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MINIMAL CYCLIC-4-CONNECTED GRAPHS

BY

NEIL ROBERTSON

Abstract. A theory of cyclic-connectivity is developed, matroid dual to the stan-

dard vertex-connectivity. The cyclic-4-connected graphs minimal under the elemen-

tary operations of single-edge deletion or contraction and removal of a trivalent

vertex are classified. These turn out to belong to three simple infinite families of

indecomposable graphs, or to be decomposable into constituent subgraphs which

themselves belong to three simple infinite families. This is modeled after W. T.

Tutte's theorem classifying the minimal 3-connected graphs under single-edge dele-

tion or contraction as forming the single infinite family of "wheels." Such theorems

serve two main purposes: (1) illustrating the structure of graphs in the class by

isolating a type of extremal graph, and (2) by providing a set-up so that induction on

|E(G)| can be carried out effectively within the class.

1. Introduction. A theory of graph connectivity is developed in Chapter 10 of [2],

along with a proof that nondegenerate 3-connected graphs, which are minimal with

respect to deletions or contractions of single edges, must be wheels with k > 3

spokes. This gives a method to apply induction on |£(G)| within the class of

3-connected graphs G. In this paper an analogous theory is established for cyclic-4-

connected graphs which are minimal with respect to deletions or contractions of

single edges or removal of single trivalent vertices. Cyclic-connectivity is defined and

its elementary properties derived in §3. It is formulated to be as much as possible the

matroid dual [3] of the well-known vertex-connectivity, given in [4].

The minimal graphs are shown to be indecomposable, or to decompose uniquely

into constituent subgraphs. There appear only three simple infinite families of

indecomposable graphs, and three simple infinite families of constituents. These

graphs resemble ladders and the planar duals to ladders and so this classification is

called the ladder theorem for cyclic-4-connected graphs. The decomposition theory is

similar to the more complete structure theorem in [1].

2. Terminology. For notation and theoretical background the reader is referred to

[2]. Some material is collected here to establish the viewpoint taken in this paper.

Given X ç V(G) define the edgeless subgraph [X] = MIN{// Q G: V(H) = X),

and the induced subgraph G[X] = MAX{/7 Q G:   V(H) = X). Similarly, when

Received by the editors September 18, 1983.

1980 Mathematics Subject Classification. Primary 05C99; Secondary 05C10, 05C35.

Key words and phrases. Graph connectivity, 4-connected graphs, structure.

'This material forms part of the author's (1969) doctoral dissertation written at the University of

Waterloo, where the research was supervised by Professor W. T. Tutte. The paper was prepared for

publication under the support of N.S.F. Grant GP 29399 XI.

©1984 American Mathematical Society

0002-9947/84 $1.00 + $.25 per page

665



666 NEIL ROBERTSON

S ç £(G) define the reduced subgraph G • S = MIN{# ç G: £(//) = 5), and the

spanning subgraph G: 5 = MAX{H ç G: E(H) = S). Let / ç G be a fixed

subgraph of G. Then any x e K(/ ) incident in G with some edge A e £(G) - E(J)

is a ferie* of attachment of / in G. The set of such vertices of attachment is denoted

W(G, J). Define the complement J = Um{K c G:JUK=G). Clearly, W(G, J)

= V(J n /). Following [2] we generalize the notion of component of G to that of

/-component of G, and obtain a decomposition of the complement /.

An inner J-component is a loop-graph or link-graph of G not in J whose

endvertices are in V(J). An outer J-component is the union of a component of

G[V(G) - V(J)] with all link-graphs of G joining a vertex of the component to a

vertex of /. The set Cj(G) of J-components in G is the union of its sets of inner and

outer /-components. If J is the null graph £2 then Cj(G) = C(G) is the set of

components of G. One easily sees that the /-components of G are subgraphs of /,

intersections of distinct /-components are contained in [^(G, /)], and the union of

all /-components is /.

A contraction K of G, written K < G, is a graph such that E(K) Q £(G),

V(K) ç C(G: (E(G) - E(K))), and each edge A e E(K) has endvertices m, n in

G and M, N in K, with we V(M) and ne F(W). For a fixed 5 ç £(G) define the

reduced contraction G X S = MIN {A- < G: £(A) = S), and the spanning contrac-

tion GctrS = MAX(A< G: E(K) = S}. These graphs differ only on the set

C(G) n C(G: (E(G) - E(K))) of isolated vertices in GctrS. Let C'(K) denote the

set of those components H' of G such that H < H' for some // e C(K). The

contractions J, K of G are partially ordered by the contraction relation / < K when

E(J)Q E(K) and C'(/) Ç C"(#)- Note that the first condition implies the second

except when / contains an isolated vertex of Gctr£(A') not present in K.

Let P(G) be the set of polygon subgraphs of G and Pk(G) be its subset of

polygons with k edges. Define a bond to be a connected loopless graph with exactly 2

vertices. Let 5(G) be the set of bond contractions of G and Bk(G) be its subset of

bonds with k edges (i.e. k-bonds). Define the polygon-girth of G by

yP(G) = MM{{k:Pk(G)* 0}u{o>})

and the bond-girth of G by

yB(G) = UW{{k:Bk(G)* 0}u{oo})

where oo is a symbol larger than any integer. We see that in connected graphs,

bond-girth is the same as edge-connectivity.

Let DB(G) be the set of maximal forest subgraphs of G, and DP(G) be the set of

maximal coforest contractions of G. A coforest is a graph whose edges are all loops.

The mapping F -> F', defined for F e DB(G) and F e DP(G) by E(F') = E(G) -

£(£), is a bijection. The edge sets of these maximal graphs have constant cardinal-

ity, called the bond-rank pB(G) = |F(G)| - |C(G)| in DB(G), and the polygon-rank

pP(G) = \E(G)\ - \V(G)\ + \C(G)\ in DP(G).
Graph connectivity is introduced in Chapter 10 of [2]. Take Q(G) = [H: ß ¥= H

c G and \W(G, H)\ < MIN{|£(//)|, |£(G) - E(H)\}} and Qk(G) = {H e Q(G):

\W(G, H)\ = k), for nonnegative integer k. Then G is k-separated when Qk(G) # 0,
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is k-connected when k is positive and Qj(G) = 0 for allj < k, and has connectivity

k(G) = MIN({Ar: Qk(G) # 0} U {oo}). It is readily seen that the following elemen-

tary remarks apply.

Remark 2.1. G is \-connected when connected.

Remark 2.2. G ¿s 2-connected when nonseparable.

Remark 2.3. k(H) = oo exactly for the seven graphs G with k(G) ^ 2 and

\E(G)\<3.
Remark 2.4. ///c(G) < oo then k(G) < MIN{yB(G), yP(G)}.

3. Cyclic-connectivity. Let Q(P(G)) = {// e Q(G): P(H) # 0 and P(H) # 0 },

and Qk(P(G)) = gí/'íG)) n <2A(G) for nonnegative integer k. Define the cyclic-

connectivity of G as follows:

kp(G) = 0 if G is not connected,

Kp(G) = oo if G is a tree, and otherwise

kp(G) = MIN({fc: Qk(P(G)) * 0} u {pP(G)}).

Then G is cyclic-k-connected for any positive integer /: < kp(G). This definition is

formulated to apply to the polygon matroid P(G) as vertex-connectivity applies to

the bond matroid B(G). It also assigns a connectivity to all graphs, where Whitney

[4] defines vertex-connectivity for connected loopless graphs with two or more

vertices. The vertex-connectivity of a fc-clique for k > 2 is defined as kb(G) = pB(G)

= k — 1. The cyclomatic number pP(G) serves a similar purpose here.

We now state some direct consequences of the definition. A block of a graph is a

maximal nonseparable nonnull subgraph.

Proposition 3.1. In general kp(G) > 0 with:

(A) kp(G) ^ 1 if and only if G is connected,

(B) oo > kp(G) > 2 //and on/y if pP(G) > 2, G is connected, and at most one block

of G contains polygons, and

(C) kp(G) > 2 andyB(G) > 2 if and only if k(G) > 2 and pP(G) > 2.

The graph G is cyclic-k-separated when Qk(P(G)) # 0. The effect of this on

kp(G) can be made more evident.

Proposition 3.2. We can wr/ie kp(G) = MIN{A:: Qk(P(G)) * 0} e^cepi in two

cases:

(A) G is not connected and at most one component contains polygons, or

(B) G is connected but does not contain two edge-disjoint polygons.

