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VARIATIONAL INVARIANTS

OF RIEMANNIAN MANIFOLDS

BY

JERROLD SIEGEL AND FRANK WILLIAMS

Abstract. This paper treats higher-dimensional analogues to the minimum geodesic

distance in a compact Riemannian manifold M with finite fundamental group. These

invariants are based on the concept of homotopy distance in M. This defines a

parametrized variational problem which is approached by globalizing the Morse

theory of the spaces of paths between two points of M to the space of all paths in M.

We develop machinery that we apply to calculate the invariants for numerous

examples. In particular, we shall observe that knowledge of the invariants for the

standard spheres determines the question of the existence of elements of Hopf

invariant one.

Introduction and background. One of the classical objects of study in Riemannian

geometry is the notion of minimum geodesic distance in a manifold M. In this paper

we shall conduct a systematic study of higher-dimensional analogues to this concept.

Just as the minimum geodesic distance is based on the lengths of paths in M, the

invariants we shall consider are based on the widths of homotopies into M. (The

width | H | of a homotopy H: X x I -» M is the supremum of the lengths of the paths

traversed by the individual points of X under H.) As the geodesic distance dist(x, y)

between two points x, y in the same component of M is the infimum of the lengths

of the paths connecting them, so may we consider, for homotopic maps /, g:

X -» M, the homotopy distance w(f,g) which is the infimum of the widths of all

homotopies from / to g. We may think of this as a parametrized variational problem

or as a minimal path problem in the function space Mx.

In general w(f, g) is not finite. For example, let e: R -* S1 be the exponential

map and c: R -» Sx be any constant map. It is easy to see that w(e, c) = oo since for

any homotopy from e to c there are points that must "unwind" arbitrarily many

times. The starting point of the body of work of which this paper forms part was the

realization that this example represents the exceptional case. The more general

situation is suggested by the following simple example.

0.1. Example, (a) For any/, g: R2 -» S2, w(f, g) < 27r.

(b) There exist maps/', g': R2 -» S2 such that w(f, g') = 27r.

Proof, (a) Let n: S3 -* S2 be the Hopf map which has dilatation 2 [11]. Lift/and

g to/, g: R2 -» S3. For dimensional reasons, we may deform/to g by homotopies of

Received by the editors March 24, 1983 and, in revised form, October 3, 1983.

1980 Mathematics Subject Classification. Primary 53C20, 55R65; Secondary 58E05, 55P99.
Key words and phrases. Riemannian manifold, homotopy, Morse theory, fibrations.

©1984 American Mathematical Society

0002-9947/84 $1.00 + $.25 per page

689



690 JERROLD SIEGEL AND FRANK WILLIAMS

widths arbitrarily close to m. We thus obtain, by composition with h, a homotopy

from/to g of width arbitrarily close to 277.

(b) By wrapping R2 around S2 along rays from the origin, we obtain a map /,.

Elementary algebraic topology yields that any homotopy from fx to the constant

map gx at the origin must move some point along a path of length at least 277.   D

This example indicates that using the homotopy distance between maps into M as

the analogue of the minimum geodesic distance between points of M produces

meaningful information for certain domain spaces X. This phenomenon turns out to

be quite general. In fact, the best description of the general situation depends only

on the dimension of the domain space X. For the rest of the paper, M will denote a

compact Riemannian manifold with mx(M') finite. By the dimension of a normal space

we mean its covering dimension. The fundamental existence theorem is

0.2. Theorem [2]. For each integer k > 0 there exists a real number bk(M) such

that if X is any normal space of dimension < k and f ~ g: X -* M, then w(f,g)^

bk(M). Hence there are defined a sequence of invariants bk(M) = infimum of such

bk(M).

It was also shown in [2] that these numbers are nontrivial: in fact,

limk^x(bk(M)) = oo. The numbers reflect subtle topological and geometrical prop-

erties of M. A good example of this is the fact that b2n_2(S") = 277 if and only if

n = 2,4 or 8 (otherwise b2n_2(S") = 3m). As one might suppose, the difference in

the calculations of the two cases involves the existence of elements of Hopf invariant

one.

