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CHARACTERISTIC, MAXIMUM MODULUS

AND VALUE DISTRIBUTION

BY

W. K. HAYMAN AND J. F. ROSSI1

Abstract. Let/be an entire function such that log M(r, f) - T(r, f) on a set E of

positive upper density. Then / has no finite deficient values. In fact, if we assume

that E has density one and / has nonzero order, then the roots of all equations

f(z) = a are equidistributed in angles. In view of a recent result of Murai [6] the

conclusions hold in particular for entire functions with Fejér gaps.

1. Introduction. In a recent paper Murai [6] proved among other things that if

f(z) = Eu° anzx" is an entire function with Fejér gaps, i.e.

(1.1) IX1 < oo,

then/(z) can have no deficient values. In the course of his proof Murai showed that

for such a function

(1.2) T(r,f) ~ logM(r,f)

as r -» oo outside a set of finite logarithmic measure, where T(r, f) is the Nevan-

linna characteristic and M(r, f) the maximum modulus of/. In this paper we show

that the condition (1.2) suffices in order that a transcendental entire function should

have no deficient values and, subject to certain growth conditions, that the roots of

all equations/(z) = a are equidistributed in angles. It is clear that some additional

growth condition is necessary for this. In fact if f(z) is an entire function of genus

zero, «(r) is the counting function of its zeros and

S(r).f!^-,

then [4, (4.11), p. 133]

(1.3) n(r) = o{N(r)}

implies (1.2), but (1.3) is unaffected by the arguments of the zeros. We shall see that

a weaker gap condition than (1.1), namely Fabry gaps

(1.4) A,,/«-oo,

is sufficient or alternatively a growth condition, namely that/(z) has positive order

and satisfies (1.2) on a set of density one.
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2. Statement of results. We take for granted the usual notation of Nevanlinna

theory. Let f(z) be a transcendental entire function of order A and lower order ju,

where 0 < u =$ À ̂  oo.

Theorem 1. Suppose thatf(z) is an entire function such that

(2.1) lim,   T{r)f\, = 1
V     ' logM(r,/)

as r -* oo on a set E of positive upper density o. Then there exists a set F of density

zero, such that for every complex a we have

(2.2) N(r,a,f)~T(r,f)

as r -> oo in E\F. In particular, 8(a, f) = 0 for every a.

We write n(r,6l,62, a) for the number of roots of the equation f(z) = a in the

sector

S(r,6l,02):0 < \z\ < r,       6x<argz<62,

and

n(t,ei,62,a)dt
(2.3) N{r,61,02,a)= f

Our next result is

Theorem 2. If\ > 0 and f(z) satisfies (2.1) as r -* oo on a set Ex of density one,

then there exists a set E2 of upper density one such that

N(r,6l,62,a)~e^J^T(r,f)

as r -> oo on E2 for every complex a and every pair 6V, 62 such that 6X < 02 < 8X + 2m.

Our results have a natural extension to subharmonic functions when we consider

the Riesz mass on set G of a subharmonic function u(z) to be the analogue of the

number of zeros on G of the function/(z) - a. We can then apply the subharmonic

result to u(z) = log|/(z) - a\, provided that the set G is chosen independent of a.

3. A growth result for real functions. In order to obtain Theorems 1 and 2 we prove

an extension of a growth lemma of Edrei and Fuchs [1] to entire functions of

arbitrary growth. Such an extension is possible if we work with the maximum

modulus instead of the characteristic. However, in order to do this we need a

sharpened version of an inequality for real functions of Hayman and Stewart [5], We

assume in this section that f(x) is a real function such that for sufficiently large

positive x, f{"~l)(x) is convex. Thus for large x, f(n)(x) exists and is increasing

outside a countable set. If, in addition, f(n)(x) > 0 for large x, we say that

f(x)^B(n) and define

ft   \      ■ * f{x + h)
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It was proved in [5] that for/(x) e B(n) we have, given K > 1,

(3.1) f,(x) < (eK/n)"r\x)

on a set £ of positive lower density. In this paper we need to prove that the lower

density is close to one if K is large. More precisely we have

Theorem 3. If E is the set of all x for which (3.1) is true when f(x) e B(n), then if

8(E) denotes the lower density of E, we have 8(E) ^ (K — \)/(K - 1 + n).