Proof. This is obvious if kp(G) = 0 or kp(G) = oo. Assume that 1 < kp(G) < oo.

Then 3.2(B) means requiring that Q(P(G)) = 0. If Q(P(G)) = 0 then kp(G) =

Mm{k: Qk(P(G))* 0} cannot apply. Suppose Q(P(G)) * 0. Then Qk(P(G))

¥= 0, for k minimum, and complementary connected H, K e Qk(P(G)) exist. Then

ÍV(G)=|£(G)|-|l/(G)|+l

= {\E(H)\-\V(H)\+l)+(\E(K)\-\V(K)\+l) + k-l

= pP(H) + pP(K) +k-l>k + l,
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using pP(H)^\  and pP(K) > 1. Now kp(G) = k < pP(G), and so kp(G) =

MIN{A:: Qk(P(G)) * 0 } must apply.

The next proposition shows that condition (B) of Proposition 3.2 takes effect in

essentially only five cases.

Proposition 3.3. Suppose Gx is the union of all polygons in a graph G and that no

two of these polygons are edge-disjoint. Then Gx is the null graph, or a subdivision of a

loop, 3-bond, KA,orKJ3.

O CD©®
Figure 3A. Graphs without edge-disjoint polygons

Proof. If Gx + ß there exists P e P(G). Because Gx is nonseparable, a tower

P = HxrzH2czH3o... cHk = Gx

exists, where Hi+1 = //, U L, for some arc L, c G avoiding Hi but with its end-

vertices in V(Hj). It is routine to see that H¡ is a subdivision of the z'th graphs in

Figure 3A for / = 1,2,3,4 and that k < 4 in any such tower.

The three remaining propositions compare yP(G), yB(G), kp(G), and k(G).

Proposition 3.4. In general kp(G) < y,.(G).

Proof. If Proposition 3.4 is false then

1 ^yP(G) < kp(G) « pP(G)

obtains, and a polygon P ç G exists with \E(P)\ = yP(G). Now P is a forest so that

\E(G)\-\E(P)\^\V(G)\-1,    and

Pp(G) =\E(G)\-\V(G)\+ I ^\E(P)\ = yP(G),

contrary to assumption.

Proposition 3.5. IfnP(G) < k(G) then G is either a 3-bond or a polygon.

Proof. By hypothesis, and the consequent connectedness of G, 1 < kp(G) < k(G),

whence kp(G) = pP(G) and G is a graph for which Proposition 3.3 applies with

G, * ß. If pP(G) = 1 then k(G) > 2 and G must be a polygon. If pP(G) = 2 then

k(G) ^ 3 and G is a 3-bond. Finally, if pP(G) > 3 then k(G) > 4, contrary to

k(G) < 3 in Proposition 3.3.

Two vertices in G are adjacent when distinct and joined by an edge. The degree

dc(x) of a vertex x in G is its number of adjacent vertices. This differs from the

valency vG(x) of the vertex x, which is its number of incident edges, each loop

counted twice incident. Call the connected H c G with x e V(H) and £(//)= [A

e £(G): A is incident with x) the vertex-star with centre x in G. The degree of a

vertex-star is the degree of its centre.
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Lemma 3.6. Suppose G is connected, H e Qk(G), and Qj(G) = 0 for all j < k.

When k = 1 or k = 2 choose H minimal in Qk(G). Now either

(A) H is a k-gon,

(B) H is a simple vertex-star of degree k, or

(C) H contains a polygon and W(G,H)cz V(H).

Proof. When x e V(H) - W(G, H) exists let K be its vertex-star in G. Then

K Q H, and k(G) = k implies K has degree at least k. If (C) fails then H is a tree

and K is simple. Also H has at least dG(x) > k monovalent vertices distinct from x.

If k = 1 then K = H is a link-graph, by the minimality of H. When k > 2 the set of

monovalent vertices in H is W(G, //). This implies dG(x) = k and dH(y) < 2 for all

y e F(i/) distinct from x. If /c = 2 then AT = H is a vertex-star of degree 2, by the

minimality of H. When /c > 3 there are no divalent vertices in H and hence K = H

and again (B) applies.

The alternative W(G, H) = V(H) remains. A polygon P Q H exists, because

\E(H)\ > \V(H)\, and may be chosen with smallest possible girth j. Now A: is a

minimum with Qk(G) ¥= 0, and / < k, whence j = k. When k < 2 the minimal

condition on H and the minimum condition on k imply P = H.lî k ^ 3 then all the

edges of 7/ are in P, because; is minimal and hence P = H. The proposition is valid.

Proposition 3.7. If G is neither an h-bond for h < 3 nor a polygon, then k(G) =

MIN{Kp(G),yB(G)}.

Proof. Under these hypotheses k(G) = oo only for the null graph and vertex

graphs, and then kp(G) = yB(G) = oo. Otherwise H e Qk(G) exists, for k = k(G),

and H e Qk(G). Remark 2.4 gives «(G) < YB(G) when Q(G) # 0, and Proposition

3.5 gives k(G) < K/>(G) under our hypothesis. Thus k < MIN{kp(G), Yb(G)} when

Proposition 3.7 is false. No member of Qk(G) is a fc-gon, by Proposition 3.4, or a

simple vertex-star of degree k, by k < yB(G). Applying Lemma 3.6 to H and H, or

minimal members of Qk(G) contained in these graphs when k < 2, we see that both

H and // contain polygons, contrary to k < kp(G). This completes the proof.

Note that when «(G) = yB(G) < kp(G) there is a simple vertex-star of degree

k(G) in G. Apart from the tie-in with the connectivity k(G) of Tutte [2], this

development parallels that of Whitney for vertex-connectivity in [1].

Define G'A = G: (E(G) - {A)),G'; = Gctr(£(G) - {A}), G, = G[V(G) - {t}]

when A e E(G) and t e V(G). Then set L = {G: 4 «s kp(G) and 3 < yB(G)} and

M = {G e L: G^ <£ L and G^' <£ L for ail A e £(G), and G, £ L for ail trivalent

t e F(G)}. The members of M are called minimal cyclic-4-connected graphs. By 3.7

members of L and M are 3-connected and admit only triads (simple vertex-stars of

degree 3) and their complements in 03(G). This paper aims to effectively describe

these minimal graphs, and thus to provide an inductive theory of cyclic-4-connectiv-

ity.

4. Lemmas. Some lemmas useful for the next sections will now be established.

LEMMA 4.1. Suppose 3 < k(G) = k < kp(G) and S c E(G). Then G X S is a bond

of girth k if and only if G ■ S is a vertex-star of degree k.
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Proof. When G • S is a vertex-star G x 5 is a union of bonds joining [x] to the

components of Gx containing vertices adjacent to x. However, k(G) > 3 implies G is

simple and nonseparable, hence \S\ = k and G x S is a single bond. Conversely,

assume G X S is a bond of girth k with vertex set {H, Hx). Then {H, H^} <L

UjçkQj(P(G)) and so H may be assumed to be a tree. If H has two or more

monovalent vertices then each is incident with at least k — \ edges in S, and so

k = \S\ > 2(k - 1) or 2 > k, contrary to hypotheses. Thus H is a vertex-graph, and

G • Sisa vertex-star of degree k.

Lemma 4.2. If k(G) = k < kp(G) and T is a vertex-star of degree k in G with centre

t and no endvertex x of valency vG(x) = k, then k(G,) > k.

Proof. Suppose; = k(G,) < k and choose complementary H, Hx e Q¡(G,). Then

H, Hx Í Qj(G) implies vertices x <f V(HX), y e V(H) adjacent to / in G exist, so

that k > 2. Now G is simple because kp(G) ^ 3, thus vH(x), vH(y) > k, which

forces H, Hx e Qj(P(G,)). We can write T = Tx U T2 where (Tx), ç H, (T2), ç //,,

and Tx n T2 = [t]. Define N = H U Tx and A^ = //, U F2. Then TV, Nx e

ôy+i(^(G)), contrary to & < k^(G).

Lemma 4.3. Suppose k(G) > 3, ypP(G) > 3, and that \W(G, H)\ < 3 for some

H ç G. 77jen 7/ « connected and exactly one of the following applies:

(A) // is a forest with V(H) = W(G, H).

(B) H s />,/o/" / e {1,2,3}, with D¡ as in Figure 4A, under an isomorphism sending

W(G, H) onto {x, y, z), or

(C)|£(ff)|>8.