Our present study involves two separate techniques, one for producing upper

bounds and one for lower bounds. We shall observe that the method for studying

lower bounds applies to all manifolds. Our technique for estimating upper bounds

presents a different situation. The existence of the numbers bk(M) was demon-

strated by identifying a compact subset Ck of paths of finite length in the full space

of paths M'. This subspace possessed sufficient lifting properties to assure us of the

fact that any homotopy, regarded as a map X -» M', could be deformed into Ck

keeping the end maps fixed. On the other hand, our explicit computations in [3 and

10] depended on finding subspaces of M1 with much stronger lifting properties. We

are now able to give a fairly complete answer as to what class of manifolds possesses

path spaces with these stronger properties. A sufficient condition is that M has

everywhere positive Ricci curvature. We shall also produce a manifold (with negative

curvature) whose pathspace does not possess subsets with the stronger lifting

properties.

We shall review this material In §1, which contains precise definitions and

statements of results as well as a number of examples, including a proof independent

of a priori knowledge of the Hopf invariant one dimensions that b2n_2(S") = 277

implies the existence of an element of Hopf invariant one in 772n_,(5"!).

Applications now also include complete calculations of the invariants for standard

spheres, products of spheres with different radii, and the real, complex and quater-

nionic projective spaces. It is also possible to compute all but a finite number of the

:-<«>nants for comoact lie prmm« we shall present these calculations in §11.
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I. Definitions and statement of results. The results in this paper are best stated in

terms of three sequences of extended real numbers. We begin this section by defining

these sequences. For convenience we shall assume that our domain spaces X are

finite-dimensional complexes. By the "bridge" technique of Morita [9] our results

apply without change to all finite-dimensional normal spaces. We recall the follow-

ing definitions from [10]. Since they can be stated for any metric space, we

temporarily drop our standing hypotheses on M.

1.1 Definitions. Let (M, a") be a metric space.

(a) The length \a\ of a paht o: I -> M is given by the formula

|o| = sup| ¿ </(<»(',■). "('i-i)))

taken over all partitions 0 = t0 < tx < ■ ■ ■ < tk = 1, for all k.

(b) The width \H\ of a homotopy H: X X I -» M is given by the formula

|ZZ| = sup{|ZZJ:xe^}.

For maps/, g: X -> M and a homotopy H from/to g, we set:

(c) W(H) = inf{|ZZ'|:Zf ~ H rel X x {0,1}}.

(d) w(f, g) = inf{|ZZ'|: H'0 = f, H[ = g).
Finally we arrive at the two basic sequences:

(e) Bq(M) = sup{ W(H): H: X X I -» M, dim(A') < q).

(f)bq(M) = sup{w(f, g):f~g:X^ M, diraiX) < q).
Thus if dim( X) < k then any homotopy H: X X I -> M can be deformed relative

to the end maps to one of width < Bk(M) + e for any e > 0. Also, for any

homotopic maps /, g: X -* M, there exists a homotopy between / and g of width

< bk(M) + e. Of course Bk(M) and bk(M) are, in general, only extended real

numbers, but if M is a compact Riemannian manifold with mx(M) finite it was

shown in [2 and 10] that these numbers are finite. In describing our results it will be

useful to relate these sequences to a third one, a relative version of Bk(M), that

appears to be finite only in much more restricted settings.

1.2. Definitions. (a)A number R > 0 is called a relative k-bound for M if for any

X, din^X) < k, any homotopy H: X X I -» M, and any subcomplex; A c X for

which \H\A\ < R, there exists a deformation H' - Hrel(X X {0,1}) with |ZZ'| < R

and for each stage Hs of the deformation we have |Hs\A\ < R.

(b) Define Bf(M) = inf{ R: R is a relative abound for M}.

Obviously bk(M) < Bk(M) < B*(M). As we stated above Bk(M) is finite

whenever M satisfies our standing hypotheses. The situation is more complicated for

the Bf(M). We will present examples of spaces (spheres with appropriate geome-

tries) for which Bk(M) = oo. On these manifolds there are thus homotopies that

may be shortened to a certain width but not without first lengthening them on an

already short part.

We begin to develop the technical machinery.

1.3. Definitions, (a) Give a fibration £ c £ -> B, a subset C c £ is called a

k-carrier for the fibration if for every X of dimension ^ k and every pair of maps /:

X -> B and g: X -* E such that pg = /we may deform g vertically to a map g' such

thatg'(^)c C.
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(b) C is called a relative k-carrier if for every subcomplex A a X and every map of

pairs g: (X, A) -> (£, C) such that pg = f, g may be deformed vertically as a map

of pairs to a map g' such that g'( X, A) c (C, C).

