident by scaling.

Finally, if we compare (113), (114) and Proposition 3 we have the final

Theorem 8. Let T denote the transport operator

Tu = -Wu - a(7-(l + y)K)u

in the open set pX. Let zc0AD + ay denote the elliptic operator defined in the open set

pX with the Dirichlet boundary condition and with the constant k0 computed according

to the formulas o/§II in terms of the cross section operator K.

Finally, let kQAD + ay denote the same elliptic operator in the same open set pX but

with the Robin boundary condition

1 r du
u + -L-T-

a    op
= 0.

pdX

Then for each of these three operators there exists a unique number pj, pcD, pR for which

the principal eigenvalue of the corresponding operator is zero in the open set pX.

Furthermore, the difference between these three numbers goes to zero with y and we

have

(125) K(Y)-P? 1=^0(1);    \p[.(y) - pR\ = yO(\);

the coefficient 0(1) appearing in the two equations being of the same order of

magnitude.

V. Numerical examples in the case of the slab. As an illustration for (125) we

consider the very classical example of the slab. The transport operator is then

du            1 + y n   ,       ,,
Tu = -/i-r-u H-— /   u(x, p. ) du ,

the open set X is the interval ] - 1,1[ and ¡x belongs to the set V = [-1,1]. Since we

have j\ii' dp,' = 0, we obtain

(126) £>(/*) = AV
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and the constant k0 is given by

On the other hand, in the present example the problem (73) is the classical problem

it^—1- b - — f b(x, ¡ti') dp' = 0   forTj<0,
(127) 3îJ 2J-X

b(0, ¡x) = ju.   for /t. < 0

which has been studied extensively by Chandrasekhar [7]. In [7] it is proved that

G(g) = (lp'H(p')g((i')dp'

(where H is the Chandrasekhar function). Then we have L = Lc given by

(128) Lc = fln'2H(n') dp'

and an approximate value of Lc is Lc - 0.7104.

Now, according to Amann [2] we know that the principal eigenvalue of the

diffusion operator (with the Dirichlet or Robin boundary condition) is simple and

that the corresponding eigenvector is positive. In the present example this eigenvec-

tor is an even function of x.

Therefore, the problem of the critical size for the Dirichlet and Robin boundary

conditions turns out to be:

Find p > 0 such that the equation

(129) \u" + yu = 0,

with the boundary condition

(130) u(-p) = u(p) = 0    (Dirichlet)

or

(131) u(±p)±Lcj^(±p) = 0   (Robin),

has a nonzero positive solution. Since u is even we deduce from (129) the expression

u(x) = cosy/3y x and from (130) and (131) the relations

(132) pf=f(3y)-1/2,

(133) pf = (3y)-1/2tan-1((3y)-1/2/Lc).

It is clear that for y very small these two formulas coincide; however, when y

increases they differ with an error of the order of Jy, and the second gives more

accurate results.

We can also write the operator T defined by (103) in the following form:

(134) Tu = -vy- + S,(Ku- u) + ayu

with 2 = (1 + y)a. We can see that if Tis the operator

Te = --Wu( + —(Kuc - uE) + ayzz,
e £



638 C. BARDOS, R. SANTOS AND R. SENTIS

then the results of Theorem 4 are yet true with a replaced by 2 in the Robin

boundary condition and in the definition of k0. Therefore, Theorems 5 and 6 remain

true for the operator T defined by (134) instead of (103) (with a replaced by 2 in the

Robin boundary condition and in the definition of k0).

Then, if we come back to the operator T which is of interest in this numerical

example (where a = 1), we see that we may approximate the critical size of T by the

critical size pj (or pR ) of the diffusion operator

(135) 3(TT7y""+ yu = 0

with the Dirichlet boundary condition

(136) u(-p) - u(p) = 0

or with the Robin boundary condition

(137)
,      . L     du ,      v

0.

That is to say that pc may also be approximated by

(138)

(139)

p0D=f(3y(l + y))-1/2,

Pel (3y(i + r)) 1/2 tan"1
1 +Y

[3y(l+y)]1/2L

Formulas (132), (133), (138) and (139) are equivalent for small y. However when y

increases, (132) and (138) differ from formulas (133) and (139) with an error of order

y and the second ones are more accurate.