Proof. Because H is a subgraph of a 3-connected graph G, which has no isolated

vertices and at most three vertices of attachment, it must be connected. Assume (A)

and (C) do not apply. Because (A) does not hold \W(G, H)\ < 3 and y^G) > 3

imply G has a vertex x € V(H). Then vG(x) > k(G) ^ 3 and so \E(H)\ > 3. By

hypotheses |£(G)| > 9. Because (C) also does not hold we see that \W(G, H)\ = 3,

and either H e Q^G) or His a 2-arc with V(H) = W(G, H).

If each edge of H has an endvertex in W(G, H) then H = Dx or H = D2 as in (B).

Otherwise, an edge of H exists with endvertices a, b £ W(G, H). The vertex-stars

with centres a and b form a tree with at least four monovalent vertices. Thus a 2-arc

N ç H disjoint from H exists, and H contains at least five edges not in N. Then

\E(H)\ < 7 implies // is the union of N and five link-graphs, each having one

endvertex in V(N) and the other in W(G, H). This leads finally to H = D3 as in (B).

Lemma 4.3 is usually applied in the form of the following remark.

A\   #\
Di h h

Figure 4A. Some small subgraphs ofG^L
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Remark 4.4. Suppose G e L and H ç G is such that H contains a polygon. We

have:

(A) If\W(G, H)\ < 3 then H is a forest and either V(H) = W(G, H), or H = Dx is

a triad of G. Moreover, either \E(H)\ > 8 or G = KJ3, and H s D2 or H = D3, as in

(B) of Lemma 4.3.

(B) If \W(G, H)\ = 4 then either H is connected or the connected components of H

are vertex-graphs, link-graphs, 2-arcs, or triads of G.

Proof. In Remark 4.4(A), as Q](P(G))= 0 for j < 3 it follows that H is a

forest. Either 4.3(A) obtains, or 4.3(B) with H = Dx. Now H contains a polygon, so

that 4.3(C) applies to it, or else H = D2 or H = D3 as in 4.3(B). We readily see that

G = K} 3 when 4.3(B) holds. In Remark 4.4(B) either H is connected or its connected

components C satisfy \W(G, C)\ < 3. Applying 4.4(A) each C must be a vertex-graph,

link-graph, 2-arc, or a triad of C. This completes the proof.

Suppose G e L and H e 53(G) is such that H contains a polygon. Then H is a

triad, by Lemma 4.3, and G x E(H) is the only type of bond in G with girth 3, by

Lemma 4.1. Indeed, such H are what remains of 3-connectivity in G. Lemma 4.2

states that if no endvertex of H is trivalent then H can be removed from G leaving

the 3-connected graph H. Thus it is natural to allow the removal of certain such

trivalent vertices in defining the set M of minimal members of L.

The next three lemmas deal with G e L under the following three separate

conditions:

(A) when G, <£ L for some trivalent ? e V(G),

(B) when G'A € L for some^ e £(G), and

(C) when GA £ L for some A e £(G).

Lemma 4.5. Let G e L and suppose G, e Lfor some t e V(G) which is the centre of

a triad with no trivalent endvertices. Then k(G,) = 3, and complementary J, Jx e

Q3 (P( G, )) exist with |£(/)| > 6 and\E(Jx)\ > 6, and t is adjacent to some x <£ V(JX)

and some y Í V(J).

Proof. By Lemma 4.2 it follows that k(G,) > 3. Then yB(G,) > 3, and kp(G,) > 3.

By Proposition 3.7, we have ic(Gr) = 3 and by Propositions 3.2 and 3.3 either

G, = K4, G, = /C33 or Qi(P(G,)) * 0. Then yP(G) > 4, by Proposition 3.4, hence

G, m KA. If G, s ¿33 then y^(G) > 4 forces G = KX4, contrary to kp(G) > 4. Thus

complementary /, Jx e QJ(P(GI)) exist, and Lemma 4.3 ensures |£(/)| > 6 and

|£(/,)| > 6. Finally, the condition kp(G) > 4 implies there exist vertices x e V(JX)

and y e V(J) adjacent to t in G.

Lemma 4.6. Suppose G e L and that GA £ L for some edge A e £(G) not

contained in a triad of G. Then k(G'a) = 3 and complementary H, Hx e Q3(P(G'A))

exist, where necessarily \E(H)\ ^ 6, \E(HX)\ > 6, and A has endvertices x £ V(HX)

and y í V(H).

Proof. When G'A £ L either yB(G;) < 3 or kp(Ga) < 4. Suppose yB(G;) < 3 and

derive a contradiction. By the definition of a bond and the hypothesis yB(G) ^ 3,

there exists K e B(G) with A e E(K) such that K'A e Bj(GA) forj = yB(G;). Then
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3 < Yß(G) < ; + 1 < 3 implies yB(G) = 3. Using Proposition 3.7 we have k(G) = 3.

The hypotheses of Lemma 4.1 are satisfied with S = E(B). Thus G • S is a triad,

contrary to the hypotheses of this lemma.

We conclude that yB(G^) > 3 and kp(Ga) < 4. Proposition 3.4 ensures yP(GA) ̂

yP(G) > 4. Then Propositions 3.2 and 3.3 imply that kp(G'a) = MIN{Jfc: Qk(P(G'A))

¥=0}. There thus exist complementary H, Hx e Qj(P(G'A)) for j = kp(Ga). Be-

cause H £ Qj(P(G)) and Hx <£ Qj(P(G)) the edge ^ has endvertices * <£ ̂ (7/,)

and y £ V(H). Then //, i^ e QJ+X(P(G)) so that 4 >;' + 1 > 4 and hence; =

k/,(G^) = 3 and kp(G) = 4. Now Proposition 3.7 implies k(G'a) = 3 and Lemma 4.3

implies \E(H)\ > 6 and |£(//,)| > 6.

Lemma 4.7. Suppose G e L ana1 rTia/ G¿ £ L /or some edge A e £(G) «oí

contained in a quadrilateral of G. Then k(Ga) = 3 and complementary K, Kx e

Q4(P(GA)) exist, where A has endvertices x, y e V(K n Kx) and necessarily \E(K)\

> 6, \E(KX)\ > 6.

Proof. If /I is in no quadrilaterial then yP(G^') > 4. Now yB(G'A) > Yb(G) 3* 3, so

that kp(Ga) < 3 when G'A e L. There exists, by Propositions 3.2 and 3.3, comple-

mentary/, /j e Qj(P(GA)) for; = kp(Ga). Let/: G -» G¿ be the induced contrac-

tive mapping and z = fA. If z e V(J n /,) then either / e Qj(P(G)) or ^ e

g;(.P(G)), contrary to kp(G) > 4, and so z e V(J n /x). Let K = (f'lJ)'A and

*i = (/"^iXi- Using T/)(G;) > 4, we have |£(/)| = \E(K)\ > 4 and |£(/x)| =

|£(/v,)| =s 4. Then 4 < kb(G) <;' + 1 < 4 forces kp(G) = 4 and 3 =; = kp(Ga).

Proposition 3.7 implies k(Ga) = 3 and Lemma 4.3 applied to GA gives \E(K)| ^ 6,

|£(A\)| > 6. Now K £ Q3(P(G)) and Ä^ £ öaC^CG)) imply ^ has endvertices

x, _y e F(/v n /v,), completing the proof.

Figure 4B illustrates Lemmas 4.6 and 4.7. We make two remarks for reference.

Remark 4.8. When H is minimal under the conditions of Lemma 4.6, no two of

u, v, w are adjacent in H, and vH(u), vH(v), vH(w) > 2.

Remark 4.9. When K is minimal under the conditions of Lemma 4.7, no two of

x, y, s, t are adjacent in K, and vK(s), vK(t) > 2.

Lemma 4.10. // H, K ç G then

W(G, H n K)= V(H n K) n(W(G, H) U W(G, K)).

Proof. This follows because x e W(G, H n K) if and only if x e V(H n K)

and x in incident with some A e £(G) not contained in both H and K.

Figure 4B. Diagrams for Lemmas 4.6 and 4.1
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When using Lemma 4.10, we often write W(G, H C\ K)<z [ax, a2,...,an) where

a,, a2,...,an need not be distinct. However, when we write W(G, H fï K) =

(a,, a2,... ,a„} the elements are understood to be distinct. Lemma 4.10 is recogniz-

able enough to be used without being repeatedly identified.