We follow the argument of [5] and define

ß{*)=   sup    LM        .
O^v^n-1 l/(   '(-*) I

We need

Lemma 1. // f(x) e B(n) and f, f',...,f{n) are all positive for x > x0, then

x - ß(x) is increasing for x > x0.

In [5, Lemma 3] it was shown that

(3.2) ß{x + 8ß(x)} ^esß(x).

Suppose that there exist xx and x2, such that x0 < x, < x2 and x2 - ß(x2) < x1 -

ß(xx). Then there exists C > 1 such that Cx2 - ß(x2) = Oc, - ß(xx). We write for

a large positive integer N

h = (x2- xx)/N,   Zj = xx+jh,      j = 0,...,N,

and deduce that for at least one/, 0 ^ j < N - 1, we have

Cij+i-ß{iJ+1)*Cij-ß(ij),

i.e.

ß{tj + h)> ß{tj) + Ch = ß(£j){i + Ch/ßiej)}.

Writing h = 8ß(i;/) we obtain

ß{tj + h) > ß{tj)(l + C8) > e8ß(ej)

if 8 is sufficiently small, i.e. N sufficiently large, since C > 1. This contradicts (3.2)

and proves Lemma 1. We deduce

Lemma 2. Suppose that 0 < 6 < 1 and C > 0. Then for x on a set of lower density at

least (1 - 6)/(\ - 6 + 8C)we have

(3.3) ß{x + h)>6ß(x)   forO < A < COß(x).

We note that ß(x) is continuous except on the countable set of jump increases of

f(n)(x), where ß(x) has a jump decrease. At these points we define ß(x) = ß(x + 0),

so that ß(x) is continuous to the right. We suppose x0 = x'0 to be as in Lemma 1,

and if x'j_x has already been defined, we define x¡ to be the lower bound and so the

least value of x > x'_, such that

ß(x + h) < 0ß(x)    for some h < C6ß(x).
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We then choose the least such h and set x'¡ = x¡ + h. Let E be the set of all x in the

union of the intervals (xj, xJ+x). Then it is evident that (3.3) holds in E. It remains

to estimate the lower density of E.

Suppose then that X > x0, and assume first that X = x' for some p > 0. Since

x — ß(x) is nondecreasing we note that

E {x; -Xj-ß(x'j) + ß(Xj)} <x-x0-ß(x) + ß(x0) <x+ 0(1).
7 = 0

Again by our construction

ß(Xj) - ß(Xj) >(1- d)ß(Xj) > ^^^(x; - Xj).

Thus

ec(3-4) ^^T-)í{xj-Xj)<X+0{l).
7 = 0

Soif E(X) = E n [x0, X] and \E(X)\ denotes the length of E(X) we see that

(w)  ^>4-at"-i)h0(1)-^ÄI+fl("'
Next if jc < A' < x', Zis smaller while |£( A")| is the same, so that (3.5) is still valid.

Again if x' < X < x +1, X is larger, so that (3.4) and (3.5) are still valid. Thus (3.5)

holds in all cases and Lemma 2 is proved.

Lemma 3. Suppose that for some numbers x = x0, 6 and C we have (3.3). Then

(3.6) /{x0 + C6ß(x0)} < {/3(x0)} V/<">(x0).

We write

ß = 6ß(x0),   a = (ß/6)"f^(x0),   <p(x) = aexp{(x-x0)//3},

and suppose that (3.6) is false. From this we shall obtain a contradiction to (3.3).

We define

x2 = inf(x, x0 < x and for some v, 0 < v < n,f("x(x) > <p{v)(x)).

Since (3.6) is false we have

<p(*0 + Cß) = aec = (ß/0)"ecfM(xo) </(x0 + Cß).

Again for v = 0,..., n we have

<p<*>(x0) = a/ß° = 0-T-'fWM > ß(xoy-vfW(x0)>fW(x0).