In the following table we compare the result of the various approximation

formulas with some exact values (given by Case and Zweifel [6, p. 157, 207] and

Williams [21, p. 210]).

y

o.oi
0.1

0.277

0.3

0.6

1

1.807

4.969

13.26

p;

8.07

2.69
1.72

1.65

1.17

0.91

0.67

0.41

0.25

pí:

9.02

2.73

1.52

1.45

0.926

0.641

0.403

0.166

0.066

8.36

2.19

1.09

1.02

0.60

0.39

0.23

0.090

0.035

Po*

8.32

2.12

1.02

0.959

0.545

0.349

0.203

0.077

0.029

p exacts

8.32

2.11

1

0.940

0.515

0.326

0.1

0.05

0.01

We see that the formula pR is the best.

When y increases from 0 to 1, it remains true up to 7%. (It may be noticed that the

formulas of approximation given by Case and Zweifel are valid only for y of order

of 0.01.)
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Appendix 1. Some remarks concerning the spectra of the transport operator in an

unbounded domain. In the previous sections we have seen that the spectra of the

operator

Tu = -Wu - a(I -(1 + y)K)u,

defined in any LP(X X V) (1 < p s£ oo) with absorbing boundary conditions, was

contained in the half-plane Re z < ay and that for X going to R", the type A(X) of

this semigroup converges to the number ay. This result is simply related to the

behaviour of the transport operator in an unbounded domain and we have the

following

Theorem A.l. We assume that X is an unbounded domain with R" \ X contained in

a ball of radius SfQ. We assume that the boundary d X of X is smooth and we denote by

T the transport operation

Tu = -v ■ Vu - a(u -(1 + y)Ku)

with a, y two positive constants and K the integral operator defined by (6) with the

hypothesis (A) and (5), and with the usual absorbing boundary conditions. Then we have

the following statements.

(i) For any p (1 < p < oo), T is the generator of a semigroup in Lf'(X X V).

(ii) V/z (1 < p < oo), the spectra of T in LP(X X V) is contained in the half-plane

D = {z|Re z < ay} and the point ay belongs to the spectra of T.

(iii) If X = R", T is the generator of a group with spectra contained in the strip

D = {z|-a < Re z < ay} and the point ay belongs to this spectra.

Proof. Except for the fact that ay belongs to the spectra of T, all the results

stated in this theorem can be derived by classical semigroup (or group) theory.

Therefore we will only prove that ay belongs to the spectra of T in any LP( X X V)

space (p < oo ). We consider the case R" \ X =f= { 0 }; the proof is the same when

X=W.
In fact, we have to show that 0 belongs to the spectra of the operator

TTu = -v ■ Vu - a(l + y)(u - Ku).

For this purpose it is suficient to construct a sequence of functions <pk(x, v) with the

following properties:

(A.l) <pkeD(f):      Um l\\f<pk\\LP,XXV)/\\<pk\\Lp(XxV)) = 0.
k -> oo

For the construction of these functions we introduce a family dk(s) of positive

smooth functions defined in R+ with the following properties:

(A.2) O«0*(ä)<l,       \d'k(s)\ < C< oo    ViGR,

,      „ dk(s) = 0   fors <ynandí > k + 1,
(A3)
v   ' ; dk(s) = 1    for^Q-r 1 <s <k.
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The fonctions <pk(x) = dk(\x\) belong to the domain of f, they are independent of v

and they satisfy the relation

(A.4) t9k = v ■ j^e;(x).
\x\

Therefore (A.l) is easy to prove.

Appendix 2. The conservative Milne problem in the half-space. As we have seen,

the solution of the conservative Milne problem (77)-(79) plays a crucial role in the

construction of the boundary layer corrector. And it is the only rigourous way to

introduce the extrapolation length. This problem has been considered by many

authors in several explicit cases (cf. Chandrasekhar [5]). However, the general case

has only been treated by Bensoussan, Lions and Papanicolaou [4]. Their method

relies on probability theory. This turns out to be very close to intuition and provides

efficient tools for the proof. On the other hand, these proofs are rather long and

seem to have no relation with the classical spectral theory. Therefore in this

appendix we show that the problem (77)-(79) can be handled by classical analysis.