5. Local minimum structure. Three crucial propositions are proved here. When

applied to a graph G e M they show that:

(A) each edge of G is in a triad or a quadrilaterial,

(B) at most one edge in a triad of G is not also in a quadilateral, and

(C) at most one edge in a quadrilateral of G is not also in a triad.

The general decomposition theory for the G e M given in §6 is based on these

facts.

Proposition 5.1. Suppose G e L and G, £ Lfor all trivalent t e V(G). If G'A £ L

and G'A £ Lfor A e £(G), then a triad or quadrilateral containing A exists in G.

Proof. Let G e L and suppose G'A £ L and GA £ L for some A e £(G) which is

contained in no triad or quadrilateral of G. Then Lemma 4.6 and Lemma 4.7 apply

in the notation of Figure 4B. Without loss of generality H can be assumed minimal

in Q3(P(GA)) and the notation of Figure 4B taken so that u, v e V(KX) and

h£ F( AT ).Nowà: can be assumed minimal in {/e Q4(P(G)): [x, y} ç W(G,J)}

without altering any notation. Applying Lemma 4.10 we obtain W(G, H C\ K) Q

{x, w, s, t), W(G, HXC\ K)Q {y,w,s,t}, and W(G, Hx n Kx) ç {y, u, v, w, s, t}.

Here w £ V(K), while v e V(K) implies v e {s, t).

Suppose first that s £ V(H). In general vH n K(y) > 1 and, because A' is minimal,

vH nx(s) ^ 2 and the vertices s, y are not adjacent in K. Applying Remark 4.4(A)

toHxr\ K these facts ensure \W(G, Hxn K)\^ 4 and hence that W(G, H1 n K) =

{y,w,s,t}. Now H is minimal, and w £ V(KX) because we V(K) and w£

W(G, K) so that Remark 4.8 ensures vHnK(w)^2. Then W(G, H n K) ç

{x, w, t} and 4.4(A) force H n K to be a 2-arc with internal vertex w and

endvertices x, t. However, then re V(H C\ Hx) and /, w are adjacent in H, contrary

to H being minimal.

The case t £ K(//) is similar to s £ V(H). Suppose alternatively that s, t e V(H),

and assume s = p or í = w when se F(//[), or / e F(//,), respectively. Then

W(G,H r\K)c {x,w,s, t), W(G,HX r\K)Q {y,w,s}, and W(G, Hx D Kx) Q

{y, u, v,w). Remark 4.9 applies, because K is minimal in Q4(P(G)) subject to

x, y e W(G, K). There exist m, n £ K(AT,) adjacent to x, y, respectively, in G, for

otherwise a contradiction can be derived by applying 4.4(A) to Kx or Kv and noting

that |£(Ä")| > 6. Then w # n, by yf(G) > 4. Using !£(#!)! > 6 and 4.4(A) there

similarly can be seen to exist a vertex u' £ V(HX) adjacent to u in G. Now j, s are

not adjacent in K, and y is adjacent to n in HXC\ K, so that 4.4(A) implies

vH nK(y) = 1. Then vG(y) > 4 forces vH¡nKi(y) > 2. Now « £ V(K) and w' £

{s, t) Q V(H), hence «' £ V(H KJ K), and so 4.4(A) ensures H^G, Hx n Kx) =

\y,u,v,w). Then n e FT.//,) and n £ {«, t;, w} ç V(KX) imply n £ V(H U A^).

Applying 4.4(A) again //, n Ä" is a triad with center n and endvertices y, w, s. But

now   w e V(K n #,)   and  s e V(H n //,),   so   that  s = v   and   t = iv.   Then
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W(G,HD K)Q {x,w, s) and {u, v, w) ç V(KX). Now m e V(H),W(G'A, H) =

{u, v, w) and m £ FiA^) imply w £ K^ U A^). But then ZZ n ZÍ is a triad with

centre m and endvertices *, w, s, by 4.4(A). This determines K = (H C\ K) \J (Hx C\

K).

Let / = Hm and Zj = (Hx)n. Then |£(ZZ)| > 6, \E(HX)\ > 6, t;c(x) > 4 and

vG(y) > 4 imply |£(Z)| > 3, |£(/,)| > 3, p,(x) > 2 andvh(y) > 2. Thus W(G, I)

= (x, m, p, w) and W(G, Z,) = {y, u, v, w], by 4.4(A), while I and Zj are con-

nected, by 4.4(B). Thus vG(v) > 4 and vG(w) > 4. By hypothesis Gm£ L, and so

Lemma 4.5 implies complementary /, /t e 23(ZJ(Gm)) exist. Because /, Jx £

Q3(P(G)), and both /, /¡ and v, w are interchangeable, we may assume without loss

of generality w £ V(J) where / is chosen minimal in Q3(P(Gm)). If n e K(/) then

n e H/(Gm, /), because n is adjacent to w, and p, y £ F(/j), by the minimality of/.

Now y £ F(/j) implies x e V(J). But then (/J,, e Q3(P(G)), contrary to kp(G)

> 4. Thus n £ K(/), which implies v, y e Fi/j). Then x £ F(/,) and y e

K(/ n /J. Write V(J n Jx) = {y, p,q) with v = p when p e V(J), as in Figure

5A.

We now have W(G, I n /) ç {x, u, p,q) and If(G, Zj n /) ç {y, m, />, a} and

D/n;(jt) > 2. Lemma 4.5 states that |£(/)| ^ 6. Lemma 4.3 and the hypothesis that

A is in no quadrilateral force |£(/)| > 7. Assume u e F(/,) so that W(G, Z n /) c

{x,p,q} and W^G, Ix D/) ç (y,/>, a}. Then/; = (Zn/)U(Zj n/) and 4.4(A)

imply /ny and Ix n J are triads of G with endvertices x, p, q and y, p, q,

respectively. This contradicts vlnJ(x) > 2. We may assume that u £ K(/,). Then

vmj(x) 2> 2, vInJ(u) ^ 2, and so 4.4(A) implies W(G, I n /) = {x, «, />, a}.

Now u, w are distinct from p, q. If a e K(Zt) then q = v. But then p e F(/) and

p = p, which is impossible. It follows that q £ V(IX). Note that «' £ F(Z) because

u' £ F(ZZ), and u' £ K(/j) because « £ F(/,) and w' # y, p, q. This implies IXC\ J

is a triad with centre u' and endvertices y, «, p, by 4.4(A). No other such triad can

exist when kp(G) > 4 and G £ K33, hence m' is the unique vertex of G adjacent to u,

and not in V(HX). Then /? e K(/ n /[) and p + u,w imply p = v. Now let Z2 =

((A)«)«- Tnen W(G' h) £ {J> ü- w} and- because pG(y) ^ 4 and Y,>(G) ̂ 4, there

exists a vertex k £ F(Z2) adjacent to y in Z2. Now 4.4(A) implies Z2 is a triad of G

with centre /c and endvertices y, v, w. But this is impossible because Hx n ZC is a triad

of G with centre n ¥= k and endvertices y, p, w while G £ Zí3 3. All cases lead to

contradictions, hence the theorem is valid.

Figure 5A. A case to be eliminated
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Proposition 5.2. If G e L and T is a triad of G with centre t such that GA £ Lfor

all A e E(T), then t e V(Q) for some quadrilateral Q e PA(G).

Proof. Assume the hypotheses and suppose t £ V(Q) for any Q e P4(G). Let T

have endvertices xx, x2, x3. Then Lemma 4.7 applies in cases ; = 1,2,3, with t = x

and x¡ = y. Using Remark 4.4 and \E(K)\ > 6, \E(Kl)\ > 6 we see that x is

adjacent to vertices a £ V(KX) and b £ V(K) in Figure 4B. Using vG(t) = 3, and

switching notation between K and Kx if necessary, xi+l = a and x,_x = b can be

assumed, subscripts reduced mod 3. Denote Kx and (Kx)x from Figure 4B by H, and

K¡, respectively, throughout this proof. Then Hi U ZC, = G, and Ht n Zv, = [xf, y,, z;]

for appropriate y,, z, e F(G), while W(G, HA= [xi+x, x¡, y¡, z,}, W(G,K¡) =

ixi-i> xi> y¡' zi)> |£(^,)l > 5 and |£(Zí,-)| ^ 5. These decompositions are illustrated

in Figure 5B.