1.4. Theorem [2], Lei £ c £ -> £ oe a Hurewicz fibration, locally trivial in the

sense of Dold [6], Let B be compact and F have the homotopy type of a CW-complex of

finite type. Then for each k > 0, £ /zas a compact k-carrier.

1.5. Corollary. í/naer rñe standing hypotheses on M, i.e. that M is a compact

Riemannian with finite fundamental group, Bk(M) < oo.

Proof. We give a different proof of this corollary from the one given in [2] since

we shall wish to refer to this modification in the sequel. Let k > 0. We begin by

applying 1.4 to the fibration ŒAf c M1 -» M x M, where p(f) = (/(0),/(l)), to

find a compact ^-carrier CcJI/'. We form a new space £ by metrizing the space of

piecewise smooth paths in M as in §17 of [8] so that the path-length function

becomes continuous. The inclusion i: E -* M' is a homotopy equivalence over M

and the specific inverse n defined in [8] does not increase path length. The compact

set h(C) is contained in the subset £x c £ consisting of paths of length < X, for

some X. Hence i(h(C)) c (M')x. Since /n is vertically homotopic to the identity

map of M', it follows that i(h(C)) is again a /(-carrier.   D

Since any superset of a /V-carrier is clearly a /V-carrier, this proof of 1.5 shows that

for every k > 0, there exists X such that (M')x is itself a ^-carrier.

We next consider the corresponding situation for Bf(M). The important dif-

ference is that the finiteness of Bk(M) imposes strong topological conditions on M1.

The following theorem summarizes the situation.

1.6. Theorem. Let Bk(M) < X. Then there exists X' ^ À such that (M')x, is a

relative k-carrier. For such a X', 77,(fi(x, y ), ßv(x, y )) = 0 for i < k and all (x, y) e

M.

Proof. The first implication is just a restatement of the definitions. The second

results from applying the definition to representatives of the generators of the

relative homotopy groups.   D

The general philosophy that we shall use in our computations goes as follows.

Since any homotopy may be approximated by one that moves points along piecewise

smooth paths, we shall henceforth use the notation M' to denote this subspace of the

full pathspace. For x, x' e M and X > 0 the Morse theory [8] gives topological

information about the space üx(x, x') of piecewise smooth paths in M from x to x'

of length less than À. A map X -* Qx(x, x') may be considered to be a homotopy of

width less than (or equal to) X between the constant maps of X to x and x',

respectively. (This point of view is taken by Gromov in [7].) A reasonable approach

to take in studying homotopies of width less than X between arbitrary maps is to

globalize the Morse Theory for ttx(x, x') to the mappx: (M')x -> M X M, wherepx

is the projection of the space of all piecewise smooth paths of length less than X to

their endpoints.
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The calculations in [10] of the Bk(S") were actually calculations of the B^S").

That the situation becomes more complicated for other manifolds is seen through

the following example.

1.7. Example (The Hourglass). We produce a M such that B*(M) = oo. Let K

be the surface in R3 given in cylindrical coordinates by the equations r = z2 + 1,

|z| < 2. Form M by smoothly attaching 2-cells to each end of K and extend the

induced Riemannian metric on K to M in any way. Clearly

Bf(M) > B*(M) > diam(M) =   max d(x, y) > 2t7.
x,ysM

Let X > 277 and let x = (1,0,0). We shall show that üx(x, x) is not connected and

hence mx(Q(x, x), tix(x, x)) * 0. Choose n so that 2(n + 1)77 > À > 2n77. Let a e

ßx(x, x) wrap around the circle z = 0 n times. We observe that a is not homotopic

in $ix(x, x) to the constant path, since there is not enough "room" to pull it over the

end. It follows, using Theorem 1.6, that BX(M) > X. Since À was arbitrary,

£f(A/)=oo.    D
1.8. Example. It is instructive to try adjusting 1.7 by letting M be the flat cylinder

r = 1, |z| < L, with its ends capped off. Again let x = (1,0,0). In this case, for any

e > 0 there exists n such that the loop an(t) = (cos(2mnt),sin(2mnt),Q) is contract-

ible in ti2„n+t(x, x). To see this, choose m such that m\J4m2 +(L/m) < 2mm + e

and set n = 2m + 1. Consider the following diagram:

x   1- L -1

(l/2l/4n2+   (L/m)2      -^\ /

1 V
I—  L/01 —I

By pulling the n loops toward the end we can get out and back in 2m loops with one

loop left over to slip over the end.   D

We do not known whether Example 1.8 possesses a compact relative /c-carrier. The

general area of questions dealing with the relationship of curvature and the existence

of relative ^-carriers seems to be a fruitful one for future work.