Starting from (77)-(79) and noticing that x and v(x) are parameters, we introduce

the variables v„, v defined by

(A.5) v„ = v • v(x),   v = v -(v • v(x))v(x)

and changing tj in -Tj/a we consider the following problem in R+x V:

(A.6) v„y +(I-K)u = 0   inR+X F,

(A.7) u(0,v) = g(v)    forzjG F+= {zj|zjn>0}.

The spectra of the transport operator Tu = -vn(du/d-r\) - u + Ku with absorbing

boundary condition is contained in the half-space Rez < 0 (in any LP(R+X V)

space 1 < p < oo ). Therefore for any e > 0 there exists a unique solution of the

problem

(A.8) v„-^ + uc - Ku£ + eue = h;       (h g Lp(R+X V)),

(A.9) ue(0,v) = 0   for zj g V+.

By a superposition argument one can deduce that for any e > 0 and any g g Lp(V+)

there exists a unique solution of

(A.10) u„y- + wE - Kue + Eue = 0   in R+X F,

(A.ll) wE(0, v) = g(v)    forzjGF+.

On the other hand, Theorem A.l applies to the present case and this implies that 0

belongs to the spectra of T in any Lp(R+x V) space (1 < p < oo). Therefore, in

general there is no function u g Lp(R+X V) which satisfies (A.6) and (A.7). This is

related to the following fact which will appear below. A bounded solution of (A.6),

(A.7), in general, does not go to zero for tj going to infinity, but to a nonzero

constant H(g), as it will be proved below. Therefore we will proceed as follows:
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first, we prove the existence of a bounded soltuion of (A.6), (A.7) and show that this

solution is positive when g is positive. Second, we describe the asymptotic behaviour

for x -» oo of any bounded solution of (A.6), (A.7). Finally, we show the uniqueness

of the bounded solution and therefore we define a linear continuous map H:

LX(V+) -» R by the formula

H(g) =   lim u(x, v).
x—> 00

Theorem A.2. For any g g L°°(V+) there exists at least one bounded solution of the

problem

(A.6) v„-z-h u — I f(v, v')u(t],v) dv' = u   inR+X V,
OT) J y

(A.7) u(0,v) = g(v),       zjgF+.

This solution satisfies the maximum principle

(A.12) |«(*,o)l <   sup |g(iz)|
vev+

and is nonnegative whenever g is positive.

Proof. We know that the problem (A.10), (A.ll) has a unique solution «E, and

that this solution is nonnegative when g is nonnegative. For this solution uF, one can

apply the maximum principle and prove the estimate

(A.13) \ue(x, u)| <   sup \g(v)\,       (x, zj)gR+xF.
cel/+

Since (A.13) is uniform with respect to £, one can extract from the family wE a

subfamily u¿ which converges in L°°(R+X V) weak* to a function u. By a classical

limiting argument and using some trace theorems (cf. Bardos [2]), one concludes that

this function satisfies both (A.6) and (A.7).

For the next step (the asymptotic behaviour of any bounded solution) it will be

convenient to have at our disposal the following

Lemma A.l. Let u g L°°(R+ X V) be a solution of the equation

(A.14) v„y +(I-K)u = 0   inR+XV.

Then du/d-q is also a solution of the equation (A.14), which is uniformly bounded in

L°°(]2, oo[ X V).1

Proof. In the domain ]0,6[ X V = X X V we consider the transport operator

Tu = vn V u —(I — K)u

with the boundary conditions

(A.15) w(0, v) = 0   for v„ > 0,   w(6, v) = 0   for v„ < 0;

zero does not belong to the spectra of this operator in any Lp(Xx V) space,

including L°°( X x V).

7 Instead of 2 one can choose any strictly positive number.
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Now let u g L°°(R+X F) be the solution of (A.10), (A.ll) and let

!<p be a smooth positive fonction of tj which satisfies the relation:

<p(t/) = 0   forO < tj < 1 andTj < 5,

(p(tj) = 1    for2<Tj<4.

Then the function h(i\, v) = d(tp(t])u)/dt] is zero on 3X it coincides with 3h/3tj for

2 < rj < 4 and it satisfies the equation

(A.17)

1 3tj \ 3tj

d_
3tj

_3_
9t¡

^(<p(*j)»)+e-*)M^)")

^^(""f^ +(/-^)m)+W(tï)w

3«
= (P'MVn^   + Vn<P"

=-<p'(j¡)(l - K)u + u„<p"(t))u.