Lemma 4.10 implies W(G, Hx n ZZ2) ç {x2, y,, z,, y2, z2), W(G, Hx n Zi2) ç

{*,, x2, y1; z1( y2, z2}, ^(G, A^ n ZZ2) <z [x3, yv zx, y2, z2), and W(G, Kx n Zv2)

ç {xl5 y,, z,, y2, z2}. Furthermore vHinf,2(x2) > I, vHiriKi(xx) > 1, vHiC,Ki(x2) >

L^nff^s) > 2.«»«'«'jr1njr2(*i)> L
Assume  first  that y,, Zj e V(K2).  Then   W(G, Hx n ZZ2) ç (x2, y2, z2}   and

W(G, Kx n ZZ2) c {x3, y2, z2). Now vKin„2(x3) > 2, \E(H2)\ > 5, and H2 - (Z^

n ZZ2) U (A\ n Z/2) imply by Remark 4.4(A) that Kx n ZZ2 is a 2-arc with internal

vertex x3 and endvertices y2, z2, while Hx n ZZ2 is a triad of G with centre some

vertex /- £ V(KX U A^) and endvertices x2, y2, z2. Thus y2, z2 e F(ZZX n A^), and

so without loss of generality we can write y, = y2 and z1 = z2, and see that

W(G, Kx n K2) ç {*,, y2, z2}. Again, A^ = (Kx n ZZ2) U (A^ n A"2) and ^(A^l

^ 5 imply Kx n A"2 is a triad of G with centre s £ V(HX U ZZ2) and endvertices xx,

y2, z2. Now |£(ZZ3)| > 5, |£(ZC3)| > 5, vG(x3) = 3, and ZZ3, K3 are connected, hence

4.4(A) ensures x3 is adjacent to a vertex not in H3 and one not in K3. Without loss of

generality y2 £ K(Z73) and z2 £ V(K3) can be written. But then V(H3 C\ K3) =

{x3, r, s), and the monovalent x3 and s can be removed from AT3 to form K4. This

gives W(G, AT4) ç (x2, z2, r), \E(K4)\ > 3, and vK{\r) = 2, contrary to 4.4(A).

Alternatively, suppose that yx £ V(H2). If y2, z2 e ¥(11^ this is essentially the

preceding case, and soy2 £ V(Kl) may also be assumed. Then W(G, Hx C\ K2) çz

{xv x2, zx, z2), W(G,Klr\H2)ç{x3,yl,y2,zl,z2} and W(G, Kx n K2) Q

{jc,, y2, z,, z2}. In Hx n Zi2 vertices je,, jc2 are incident with disjoint edges since / is

not in any quadrilateral, hence 4.4(A) is contradicted if \W(G, Hx n K2) < 3;

Figure 5B. Decompositions of G with respect to T
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therefore W(G, Hx n K2)= {xx, x2, zx, z2). Then zx e V(K2) and zx # z2. Also

Zj #y2, because y2 e K(ZCi), so that zx £ (Zi2). Similarly z2 £ I^ZZ,). Now

W(G, A^ n ZZ2) ç (x3, y,, y2} and vKinH(x3) > 2, which implies Kx n ZZ2 is a

2-arc with internal vertex x3 and endverticesyx,y2. Using |£(ZCj)| > 5,

W(G,KxC\K2)<z{xx,y2,zx)    and   A\ = (Kx n ZZ2) u(A^ n £2),

4.4(A) implies Kx n A^2 is a triad with endvertices xx, y2, zv Withy2 £ V(K1), this

implies that PG(y2) = 2, contrary to yB(G) ^ 3. Neither alternative obtains and so

the proposition is valid.

Proposition 5.3. Suppose G e L and G, £ L for all trivalent t e V(G). If Q e

PA(G) is a quadrilateral such that G'A £ L for all A e E(Q), then Q has at least two

vertices that are trivalent in G.

Proof. Assume the hypotheses, that (a, A, b, B, c, C,d, D) is the circular se-

quence of vertices and edges in Q, and that a, b,c are not trivalent in G. By Lemma

4.6 complementary H, Hx e Q3(P(GA)) and K, Kx e <23(Z>(GB)) exist, each having

at least six edges, with a £ V(HX), o £ V(H U Kx), and c £ V(K). Choose Hx

minimal in Q3(P(G'A) .

Suppose c £ V(H). Then d e V(H n Hx) and pw(í/) :? 2 by the minimality of

Hx. Now vc(d) > 4 because ZZ^ £ Q3(P(G)), and we change notation

H, Hx, a, b, c, d to Hx, H, b, a, d, c, respectively, and choose new K, Kx e

Q3(P(GA)) with regard to the new B e E(Q). This done, c e V(H) and Hl can be

replaced by a minimal member of Q3(P(G'A)) it contains. We may thus assume

ce F(ZZ) without loss of generality.

Case (1). Here ce V(H),d& V(K), and Hx, Kx are chosen minimal.

Case (2). Here d £ K(ZZ, U ZC), ph(c) > 2, vK¡(a)^2, and Hx, K are chosen

minimal.

Figure 5C. Notation for Cases (1) and (2)
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The argument divides into two cases, as shown in Figure 5C. If d e V(K), or

a" £ V(K) and vK¡(a) = 1, replace A^ by a minimal member of Q3(P(G'B)) it

contains. Then d e V(K) and Case (1) applies with possibly d e V(HX) or a e

F(ZÍ!). Alternatively d £ F(A:) and p^(a) > 2. Then change ZZ, Hx, K, Kx, a, b, c, d

to Kx, K, Hx, H, c, b, a, d respectively, so that d £ V(HX) and vH(c) ^ 2. Replace

Z/j by a minimal member of Q3(P(G'A)) it contains. This does not alter the

relationships of the previous paragraph. Now either Case (1) can again be arranged,

or d £ V(K), vK (a) > 2 and A'can also be chosen minimal. This is Case (2).

It is convenient to treat these two cases with respect to another pair of alterna-

tives. Using elementary properties of the H U (¿-components of G, with \E(H)\ > 6

and Remark 4.4, we see that either:

(A) ZZj is the union of two triads in G'A with distinct centres b, t £ V(H) and

common endvertices c, x, y, where x = xx and y = yx, or

(B) Hx contains an arc of length at least three, having only its endvertices b, c in Hx.

These alternatives may hold in either of the above cases. Suppose first that (A)

obtains. To eliminate various possibilities Remark 4.4 and Lemma 4.10 will often be

used.

In both Cases (1) and (2), if t e V(K n A",) then (Kx),£ Q3(P(G)_) implies a

vertex z £ V(KX) exists adjacent to / in G. However {x, y,c) ç V(KX) because

b £ V(KX). But then vG(t) ^ 4, contrary to assumption. Thus ? £ V(K) and x = x2,

y = y2 may be assumed. Now yP(G) ^ 4 implies d £ V(H), and in Case (1)

a£V(Kx) because a £ {x, y). In Case (1) take I = (H n K)'D and Ix =

(Hr\Kx)'c. Then W(G, I) ç {a, x, y, d), W(G, Ix) ç {c, x, y, d), v,(a)^2,

v,(c) ^ 1, and v, (d) ^ 1. Remark 4.4, using edges C and D, implies I and Ix are

both connected and have all four possible vertices of attachment. Thus d, x, y are

not trivalent in G. The second diagram in Figure 5D shows this situation. In Case (2)

we see the graph K is the union of two triads of G'B with distinct centres b, u £ V( Kx )

and common endvertices a, x, y, by applying 4.4(A) to Kh. Then W^G^Zyj),) c

[a,c, x, y} and \E((Kx)t)\ > 6 imply (Kx)t is connected, by 4.4, hence x and y are

not trivalent in G. The third diagram in Figure 5D pertains here.

Figure 5D. Cases (1) and (2) under (A)
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Figure 5E. Alternatives for G, £ L in (A)

Both these possibilities can be eliminated using G, £ L. By Lemma 4.5 comple-

mentary /, Jx e Q3(P(G,)) exist. Now /, Jx £ Q3(P(G)) implies {c, x, y) % V(J)

and {c,x,y} % V(JX), so that 6e V(J n /,)• Then /,,,(/,),,£ Q3(P(G)) and

%(°) = 4 imply Py(/3) = py (o) = 2 and that 6 is adjacent to no vertex in V(J n /j).

Notation is easily arranged so that one of the following alternatives obtains,

(Al) a,c^ V(JX) andx, y £ V(J), or

(A2) a,y€ V(JX), c,x£ V(J),andd& V(J n Jx), as in Figure 5E.