Thus x2 exists and x0 < x2 < x0 + Cß.

Suppose now that for some v < n we have

(3.7) 9<">(x2)</<-"(x2).

Then we have by the definition of x2

(3.8) ^)(x)>f{-)(x),       0<x<x2.
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Hence we deduce that

d <pM{x)
<0

dxfW(x)

at x = x2, where differentiation denotes the left derivative. Thus

,   ;/(,)(x2)  J^l){x2)

so that (3.7) holds with v + 1 instead of v. Thus finally (3.7) must hold with v = n

for the left derivative and so also the right derivative, while by the definition of x2

we have (3.8) for v < n and x < x2 and by continuity also for x = x2. Thus

so that ß(x2) < ß = Oß(x0). This contradicts (3.3) and so Lemma 3 is proved.

We can now complete the proof of Theorem 3. We set h - C0ß(xo) and deduce

from (3.6) that if (3.3) holds with x = x0 then

f(x   ) < /(*0 + h)   < _£l_ f(n)(x   )
Jn\x0) ^ n„ ^  (CO)

By Lemma 2 we deduce that, this inequality holds in a set of lower density at least

8 = (1 - 0)/(l - 0 + 0C). Setting C = n, 0 = A'"1 we deduce Theorem 3.

4. Proof of Theorem 1. In this section we suppose that u(z) is subharmonic and

not constant in the plane and that u(0) = 0. We write

(4.1) B(r) = supw(z),
\z\-r

(4.2) b(r)=f(r-t)B(t)dt,   b2{r) = inf ̂ 7^,
•'0 A>0       h1

so that b"(r) = B(r). We also write n(z, h) for the Riesz mass of u in the disk

|f — z| < A and set

(4.3) /V(z,A)=r^^,
J0 t

(4.4) w(z, A) = u(z) + yV(z, A) = ^- f2,rM(z + Ae'e) dO.
¿irJ0

Suppose that f(z) is a transcendental entire function and that a is a complex

constant. Then we have

(4.5) f(z)-a = cxzx+ ■■■

and will apply our results to

(4.6) «fl(*) = log log|/B(z)|

We denote by Ax, A2, A3,... positive absolute constants. We need
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Lemma 4. //O < |z| = r < R and h = AX(R - r), 0 < A < 1, we have

(4.7) u[z ,\h)>--^-b{R)

and

(4.8) n(z,h)<      Al    MR).
(R-r)

Further ifO<d<jhwe have

(4-9)        "('•§*)« ^Mf)*«
for |f - z| < \h except possibly when f lies in a set of disks, the sum of whose radii is

at most d.

The conclusions (4.7)-(4.9) are (14.1)-(14.3) of [2, p. 494], The quantity b(r) of

the present paper is the B2(r) of [2].

We now prove

Theorem 4. With the above notation there exists an absolute constant A5, such that

if K > 0, we have

(4.10) u(re,e) > -Kb2(r)

for 0 < 8 < 277, outside a set e(r, K) of 6 whose measure is at most 47rexp(-A5K).

We start by finding R, such that r < R < 2r and

(4.11) b(R)/(R-r)2^4b2(r).

If R > 2r, we deduce from the fact that B(r) increases with r that so does

R-2b(R) = [\l - t)B(Rt)dt.

Hence for R > 2r

_KR)_> b(Rl > H2r±      1     b(2r)

(R-r)2 R2 (2r)2       4 (2r - r)2 '

Thus

.  ,     b(R) 1     b(2r)
inf-—— > -7-

K^{R-r)2       4(2r-rf

and so

b-Ar)^- T   mm-.
4r<R^2rtR-rf

Thus R exists satisfying (4.11). Having chosen R to satisfy (4.11) we define A as in

Lemma 4 and apply that lemma. We define p to be the smallest integer such that

p ^ 2 and

2sin(ff/2/7) = \exp(iri/p) - 1| < \h/r.
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Then if zv = rexp(2miv/p), the disks C„: \z — zr\ < \h, v = 1,... ,p, cover |z| = r.