Therefore /z(tj, v) is the solution of the transport equation

(A.18)
3/z

v„Y]+(l-K)h = L(V,v)

with the boundary condition (A.16); by the maximum principle we have

(A.19) \h(r),v)\L*IXxy)^ C0\L(r],v)\L«:(XxV)4! C0Cx\u\l°>(Xxv).

This proves the estimate

(A.20) sup   -^-(tj, z;) < C0C1|zz|l»(a-xi').
2«7)«4 d1i

Finally, one observes that the method of the proof and, therefore, the constants C0

and Cx are translation invariant and this completes the proof of Lemma A.l.

For any function u(x, v) we introduce the density function qu = fyu(x, v) dv and

the natural decomposition

(A.21) u(x, v) = qu(x) + wu(x, v)   with / wu( X, v) dv = 0.
Jy

Then we have

Theorem A.3. Let u g L°°(R+ X V) be a solution of the conservative Milne problem

(A.22) v„y +(I - K)u = 0   inR+XV;

let

qu=  ( u(r],v)dv   and   wu(r¡, v) = u(r¡, v) - qu(r])
J V
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denote the natural decomposition of u. Then there exist a strictly positive number a such

that the estimate

(A.23) (/J^t,,,)!2^)
1/2    '3<?

8,<*>
< CÇ-

is true, where the constant C depends on u (but not on tj). Futhermore, for any

iígL°°(R+x V), which is a solution of the conservative Milne problem, q„(i\)

converges exponentially to a constant H(u), i.e. we have the estimate

(A.24) \qu(ri) - H(u)\ ^ Cue-\

Proof. In the proof we omit the index u for qu and wu. Kisa compact selfadjoint

positive operator with spectra in the interval [0,1] and 1 is a simple eigenvalue.

Therefore, there exists a constant a0 > 0, such that for any w g Ker(7 - K)± (that

is to say, (w, 1) = 0), we have

(A.25) ((7- K)w,w) >a0||w||2.8

Multiplying (A.22) by u, we obtain, after integration over [0, x X V], the relation

(A.26) a0fX\\w(r,)\\2 dV +{vn,u2(x)) ^ {v„,u2(0)).
JQ

Then the function tj -* |w(tj)|| is in L2(0, + oo) and therefore there exists a sequence

T)p converging to oo such that

(A.27) lim ||w(t,)||2 = 0
/7->00

and thus

(A.28) hm(vn,w(r,p)) = 0.
p—>oo

On the other hand, if we integrate (A.22) over F, we obtain

0 = ¿j\(? + WM) «» + j(u - KU) dv = y¡(v„, w(tj)).

Then (vn, w(tj)) does not depend on tj, and due to (A.28) we have, for any tj > 0,

(A.29) (vn,w(v)) = 0.

Therefore we obtain

(A.30) {vn,u2) = {v„,w2) + 2(vn,w) = (vn,w2).

But multiplying (A.22) by u and integrating over [x, y]X F we obtain

(A.31) (vn,w(y))2-(vn,w(x))2 = -f\(I-K)u, u) dV < 0.

Thus the function tj -* (vn, vv(tj)2) is decreasing; but due to (A.27) we see that

(vn, w(tj)2) goes to zero with tj going to infinity. Therefore, for any positive x we

have

(A.32) {vn,u2(x)) = {vn,w2(x))>0.

*(■,•) denotes the scalar product in L2(V) and || || the norm in L2(V).
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Finally, we multiply (A.22) by ue2^ and using (A.25) we obtain, after integration

over V,

(A.33)        0> ^[K,"2(T,))e2'Í +«oHi?) ||V<"'-a(t;n,zz2(T,))e2'">

> \^\{^u2(^))e2^\ +(a0-«1a)HT?)t|>".

We integrate (A.33) over the inverval [0, x] and using the relation (A.32) we have the

estimate

(A.34)    e2ajr/"i7„|w(jc, ü)|2ífo +(a0 - axa) f f e2ar>\w(r,, v)\2 dv di\ < C„.
J V Jft   J V

We conclude that with a < a0/ax we have

(A.35)

and

(A.36)

0<(zvw(x)2)<Cue-
lax

(V«1Mt,)||2ízt,<Cu.
•Zn

Now we use Lemma A.l. The function 3zz/3tj belongs to L°°(]2, oo[ X V) and is a

solution of the equation

9 / du\     , ,      rj..(du\
(A.37)

Therefore we introduce the decomposition

(A.38)
3zz       dq       dw ,

3tj       dr¡       3tj

The estimates described above for w apply with no modification to 3w/3tj and since

3m/3tj is bounded in L°°(]2, oo[ X V) by ||«||zx(R xK) we obtain the estimate

ii 2

(A.39)
/ou

9tjM di¡ < Cu.