Assume Case (1) applies. In (Al) we have W(G, I n /) ç {a, d, p,q) and

W(G, Ix n /) ç {c, d, /?, a}. Then p/n/(a) > 2, v, nJ(c) > 1, and the fact that the

vertex d is adjacent to a and c in G imply, using 4.4(A), that W(G, I n /) =

{a,d, p,q) and |W(G, Z! n /)| > 3, which is contrary to/?, g £ V(I n Z,). In (A2)

we have W(G, I n/) ç {a, d, y, a} and H/(G, Zt n/)c (o1, y, a}. Then vlnJ(a)

> 2, p/ny(y) > 1 and y is not adjacent to a in G. Thus W(G, I n /) = {a, a1, y, a},

by 4.4(A). Also p/iny(y) > 1 and y is adjacent to some vertex y' £ V(IX), by the

minimality of Kx. Thus y' e V(IX n /), so that q e H/((?, ZL n /), by 4.4(A). This

contradicts the fact that a £ V(I n Ix). Case (1) is ruled out. In Case (2), for both

(Al) and (A2), we can assume u = q. Then \W(G,(Jh)u)\ = 3 and p(y > (a) > 2. Now

4.4(A) implies (Jh)u is an arc of length 2 with internal vertex a. In both (Al) and

(A2) this contradicts yP(G) > 4.

This leads us back to alternative (B). The arc in Hx contains x2 or y2. In Case (1)

assume, without loss of generality, that x2 £ V(H). Then W(G, H C\ K) <z

{a, d, xx, yx, y2), W(G, H n Kx) Q {c, d, xx, yx, y2), W(G, Hx n K) ç

{¿>, x^y,, x2, y2}, and W(G, //, n Kx) ç {c, xx, y,, x2, y2). Then vH¡nK(b)> 2,

ü// nï(c)^ 1» ̂ w, 0^,(^2) ^ 2, and a" is adjacent to a and c in G. Suppose that

y2'e K( Hx ). Then a £V(Kx),vHr,K (a) > 3, and so W(G, H C\ K) = {a,d,xx,yx),

by Remark 4.4(A). Now W(G, Hx n Kx) Q {c, x2, y2) and, using vH¡nK¡(x2) > 2

with 4.4(A), this implies Hx n ZC, is a 2-arc with centre x2 and endvertices c, y2. But

x2 and y2 are not adjacent, by the minimality of Kx. It follows that y2 £ V(HX) and

x,,y,, x2,y2 are distinct. Now pH nK(b) > 2 and ^(G, Hx n Zi ) ç {o, xl5 yt, x2}

so that X[ e V(K) can be assumed. It follows that xx £ V(K), vH¡nK(xx) > 2, and

W(G, Hxn K)= {b, xx, yx, x2). But then yx £ V(K) also, which implies that

W(G, Hx Pi Zv,) ç (c, x2}, contrary to ph nK (x2) > 2.
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In Case (2) of (B) both x2 £ V(H) and xx £ V(KX) can be assumed without loss

of generality, for otherwise Case (2) of (A) applies. Then W(G, H Pi Kx) ç

{a,c,yx,y2) and W(G, H1nK)Q {b, xx, yx, x2, y2}, while uHnKl(a), vHnKi(c),

vHlnK(bl i>Hlr,K(xi)^ ^nffW^2- and d £ V(H n A",). This implies that

W(G, H C\KX)= {a, c, yx, y2) and \W(G, Hx n K)\ > 4. The former conclusion

implies yx e V(KX), y2 e V(H) and y, # y2. By the assumptions of this case both

yx * x2 and y2 # x,. Thus yx £ F(A") and y2 £ K^), so that PF(G, Hx D K) c

{b, xx, x2), contrary to the latter conclusion above. This eliminates the last alterna-

tive and proves the theorem.

6. The ladder theorem. A decomposition theory for the G e M is presented here.

It is shown that G is either indecomposable or is decomposable and decomposes into

certain fragments. Amongst the possible kinds of fragments we shall distinguish

some which will be called "degenerate". Figure 6A depicts the indecomposable G,

Figure 6C the nondegenerate fragments, and Figure 6D the decomposable G with

degenerate fragments.

Figure 6A. ZTie indecomposable G e M
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Suppose G e M. Call x e V(G) a node when vG(x) ^ 4. Then an edge A e £(G)

is noda/ when it is incident with a node, and a triad 7 ç G is noda/ if it contains a

nodal edge. For any Q, Q' e P4(G) write Q ~ Q' when a sequence (g0, Öi*- • ■ ,ß„)

drawn from ZJ4(G) exists such that

(A) Ô = 2o, 6 = ß„. and
(B) |£(ßy_, n ß7)| > 1 and £(0,-, n £?y) # {/)} wnere /I is a nodal edge, for

1 «/</!.
Then - is an equivalence relation on P4(G). Define a constituent of G to be the

union of all quadrilaterals in an equivalence class of P4(G). Then G is indecomposa-

ble or decomposable according as it has one or more than one constituent, respec-

tively. A fragment of G is the union of a constituent of G with the triads whose

centres it contains.

There are three classes of indecomposable graphs, the Môbius ladders CXj for

; ^ 3, the cylindrical ladders C2J for ; > 4, and the circular coladders C* for ; > 5.

There are also three classes of constitutents of decomposable graphs, the ladders Lj

for; > 1, the (2, j)-bicliques K2j for; > 3, and the coladders L* for; ^ 3. These

appear in Figures 6A and 6B. Corollary 6.6 will show that constituents are induced

subgraphs of G.

The constitutents of G e M do not always contain every edge of G. Isomorphic

constituents may be imbedded differently in G, especially Lx, L2, and K23. Frag-

ments better illustrate the structure of a decomposition. Figure 6C gives the ladder

1 °3 al °5 °5 2
-1        T-r-T        r

*-»        *-*

°i    °3   a5    a7    °1   °3    a5    °7    °9
-»-?

°2    a4     °2    aD    °6     °2    °ii   a6    a8     °2    a(4    a6   a?    a10

al<^2    \°3 al<^/   }í>a4

N2,3

L<4

Figure 6B. Possible constitutents of G e M
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4      °3/4> 5k°1      °3    °5/^    ¿Vl      °5 °5     «frA bVi       Q3      °5       g7    °gA

i       ^ Sj_       a^       s2 Sj       o,,        a6       s2 s¿       a^       Og       Og     S2

4,1 4,2 4,3 4,4

e<h S

4,: 4,2 Ll,3 1,4

;^4-^4   ,M  S   f   "r   *
•-»-'--A   h        é-1-1_l_l    t
sl       a4        a6      °ii\>2     h       a¡5g       3g5^

4,3 4,4

Figure 6C. Fragments for decomposable G e M

fragments L, ■ for; > 1 and L2 for; ^ 3, the nondegenerate coladder fragments

L* j for; ^ 1, and the triad clusters T2 for; > 2. The large vertices Sj and s2 in these

diagrams represent the nodes of G contained in the corresponding constituent,

except possibly for s2 in either L\x or T23. In these diagrams the vertices labelled a,

are trivalent in G and hence cannot be vertices of attachment for the fragments.

Degenerate coladder fragments L* ■ for even; ^ 4 arise from the L* j by identifying

bx and b2 as b. If G e M has a fragment £ = LJ, for even; > 4 then £ is a triad, by

4.4(A), with centre t and endvertices b, sx, s2. Then G is determined by ; up to

isomorphism, as shown in Figure 6D. In Figures 6D and 6E edges in two con-

stituents are specially marked to make identification of constituents easier.

Using the equivalence relation ~ and statements (A), (B) and (C) at the beginning

to §5, we have obtained a unique decomposition of any G e M into fragments.

Denote by W the set of connected graphs defined by Figures 6A and 6C. Figure 6E

provides a graph G e M sufficiently general to include all the types of fragments in

Figure 6C. The main theorem in this paper asserts that no other fragments except

the degenerate coladder fragments are possible.

Theorem 6.1. If G e M and F is a fragment of G then F = L2k for even k >

there exists some H e W such that F = H.

or
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Figure 6D. The G e M with a degenerate fragment

Figure 6E. A typical decomposable G e M

An edge of G e M not in both a triad and a quadrilateral is called singular.

Singular fragments are those containing singular edges. Before proving Theorem 6.1

we examine the singular fragments of G more closely.