Also

2-n/p >Tt/(p -l)> 2sin(V2(/' - 1)) > |/¡A>

so that/; ^ 4-nr/h.

Again for d < Uwe have (4.9) in C„ outside a set £„ of disks the sum of whose

radii is at most d. Since d < \h < \r each exceptional disk |z - z\ < </• < d meets

z = re'9 in an arc of diameter at most 2d¡ and so length at most mdj. Thus the total

length of those arcs on C„ n (|z| = r), which lie in the exceptional disks is at most

md. Thus (4.9) holds on |f | = r, outside a set of arcs of total length at most irpd, i.e.

(4.9) holds for f = re'e, 0 < 6 < 277, except for a set e(r) of 0 having measure

(4.12) \e(r)\ < 77/>d/r < (md/r)(4mr/h) = 4ir2d/h.

Further, for 0 outside e(r) we have from (4.4), (4.7) and (4.9)

(4.13) u(re'e) = «(re?'*, ̂ A) - N{re'e, \h)

-b{R)   ( ,        ,  ,     16A\        ,,,/,,        . , ,     16A\
> ö^( 2   4 g^)> 2(rH4^ + 4^l0g^-)

by (4.11). Suppose now that K > 4A2 + 4/l4log32. Then we define d < \h by

K = 4A2 + 4AAlog(l6h/d) and deduce from (4.12) and (4.13) that (4.10) holds

outside a set 6 of measure

\e(r, K)\ < 4m2d/h = 64m2exp(A2/A4 - K/4A4) < exp(-A7%44)

if K > /16. This proves Theorem 4 for # > /46. Also, if # < /46, (4.10) is trivial if

exp(A5A6) < 2. Thus Theorem 4 holds in all cases with A5 = inf(l/8^4,(log2)/A(>).

We deduce the following consequence from Theorem 4, which may be considered

as an analogue of the Edrei-Fuchs small arcs lemma [1, p. 322].

Theorem 5. If E is a set of measure 8 < 2m on the interval [0,277] then we have

4t7'
Ju(re'e) dd > -A.b^Slog^

We denote by e(K) the set of 0 such that u(reiB) < -Kb2(r) and by m(K) the

measure of e(K). Then Theorem 4 gives

f     u(rew) dd = b2(r) /"*'/dm(t) = -b2(r)ÍKm(K) + Cm(t) dt)
Je(K) JK \ JK

> -4mb2(r)ÍKexr)(-AiK)+ f   exp(-A5t)dt
'K

> -A9b2(r)exp(-A%K).

Given E as in Theorem 5 we choose K > 0, and define Ex, E2 to be the subsets of

E, where« < -Kb2(r), u > -Kb2(r), respectively. Then

¡u(re'e)d6= (   +  (   >  (     u(re'e) dO + f u(re'e) d6
hi JEi        JE2       Je(K) JE2

> -b2(r){A9exp(-AHK) + K8).
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We choose K so that A9exp(-AsK) = 8, i.e. K = (A9) 'log(^9/ô), and deduce that

fu(rei9) dd > -62(r)ö(l + ¿log 4*}

which gives Theorem 5.

We can now complete the proof of Theorem 1. Suppose that we have on the set E

of values of r

(4.14) T(r,f)> {l-e(r)2)logM(r,f),

where

(4.15) e(r)->0,   bute(r)2logM(/-)/logr -* oo

as /• -» oo. We define u(z) = log |/(z)|.

Let F be the set of all r, such that

(4.16) b2(r) > -^B(r) = -^—b"(r),   where B(r) = log M(r,f).
e(r) e(r)

Then given K > 1, we have for all large r in F

e2K2
b2{r)>e-^-b"(r),

so that F has upper density at most 2/(K + 1) by Theorem 3. Since K is arbitrary, F

has density zero.

Suppose now that a is any complex number and replace u(z) by the function

ua(z) defined by (4.6). Then

«,(*)-log |/(z)-a| + 0(log |*D

so that for |z| = r

<(z) = max(Wa(z),0) = {log+|/(z)| + O(logr)}.