Because of Example 1.7 one might be tempted to dismiss the numbers Bf(M)

from further consideration. In fact, in all the cases for which we have been able to

compute the numbers Bk and bk, not only are the Bf finite but they are equal to the

Bk. We shall be particularly concerned with when and why the various inequalities

among these invariants become equalities. Our attention was drawn to this question

by the surprising situation for the standard spheres. Here, for n > 2, we have the

equality Bk(S") = B^S"). Moreover, bk(S") = Bk(S") except when the Hurewicz

map 7r¿(ñS") -* Hk(S") is a nonzero epimorphism (i.e. when k = n - I or n = 2,4

or 8 and k = 2n - 2). In these cases bk(S") = BkAS"). We conjectured in [10]

X
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that the value of bk(M) is always either Bk(M) or Bk_x(M). Since the Bk have been

considerably easier to compute and describe than the bk, the affirmative proof of

this conjecture would represent a considerable help in the computation of the bk. We

have not yet been able to verify this conjecture, although all the computations we are

now able to make are consistent with it. To lay the groundwork for these computa-

tions, we now begin listing the ingredients of the main results of this paper.

1.9. Let x, x' e M, X > 0, k be a nonnegative integer, and let

(a) i*:Hk(Qx(x,x'))->Hk(Q(x,x')),

(b) i#:mk{ax(x,x'))-+mk(ti(x,x'))

be induced by inclusion.

Let p: Hk(ti(x, x')) -» Hk(£i(x, jt'))/(spherical elements) be projection.

In §IV we shall prove

1.10. Theorem. Let x, x' e M.

(a) If i „ fails to be onto, then Bk(M) ^ Xandbk + X(M)^ X.

(b) If pi „fails to be onto, then bk(M) > X.

(c) If i „fails to be a split epimorphism, then bk + x(M) ^ X.

Although homology conditions are usually easier to check, Theorem 1.10 also has

a homotopy version:

1.11. Theorem. Let x, x' e M.

(a) If i# is not onto, then Bk(M) > X and bk+1(M) > À.

(b) Ifi# fails to be a split epimorphism, then bk+x(M) > X.

The upper bounds obtained for Bk(S") were based on the approximate covering

homotopy property. We recall that a map p: E -* B has the XCHP(&) provided that

for any (normal) space X of dimension k or less, maps H: X X I -* B and g: X -» E

such that p(g(x)) = H(x,0), and e > 0, there exists G: X X I -> £ such that

G(x,0) = g(x) and p(G(x, t)) is within e of H(x, t). The connection between

Bf (M) and the XCHP(/c) is given by

1.12. Theorem (cf. Theorem 2.1 of [10]). If(M')x -» M x M has the XCHP(A:),

then Bf(M) < X. Hence Bk(M) < A.

The necessary observation required to get the result for B* rather than B is that

the XCHP(/c) implies a relative XCHP(fc) for pairs of complexes. The same

argument that is used to show that this is true for fibrations applies also in this case.

1.13. Remark. It is easy to show by tracking through the definitions that if

Bf(M) < X then (M')x -» M x M has the XCHP(/c - 1). Since we shall make no

use of this fact, we omit its proof.

There are various sets of sufficient conditions for a map to have the XCHP(fc)

(see, e.g., [5 and 4]). For our purposes we shall prove the following theorem which

makes use of the homotopy of the Qx(x, x').
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1.14. Theorem. Let k ^ 1 and X > 0. If there exists a dense set of points

{(x, x')} c M X M such that

v,(Qx.(x, x')) -* 7r,.fc(ß(x, x'))

is isomorphic for all 0 < / < k, X' < \, then (M')x-* M X M has the XCHP(/c - 1).

ConsequentlyBk(M) ^ X.

A reasonable additional hypothesis is that the morphism be epimorphic on mk, but

this is not sufficient to guarantee the XCHP(/V). However, this requirement is

sufficient for Bk(M):

1.15. Theorem. If we add to the hypotheses of 1.14 the requirement that the maps

irk(Qx,(x, x')) -* mk(Q(x, x')) be epimorphisms, then Bk(M ) < À.