Proposition 6.2. Suppose G e M, that Q e P4(G), and A e E(Q) has nodes of G

as endvertices. If F is the fragment of G containing Q then F = Lxx, and connected

edge-disjoint subgraphs /, /, of F and vertices c, e e V(G) - V(F) exist such that

G = JUFUJX with W(G,F)={bx,b2,sx,s2}, W(G, J) = {bx, sx,c,e}, and

W(G, /,) = {b2, s2, c,e) in the notation ofLxx.

Proof. By Lemma 4.6 complementary H, Hx e Q3(P(GA)) exist. Moreover, these

can be chosen so that 6 < \E(H)\ < |£(ZZ,)| and ZZ is minimal in Q3(P(GA)).

Denote the endvertices of A by sx, s2 so that sx £ V(HX) and s2 £ V(H), and write

V(H n Hx) = {a, c, e). The hypotheses of Lemma 4.3 apply to G'A and so |£(ZZ,)|

= 6 forces conclusion (B) with H = D2 and Hx = D2. But then both H and Hx

contain triads of G with endvertices a,c,e; a contradiction because G * K33. It

follows that |£(ZZ,)| > 7. By the minimality of H, vH(a)^2, vH(c)>2, and

Vff(e) > 2, while a, c, e are pairwise nonadjacent in H. Applying Remark 4.4 and

\E(HX)\ ^ 7 to (Hx)a, (Hx)h, and (Hx)c. gives the existence of vertices b, d, /e

V(HX), adjacent in G to a, c, e, respectively. By Proposition 5.3 two vertices of Q are
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trivalent in G, and so it can be assumed without loss of generality that V(Q) =

{sx, s2, a, b). Set a = ax,b = a3, and let bx, b2, respectively, be the vertices not in Q

adjacent to ax, a3. Set/ = Ha and/, = ((Hx)a)h, noting|£(/)| > 4and|£(/!)| ^ 4,

so that / and Jx are connected, W(G, J) = {bx, sx, c, e) and W(G, /,) =

(o2, s2, c, e), by Remark 4.4(B). Any quadrilateral intersecting Q in one or more

edges intersects in exactly a pivot edge, thus £ = Lxx. In general W(G, F) =

{sx, s2,b2,b2). Clearly G = / U £ U/, is an edge-disjoint decomposition. This

completes the proof.

Figure 6F. 77ie singular fragments of a G e M

Remark 6.3. Suppose A e £(G) has nodes of G as endvertices. Then some

Q e P4(G) exists with A e E(Q), by Proposition 5.1. By the decomposition of

Proposition 6.2, at most one such Q can contain any of a, c, e. Thus at most three

such quadrilaterals can exist. When / is minimal with respect to these decomposi-

tions we see that Vj(c) > 2, Vj(e) ^ 2. It follows from Proposition 6.2 that any

quadilateral in G e M with two adjacent nodes of G is in a fragment £ = Lxx,

which is an induced subgraph of G. Using this fact, it is not difficult to see that c, e,

respectively, are adjacent to d,/£ V(JX), and that we also may assume d#/.

Diagram 1 of Figure 6F illustrates this situation.

Proposition 6.4. Suppose G e M and F is a fragment of G with A e £(£) such

that yP(GA) > 4. Then F = L\*x with W(G, F) = {bx, b2, sx, s2] in the notation used

in £*,. Moreover, there exist edge-disjoint connected subgraphs N¡ of F with G = Nx U

£ U N2 and vertices n, £ V(N¡), for i e {1,2), adjacent to s2, such that either:

(A) N¡ is a triad with centre n¡ and endvertices b¡, sx,s2; or

(B) N, e Q4(P(G)) and W(G, N,) = { p, sx, s2, b,■}.

Proof. By Lemma 4.7, complementary K, Kx e Q4(P(GA)) exist, with |£(Z<)| >

6, |£(ZC,)| > 6, and V(K n Kx) = {p, sx, s2, a2), where s2, a2 are the endvertices

of A. By Proposition 5.1 we may assume a2 is trivalent. Using Remark 4.4 and

yP(G) > 4 it follows that distinct vertices nx, ax £ V(KX) and n2, a3 £ V(K) exist,

with nx, n2 adjacent to s2 and ax, a3 adjacent to a2. By Proposition 5.2 there is a

quadrilateral Q with a2 e V(Q). Then A £ E(Q) and without loss of generality we

can write V(Q) = {sx, a,, a2, a3). Remark 4.4 and yP(GA) ̂  4 imply vK(sx) ̂  2

and vKi(sx) > 2, so that sx must be a node of G. There exist vertices bx, b2 £ V(Q)

adjacent to ax, a3, respectively. By Proposition 5.3, and the notational interchangea-

bility of K, Kx, it may be assumed that vG(a3)= 3. Write N2 = ((Kx)a)a}. By
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yP(G) > 4, n2 + b2, and so n2 £ V(N2). If p = b2 then N2 = T2 is a triad with

centre n2 and endvertices b2, sx,s2, by Remark 4.4(A). We may assume/; ¥= b2. Then

Remark 4.4(B), with |£(ZV2)| > 3 and vNi(b2) > 2, implies N2 e Q4(P(G)) is con-

nected, with W(G, N2) = {p,sx,s2,b2}. Suppose that also vG(ax) = 3, and let

Nx = (K )h. Just as above, if p = b, then Nx = Tx is a triad with centre «j and

endvertices bx, sx, s2 and tip + bx then Nx e 04(£(G)) is connected with W(G, Nx)

= {p, sv s2, bx) and n, £ V(NX). If o, = o2 then Nx and 7Y2 are triads with the

same endvertices, contrary to G e L and G í ZC33. Thus bx # o2 and so £ = L*,,

withH^(G, £)= {¿»Az,«!, «ji-
lt remains to suppose vc(ax) > 4 and look to Proposition 6.2 for a contradiction.

Keep the present notation, with a2, s2, a3, b2, ax, sx replacing ax, bx, a3, b2, sx, s2,

respectively, in diagram 1 of Figure 6F. Then W(G, J n K) ç (a,, s2, c, e,p),

W(G,JX n Kx)c {sx,p,b2,c,e},vJnK(ax)> 2,vJnK(s2)> 1, and vAnKi(sx) > 1.

From 6.2 it is clear that N2 satisfies conclusion (B) of this proposition. Now

vJinK¡(b2)^ 2, and so Remark 4.4 with yP(G) > 4 imply \W(G,JnK)\^4

and \W(G, Jx D Kx)\ ^ 4. We may assume, without loss of generality, that c e

V(K n A",). Then c = /? and so e e V(K n Kx). But now e = p, the required

contradiction. It follows that vG(ax) = 3.

Remark 6.5. Some of the possibilities allowed by Proposition 6.4 are listed here

for clarity.

(1) If bx * p and b2 # p then 6.4(B) holds for / = 1 and /' = 2, and diagram 2 of

Figure 6F applies.

(2) \fb2=p then 6.4(A) holds for i = 2, and diagram 3 of Figure 6F applies. A

similar decomposition occurs when bx = p.

(3) It is possible that 6.4(A) holds for i = 1, yielding Tx and N2 with/; = bx, and

separately for i = 2, yielding T{ and N[ with p' = b2. Let H = Tx U F U T2 in this

case. Then W(G, H) ç {bx,b2,sx,s2} and in particular we may have:

(a) W(G, H) = {bx, b2), H is a link-graph and G has fragments £*,, L*x, Lxx,

(b) W(G, H) = {6,, b2, sx}, H is a triad and G has fragments L*,, £*,, I^, £23;

(c) W(G, H) = {bx, b2, s2), H isa triad and G has fragments Lf,, Lf2, L*¿, F22;

and

(d) If(G, ZZ) = {ô,, o2, s,, s2}, and the number of fragments in H is unrestricted.

(4) In case 3(d), Propositions 6.2 and 6.3 can be used to show that bx, b2 are not

adjacent in H. Thus, except for the single graph in case 3(a), any edge of G in no

quadrilateral is in a fragment £ = Lxx which is an induced subgraph of G.

(5) An edge of G in no quadrilateral may be in one or two fragments £ = £*,

only. This depends on whether the edge is in one or two triads of G, respectively.