Thus, since/(z) is transcendental we have B(r, ua(z)) = B(r) + O(logr) as r -» oo,

and similarly T(r, fa(z))= T(r, f) + 0(log r). Hence, also we have as r -» oo

b(r,ua)~ b(r),       b2(r,ua) - b2(r).

We deduce from (4.16) that for any complex a we have for r e E\Fand r > r0(a)

(4.17) b2(r,ua)<-^B(r,ua),

and from (4.14) and (4.15) that

(4.18) • T(r,fa)>{l-2e(r)2}B(r,ua).

Suppose now that for such a value of r, e(r, a) is the set of all 0 for which ua < 0

and let e'(r, a) be the complementary set of 0. Then

2irT(r,fa)= ¡2*K{reie) d6 = / + f < (2tt - \e(r, a)\)B(r, ua),
Jq j.,     v
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where |e| denotes the measure of e. Thus

so that by (4.18), \e(r, a)\ < 47re(A")2. Thus Theorem 5 and (4.17) yield for large r in

E\F

,(r,a) + 0(logr)= -± (       ua(re'e)
Z7r Je(r,a)

4m
< A7b2(r, ua)\e(r, a)\log

= o|5(r,«Je(r)log^yJ = o{T(r,f)},

and this proves Theorem 1, for E\F has positive upper density and so is un-

bounded.

5. Another growth lemma. In order to prove Theorem 2 we need

Lemma 5. Suppose that B(r) is a positive increasing function of positive order, that

b(r) and b2(r) are defined by (4.2) and that <p(r) is a positive function of r, such that

(5.1) <p(r) = 0{b2(r)}    asr^oo

and for some function e(r), which decreases to zero as r -* oo, we have

(5.2) <p(r) = 0{e(r)b2(r)}    asr ^ oo

on a set Ex of density one. Then there exists a set E2 of upper density one, depending

only on £, and the function e(r), such that

r\ dt
(5.3) ¡\(t)log[^=o{B(r)} as r -» oo

in E2.

We note that b(r) and b2(r) also increase with r, and have positive order. In fact,

the increasing property is obvious from (4.2) and

h~2b(r + A) > h-2f+h(r + h - t)B(t)dt> \B(r)

so that b2(r) > \B(r) and b(2r) > r2B(r)/2 for all r. Thus if B(r) has positive

order X,b(r) has order at least X + 2 and b2(r) has order at least X. We now choose

H such that 0 < ju, < X and a sequence Rn, which tends to oo with n and is such that

(5.4) b2(r)^(r/RnYb2(Rn)    for 1 </•<*„.

Since b2(r)/r'i is continuous and unbounded we may for instance choose Rx = 1

if

and

and if R„_i has been defined let Rn be the smallest number such that R„ > 2R„_X

b2(Rn)/R:>       sup      b(r)/r\
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We proceed to show that if Kn tends to oo sufficiently slowly with n and E2

consists of all those points r in the intervals [Rn, KnRn] for which

(5.5) b2(r) < K?/2B(r),

then the set E2 has the required property.

We note first that E2 has upper density one. In fact, it follows from Theorem 3

that given K > 1 we have

(5.6) b2(r) < (eK/2)2B(r)

for a set of r in [0, K„Rn] having measure at least (K - l)K„R„/(K + 1) + 0(1)

when Rn is large and so in a set in [Rn, KnRn] having measure at least

^\-J-}k„r„ + o{i).

Thus, since (5.6) implies (5.5) for large n, we see that E2 has upper density at least

(K - l)/(K + 1), and since K can be as large as we please E2 has upper density

one.

We next choose the quantities A',,. Let E[ be the complement of Ex, let E[[r] be

the intersection of E[ with the interval [0, r], and let l-ÉWll be the measure of E[[r].

Then we assume that Kn tends to infinity so slowly that

(5.7) K2 + * < r/\E[(r)\,       r > R„.

This is possible since E{ has density zero and R„ -» oo with n. We also assume that

(5.8) KZe(Rn/K„)<l,

which is possible since e(r) -* 0 as r -* oo. The set E2 defined as above is

independent of <p(r) and has upper density one. It remains to show that (5.3) holds

in E2.