From (A.39) and (A.36) we deduce by an elementary interpolation (by use of the

Cauchy-Schwarz inequality) the relation

(A.40) \\w(r,)\\ < Cue-«\

Now we multiply (A.22) by v and we integrate over V+= {v g V\vn > 0}; we

obtain

(A-41) (l «Hfï+ IL "M*»)*- /„ (K-nHv,v)v■y+ / 3tj dt]Jy+ .7K+

But we have, by the Cauchy-Schwarz inequality,

dv.

/   v2w(r],v)dv  ^C0f   w(tj,zj)  dv < C1I|w(tj)|| ,

f   (K - I)w(t],v)v dv < QlM*?)!! •
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Then, due to (A.40) the relation (A.41) yields the estimate

dq\
(A.42) < DU(CX + C2)e~

3tj

With (A.40) and (A.42) we have proved the relation (A.23). Finally, we deduce from

(A.42) that <?(tj) converges, for rj going to infinity, to a constant 77(tz) and that the

estimate (A.24) is valid.

Now we can show the uniqueness of the solution of the Milne problem.

Theorem A.4. Let u,(x, v) g L°°(R+x V) (i = 1,2) be two solutions of the con-

servative Milne problem

(A.43) vn^+(I-K)u, = 0   z«R + XF

77zezz ifux(0, v) and u2(0, v) coincide for vn > 0, they coincide everywhere.

Proof.9 We already know that ux and u2 converge exponentially to some constant

cx and c2 for x tending to infinity. Now we introduce the function

w = (ux- cx) -(u2-c2);

w converges to zero exponentially when x goes to infinity and for x = 0 we have

w(0, v) = c2 - cx = 8   for vn > 0.

Furthermore, w(x, v) is a solution of the transport equation

(A.44) ü„y¡+(I-K)w = 0.

Multiplication of (A.44) by w and integration over R+ X F gives the relation

(A.45)       r ( ((I - K)w- w)dvdr] =  ( v„(w(0,v))2 dv + 8 (  v„dv.
J0       Jy Jy Jy^

Therefore we have

(A.46)
I \!/2/ 2       \l/2

Sf   v„dv=f   -vnw(0,v)dv^U    -v„dv\     if   -vn\w(0,v)\  dv\

by the Cauchy-Schwarz relation10 since we have, by symmetry,

(A.47) ( v„dv= f   - v„dv = y.
J y_ J y_

We deduce from (A.38) the relation

(A.48) 82f  v„dv^[   -v„(w(0,v))2dv.

From (A.48) we deduce that the right-hand side of (A.45) is nonpositive. This

implies that we have ((7 - K)w, w) = 0. Therefore w( , v) is independent of v and

9The proof has been suggested to us by J. L. Lions.

10V±= {;. e K|í7„ ̂  0}; -v„ is positive on V_.
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(7 - K)w = 0. This implies that dw(r¡)/dr¡ = 0 and w itself is identically equal to

zero. This completes the proof of Theorem A.4.

With Theorems A.2, A.3 and A.4 we have proved that for any g g Lx(V_) there

exists a unique function iz g L°°(R+ x V) which is the solution of the problem

vn^r +(I- K)u = 0   inR+X V,(A.49) "3tj

w(0, v) = g(v)    forzj g V.

This function converges exponentially fast to a constant Hg for tj going to -oo.

Furthermore, if g is a nonnegative function, u and Hg are also nonnegative. Now if

we change rj into -tj, R+X F into R_x F, and V+ into V_, we obtain statements (i),

(ii), (iii) and (iv) of Theorem 4. The proof of statement (v) is given in the following

Proposition A.l. Let vn be the component of v g V in the direction tj z'zj the space

R_X V, let Dn(v) be the solution of the equations

(A.50) (l-K)D„(v) = vn,     ÍDn(v)dv = 0,
Jy

and let u(r\, v) be the solution of the conservative Milne problem

v„^-+(I - K)u = 0   inR X V,
(A.51) 9ti

u(0,u)\v+ = D„(v)\v+.