Proof of Theorem 6.1. Suppose S ç P4(G) is an equivalence class of the relation

- and £ is the fragment of G it determines. If £ contains a singular edge of G then

£ = Llx or £ = £*,, by Propositions 6.2 and 6.4. Assume henceforth that £

contains no singular edge. Then any Q e 5 has V(Q) = {a,, a2, c,, c2} with vertices

ax, a2 trivalent and nonadjacent in G. For some maximum k ^ 2 there exist triads

Tx, T2,...,Tk in G with distinct centres ax, a2,...,ak, and endvertices c,, c2, and
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bx,b2,...,bk, respectively. If b¡ = b¿ for unequal ;', ; then T¡ U Tj s D2 as in Lemma

4.3(b), in which case G = K33 by Remark 4.4, and £ = G = C13. Otherwise

bx, b2,...,bk are distinct. If either k ^ 3 (when & = 3 one of cx, c2 may be trivalent),

or k = 2 and both c,, c2 are nodes of G then it is easily verified that £ = Uf=1Tj =

T2k. Assume these cases do not hold. Then |S| > 2, any ß e 5 contains at most one

node of G, and quadrilaterals ß' of G intersect those of S in either the null graph, a

vertex-graph or a link-graph of G. When ß' £ 5 such a vertex-graph or link-graph is

nodal.

Adopt the notation of Figure 6B and show quadrilaterals Qx, Q2,... ,Q„ e 5 exist

for n ^ 2 such that either statement (A) or (B) which follow apply. The quadrilater-

als are specified by their vertices written in circular order, and edges by their

endvertices.

(A) We can write ß, = (a2,_,, a2/, a2/+2, a2j+x) for 1 < / < n, where the edges

ö2i-ia2i+i> a2ia2i+2 are m no other quadrilateral of G, the vertices a,, a2,...,a2n + 2

are distinct, and at most ax and one of a2n+l, a2n+2 are nodes of G.

(B) We can write ß, = (s¡, a¡, a,+1, a,+2) for 1 < / < n and; e {1,2} vw'/n ; = i

(mod 2), where the vertices sx, s2, ax,... ,a„+2 are distinct and, when n ^ 3, at most sx

and s2 are nodes of G.

Set ZZ„ = ßj U ß2 U ■ • • U ß„. Because |5| > 2 there exist ß,, ß2 e 5, adjacent

under ~ , such that Qx n ß2 is a link-graph with endvertices trivalent in G.

Statement (B) with n = 2 applies trivially. Now H2 is an induced subgraph of G, by

yP(G) > 4, and the assumption that quadrilaterals of G meet those of 5 in at most

one edge. Either (A) with n = 2 also applies or, with some simple adjustments in

notation, a quadrilateral ß3 = (sx, a3, a4, a5) can be assumed to exist. Suppose the

latter case applies. If sx and a4 are nodes of G, then Proposition 6.2 ensures a, and s2

are centres of triads Tx and £2, respectively. Let b[ and b'2 be the endvertices of these

triads not in H2. If b'x = b'2 then Remark 4.4 applied to £, U ZZ2 U T2 with sx and a4

nodes yields a contradiction, so that b[ ¥= b'2. It is now routine to check £ = Tx U H2

U T2 = L12.lf sx and a4 are not both nodes of G assume a4 is trivalent, without loss

of generality. Then ß3 e S and we may drop the prime and consider H3 in the

notation of (B). If sx is trivalent then Remark 4.4 applies to yield H3 is a triad and

that G = C2 4 is the indecomposable graph of a cube. We may assume sx is a node of

G. Then a1 and a5 are trivalent, by Proposition 6.2, and case (B) applies with n > 3.

Suppose (A) holds and, inductively, that n is maximum. Then n > 2 and

W(G,Hn)= {a,, a2, a2n+1, a2„+2}. If ZZ„ contains nodes of G we can assume

without loss of generality that a, is a node. By Proposition 6.2 it follows that a2 is

trivalent. If one of a2n+1 or a2n+2 is also a node of G then let £t and £2 be the triads

of G with respective centres a2 and either a2n+2 or a2n+1. Let bx and o2 be their

endvertices not in Hn. If bx = b2 then Remark 4.4 with |£(ZZ„)| ^ 4 contradicts

G & L. Thus o, =£ o2 and we readily see that £ = £, U ZZ„ U £2, and £ = LXn or

£ = L2n for n > 2. Here L22 = L22. Alternatively a2n + 1 and a2n+2 are trivalent. As

£has no singular edge there is a quadrilateral Q'„ + x = (a2n+x, a2„ + 2, a2n + 4, a2„ + 3)

e S. By the maximality of n and Remark 4.4 for G e L it follows that Qx n Q'n+X is

a link-graph with endvertices ax and a2, which are trivalent. Thus £ = Hn U ß,'!+1 =

G, and either G = Cj   +1 for n ^ 3 or G = C2 „ + 1 for n > 4.
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In the cases remaining (B) applies, with n maximum. Then n > 3, and sx is a node

of G, by earlier remarks. As quadrilaterals of G intersect those of S in at most one

edge it follows that sx and s2 are not adjacent. By inductive assumption

ax, a2,...,an+2 are trivalent, whence W(G, Hn) = {sx, s2, ax, a„+2}. If ax and an+2

are adjacent in G then n = 2k for k > 3, and G s C*+1. The case k = 2 was treated

earlier and gave the cube. It is excluded here because sx is a node. At this point all

the indecomposable G e M shown in Figure 6B have been constructed. In what

remains assume ax and an+2 are not adjacent, so that Hn is an induced subgraph of

G.

Applying Remark 4.4 and yP( G ) > 4 we see that s2 e W(G, Hn).\fsx £ W(G, Hn)

then Hn is a triad of G with centre x e V(Hn) and endvertices al5 a„+2, s2. When n

is odd this contradicts the maximality of n, and when n is even this contradicts

yP(G) > 4. It remains to consider the case where W(G, Hn) = {ax, an + 2, sx, s2).

Then sx, s2 are nodes, except possibly for s2 when n = 3, and ax, an+2 are centres of

triads Tx, T2 of G with endvertices bx, b2 e V(Hn), respectively. If s2 is trivalent

when n = 3 let b3 be the vertex not in H3 adjacent to s2. If bx = b3 or b2 = b3 then

Remark 4.4 implies kp(G) < 3. Thus s2 is incident with a singular edge of G,

contrary to Proposition 6.4. If bx = b2 = o then the complement 7\ U H„ U £2 is a

triad of G with centre x and endvertices o, s,, s2. When n is odd this contradicts

Proposition 6.4, because xs2 is a singular edge of G and sx is a node. When n is even

this produces the degenerate fragments of Figure 6D. Finally, when bx # b2 the

maximality of n implies £ = £, U ZZ„ U T2 = Lfn, for n > 3. This completes the

proof.

Corollary 6.6. The constituents of any G e M are induced subgraphs of G.

Proof. Let £ be a fragment of G and Fx be its corresponding constituent. By

Theorem 6.1 the fragment £ can be expressed as in Figure 4C or 4D. Then Fx is

induced provided sx, s2 are nonadjacent in Fx. When £ = Lxl, F = Lxx, F = T2k for

k > 2 or £ £ L* £ for even & > 4, then £ is induced, by yP(G) > 4. If £ = L*¿ then

£ is singular and sx, s2 are not adjacent. Otherwise, sx and s2 are nodes and any edge

joining them is singular. Assume such an edge exists. If £ = Lu or £ = L\ k for

k > 3, then there are quadrilaterals not in £ equivalent under ~ to those in £, which

is impossible. When £ = LXk for k ^ 4 or £ = L2>Jt for k > 3, Remarks 6.3 implies

s,, i2 are separated in / U Jx by the edges cd, ef. This is contrary to the minimality

of / because these edges are in a common quadrilateral. It follows that constituents

are induced subgraphs.

The above theory shows how the decomposable G e M break up in a reasonably

simple way into constituents. A full characterization should include how the con-

stituents recombine to produce decomposable G e M. Reference [1] provides an

adequate theory of this type in a similar context. Three ways to proceed seem

feasible: a direct description of how fragments combine at triads and nodes to give

G e M; a theory of how these graphs can be built up within M; and a study of

further simple operations within L to obtain a less complicated minimal class. For

example, in the second approach one would show how to remove singular fragments
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and singular triads (those whose endvertices are nodes) and then show how to delete

and contract constituents (possibly producing more of these singularities). Com-

bined, these operations should lead to the indecomposable G e M and perhaps to a

few decomposable G e M. At present this looks like a rather technical and repetitive

task. It is left open until the context of similar problems expands to better motivate

the approach to be taken and provide stronger lemmas to cut down on repetitive

work.
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