Assume that r e E2, R„ < r < KnRn, and write

r dt
9(f) log

'i

where I0(r), Ix(r) and I[(r) are the integrals over the ranges [1, Rn/Kn], ex =

[R„/Kn, r] n £, and e\ = [R„/Kn, r] n E[, respectively. Then by (5.1), (5.4) and

(5.5) we have

'*»/*'»    ,.M r dt , ("A    (<\y        R»dt,,        »(Ok* 77^

R» dt

(5.9) I(r) = ¡\(t) log Í f = /0(r) + /,(r) + /;(r),

W) = J 9(0logyy<2j (p(f)log —y

= oj^ÍAj^Mog^J = oU2(r)^;"log¿-

= o{ß(r)^/2log^} = o{Ä(r)}.
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Again by (5.2), (5.5) and (5.8)

r dt
b2(t) log

\ "•» l"e¡

r dt

/'(r) = 0{£(è)/„M')l087 7

0{b2(r)e\^\(logKn)

= o{B(r)t[^y?/2(logKn)2} = o{B(r)}.

Finally, by (5.1), (5.5) and (5.7)

n(r) = »{/^(Ologyf} = oJMO^jlog^jU

= 0{B(r)K2^/2(logK„)rx\E[(r)\} = o{B(r)}.

Now (5.3) follows from (5.9) and Lemma 5 is proved.

6. Proof of Theorem 2. In order to prove Theorem 2 we need a formalism used

elsewhere. We suppose that f(z) is a transcendental entire function such that

/(0) = 1 and denote by n(r,6x,02) the number of zeros of f(z) in 0 < |z| < r,

ex < arg z < 02 each counted with due multiplicity. We also write

N(r,ox,e2)= fn{t,ex,e2)~.
Jo f

Next, if f(z) + 0 on the segment z = re'0, 0 < f < r, we define u(f, 0) to be the

continuous value of arg f(z) on this segment such that t;(0, 0) = 0, and we write,

v(r,e)=±-fv(t,e)^.
¿m Jq t

With this notation we have [3, Theorem 1]

Lemma 6. Iff(z) * 0 on the segments z = teiB, 0 < t < r, 0 = 6X or 02, fAe«

N(r,elte2) = j- (e\og\f(re">)\de + V(r,ex) - v(r,e2).
¿m Je¡

We need to transform the quanity V(r, 0) a little and note that

Thus, for a < ß ^ a + 2m we have

Ja ¿m JQ  s J0  t Ja

= ¿{ílogl/(íe'a)l_logl/(íe'/i)|}log77-
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We write

(6.1) M(t)=     sup   \f(te'e)\,   B(t) = logM{t)
O«S0=s27T

and

,      v        1   .        M(t)
<P(t,a)= TT-log

2vf    &|/(fe'a)|

Thus

'o
(6.2) fßV(r,e) de = f {<p(t,ß) - v(t,a)}log-t* .

Our aim is to show that the positive function <p(t,a) is on the average not too large.

We also define <pa(t, a) to be the function <p(t, a) defined as above w.r.t. the

functions fa(z) introduced in (4.6).

Lemma 7. //

9,(0= TZ f \(t,a)da,
¿m J0

then under the hypotheses of Theorem 2 there exists a set E2 of upper density one such

that we have

r dt
j\(Ology7=0{5(,-)}

as r —> oo in E2 for each complex a.