Then the number H(Dn) = lim^^^ m(tj, v) = -L is negative.

Proof. If we multiply the first equation of (A.43) by Dn(v) and integrate over

R.X F, we obtain

-(v„L, Dn)+(vnu(0, v), Dn) +f° ((I - K)Dn(v), u(r,)) dr,

(A.52) "°°
= /    {vn,qu(f\))dT\ = f    (v„,wu(7}))di1 = 0

•'-oo •'-oo

(cf. (A.28)). From (A.52) and from the relation

(vnDn(v)dv = e0>0
Jy

(cf. (45)) we deduce the formula

(A.53) L = -y(vnu(0,v),Dn(v)).

Now we have

(A.54)    (vnu(0,v),Dn(v))=  ( vn(D„(v))2 dv + f  vnDn(v)u(0, v) dv
Jy_ Jy+

= /   -k\(D„(v)f dv +  f  vnDn(v)u(0,v)dv.
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With the symmetries of F, v„ and D„(v), and with the Cauchy-Schwarz inequality we

obtain

(A.55)

(vnu(0>v),Dn(v))

I \1/2I \1/2

< -fy\u„\(Dn(v)fdv+^ vn(Dn(v)fdvj       /^ vn(u(0,v)2dvj

,1/2/ / \l/2\

¡v v„(Dn(v))2 do]    Uvn(Dn(v))2dv+^ vn(u(0,v)fdv

I \l/2, n1/2

<Uo,(Dn(o))2doj     []vV„H0,v)\ dv}     .

Finally we multiply the first equation of (A.51) by w(tj) and obtain

(A.56) ±(v, («(t,))2) = -((7 - *)«(„), «(h)) < 0.

We know that (í;,(w(tj))2) goes to zero when tj goes to -oo. Therefore we deduce

from (A.56) that the last term of (A.55) is negative, and the proof of Proposition A.l

is complete.

Remark A.l. The results of Appendix 2 apply also with minor changes to the

Milne problem

(A.57)      v„y + o(tj)(k- If(t],v,v')u(x,v')dv\ = 0   inR_XF,

(A.58) ii(0,i;) = g(i7)    for v G F+

with the hypothesis 0 < ae < a(îj) < au < oo; 0 < -n, < /(tj, v, v') < itu < oo,

/(tj, v, v') = /(tj, v', v); }yf(fi, v, v') dv' = 1, where ae, au, m, and iru are constant.

First, one can suppress the term a (tj) by the change of variable defined according

to the formula

(A.59) , = fJ* (s)'

Second, one can see that the proof of Theorems A.2 and A.4 can be done with no

modification. The same remarks apply to the proof of Theorem A.3 up to the

estimate (A.40). The only thing which has to be improved, with some convenient

hypothesis on the dependence of /(tj, v, v') with respect to tj, is Lemma A.l and this

is left to the reader.

Remark A.2. It is also possible to generalize some of the results of Appendix 2 to

a conservative Milne problem in more than one space variable. Namely, we denote
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by X the exterior of a bounded obstacle with smooth boundary dX and we consider

the Milne conservative problem

(A.60)     v ■ Vu + a(x)\u -  f f(x,v,v')u(x,v') du'   = 0   in I X F,

(A.61) u(x,v) = g(x,v)    for(jc,iz)e (3* X V).

with a and / satisfying the usual hypothesis and g belonging to L°°(dX x V). It is

easy to follow the proof of Theorem A.2 and to obtain the existence of a bounded

solution. On the other hand, if one assumes that we have

(A.62) lim   /        dor,[v- -w(x, v) dv = 0
} r-ooVi=«   RK    \X\

(with the usual definition of w) for any bounded solution, then one can also adapt

the proof of Theorem A.4 and obtain the uniqueness of the solution in the class of

bounded functions. However, we have not been able to prove (A.62) for any

bounded solution in more than one space variable, due to the appearance of a factor

proportional to the surface of the ball of radius R in R"; therefore, we are not able to

prove the analoguous version of Theorem A.3 in more than one space variable and

the uniqueness of the bounded solution without supplementary hypotheses on the

asymptotic behaviour of this solution. On the other hand, we ignore if the Milne

conservative problem in more than one space variable has any physical significance

or any application.
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