We define the set E2 as in Lemma 5, where B(r) is given by (6.1) (i.e. for the

function/0(z) = f(z)). Then B(r) has positive order by hypothesis, so that Lemma 5

is applicable. We deduce from Theorem 1 that under the hypotheses of Theorem 1,

we have for each complex a as r -* oo in E1

(6-3) ^ l2J\og+\fu(re">)\de = ±f2Aog + \f(re*°)\ + O(logr)

> B(r) - e(r)B(r) + 0(logr),

where e(r) -» 0 with r and e(r) is independent of a. Thus \fa(re'e)\ > 1 outside a set

of 0 of measure at most 0{e(r)}, provided that e(r) -> 0 so slowly that logr =

o{e(r)B(r)} as r -> oo. Now Theorem 5 shows that as r -> oo in Ex we have

(6.4) /    log
1

/.(«")
de = 0^{r)log-^b2(r)

= 0{Ex(r)b2(r)},

where ex(r) is independent of a. We note that if a =h 1, /a(z) = (f(z) - a)/(\ - a)

while/,(z) = (f(z) - l)/zx. Thus for any fixed a and large r we have

Ma(r)= sup\fa(z)\<CaMC),       |*| «r,
lil-r
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where the constant Ca depends only on a. Also (6.3) and (6.4) yield

¿.flog 77Tlkde = °{e(')*(0 + *i(r)b2(r) + logr)
277 ■'o \fa{re'")\

= 0{ex(r)b2(r)}

as r -» oo in £,. Thus, if 9a(f) is defined with/a(z) instead of f(z), we see that for

each complex a

*«M" 2tt7 "%{t>a)dt=0{e1(t)b2(t)}

as f -» oo in £j, while we have in any case

9,(0 = B{t) - ¿J^'logl/.i»")! ¿0 + 0(1) < 5(f) + 0(1) = 0{b2(t)}.

Thus <pfl(r) satisfies the hypotheses of Lemma 5 and we deduce that there exists a set

E2 of upper density one such that for each complex a we have

r dt
,  9al'Jlog
'l

This proves Lemma 7.

We now suppose that we are given e > 0 and 0,, 02, such that 0, < 02 < 01 + 277.

We also take a fixed complex a and assume that r -> oo on E2. Then there exist a, ß

such that e2< a < e2 + e/3, 02 + 2e/3 < ß < 02 + e and

r\ i/f       3 f,     r dt rh+zß

/r /• j/Va (0 k>g y 7 =o{5(f)}    asr^ooon£2

n      /"■   /      m    /f\«f       3 f.     r dt re2+e/3
0</i<Pa(r,«)log(7)T<7/ilog7T^      Vfl(,,tf)

<T<(log79a(0T,

r. I*'      /       n\i        f dt 677   /■r1 ,   . dt
0< J  <pa(r,0)logyy   <   — J   log(pa(r)y.

Using (6.2) and (6.5) we deduce that |/f K(/\ 0) ¿0| = o{ß(r)}. Hence there exists

<p2 = 92(/-) such that a < <p2 < ß and so 02 < <p2 < 02 + e and V(r, <p2) = o{B(r)).

Similarly, there exists <p,, such that ei - e < <pt < 0,, and K(r, <p,) = o{5(r)}.

Thus Lemma 6 shows that

N(r,ex,e2) < JVC-.Vi,^) < ^¿Ti{^(r) + °(0} + o{fi(r)}

02 - 0, + 2e + o(l)    .  ,

This gives

(M) ûsM^),^
B(r) 277.

Also, we may assume that E2 is disjoint from the set F of Theorem 1, since this does

not affect the density. Then as r -» 00 in E2

(6.7) 7V(r, 02, 0j + 2w) + N(r, 0,, 02) = /V(r) = (1 + o(l))5(r)
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by Theorem 1. We apply (6.6) with 02, 6X + 277 instead of 0,, 02 and obtain

-N(r,e2,ei + 2m)       2t7 + 0, - 02
nm-—7—- < ---.

B(r) 277

Now (6.7) gives

-      B(r) 2t7

Combining this with (6.6) we obtain

/V(r, <?!,#,) = 02-0t

™      B(r) 2t7

as r -» oo in E2, and this proves Theorem 2.

In conclusion we note that, by Theorem 2, (1.2) implies angular equidistribution

of all a-values unless/(z) has order zero. However, for functions of order zero it

follows from Theorem 3 of [3] that/(z) satisfies the conclusion of Theorem 2 if (1.4)

holds and a fortiori if (1.1) holds. Thus (1.1) always implies equidistribution of the

a-values.
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