Under the hypotheses of Theorem 1.14 we have a completely determined situation

for Bk(M) and B*(M):

1.16. Corollary. Suppose k and X satisfy the hypotheses of Theorem 1.14. If

mk(Q,x,(x, x')) -* mk(Q,(x, x')) fails to be onto for any x, x' e M and any X' > X, then

Bk(M) > X. Otherwise Bf(M) ^ X.

Since Bk(M)^ bk(M), upper bounds for the Bk(M) are necessarily upper

bounds for the bk(M). An additional upper bound for bk(M) appears in the

following result.

1.17. Theorem. Let Bk_x(M) < X and let i„: mk_x(Qx,(x, x')) -» mk_x(ü(x, x'))

be isomorphic for a dense set 2 of(x, x')'s and for all X' > X. Then bk(M) < X.

1.18. Remark. The nonexistence of elements of Hopf invariant one was used to

show that b2n_2(S") ^ 377 for n + 2,4 or 8. Theorem 1.17 provides the reverse

implication. That is, if b2n_2(S") > 277, then the suspension 2: ^-¡(S"'1) -*

772n_2(5") fails tobe injective, since ß2„(x, x') - S"_1 and the inclusion S"~x c ßS"

induces 2. Hence there is no element of Hopf invariant one in v2n_x(S"). Thus if an

alternate proof that b2n_2(S") > 2m (n ¥= 2,4 or 8) could be found, perhaps of a

geometric nature, it would then provide an alternate proof of the nonexistence of

elements of Hopf invariant one.

The setting of Theorem 1.15 provides us with one final lower bound theorem for

bk(M):

1.19. Corollary (to Theorem 1.10(b)). Under the hypotheses of Theorem 1.15

suppose that {0} # ker(/i) n ker(/#) in dimension k - 1 for some one of the (x, x')'s.

Thenbk(M)>X.

To organize these results, it is useful to suppose that X is such that 7r-(ß, fiv) = 0

for all X' > X.

1.20. Summary. Suppose that iTj(Çl(x, x'), ßA-(jc, x')) = 0 (or, equivalently (in the

l-connected case) that Hj(Q(x, x'), ßy(x, x')) = 0) for a dense set of (x, x'), for all

X' > X, andj < k — 1. Then Bk_x(M) < X. Furthermore:



696 JERROLD SIEGEL AND FRANK WILLIAMS

(i) ///'* is an isomorphism on mk_x, then bk(M) < X;

(ii) if i„ does not split or //ker(/#) n ker(n) ¥= 0 in dimension k - 1 for any (x, x')

and any X' > X, then bk(M) > X; and

(iii) // /„ is not onto in dimension k for some (x, x') and any X' > X, then

Bk(M) > X.
In general, Wj(ü(x, x'), ßv(x, x')) may never be trivial. Indeed, (M')x -* M x M

may never have the XCHP(fc) for any X or k. Remark 1.13 shows that 1.7 provides

an example of such a M. This defines the limit of the information on upper bounds

that is obtainable from the Morse theory. There are, therefore, Morse-theoretical

lower bounds that always apply and upper bounds that always are finite but do not

necessarily come from Morse theory. At this stage, information of a geometrical

nature is necessary to go further. If the Ricci curvature K(U,U) is positive for all

unit tangent vectors on M, then for every k there exists a À such that the hypotheses

of 1.20 are satisfied [8]. In this case the situation is completely determined except

when, in dimension k — 1, i„ does split and ker(z'*) ¥= 0 while ker((#) n ker(n) = 0.

We shall see in the next section that in many instances this situation does not arise.

Thus for these examples we obtain a complete computation of the oA.(M)'s.

II. Examples and computations. We shall begin this section with three examples

that illustrate various aspects of Theorems 1.10 and 1.15. In the first two we shall

take M to be a product of standard spheres, perhaps with different radii. We endow

M with the product metric. Thus the energy function on the product is the sum of

the energy functions of the factors. Hence the critical paths are products of the

geodesies on the factors and the index of a critical path is just the sum of the indices

of its factors. Finally, the cells of S2M correspond to the expected products of cells of

the factors under the Morse-theoretic cell decomposition.

2.1. Example. Let M = Sm x S", m < n, both spheres with radius one. Using the

above remarks, one calculates that the range of values where the morphism

77;(ßx(x, x')) -» 77,(ß(x, x')) is an isomorphism is determined by only the cells of

ß(S""). These are the cells that occur in the lowest dimensions relative to X. The

pattern of equalities and inequalities for bk(M), Bk(M) and Bk(M) are thus also

those of Sm. The numerical values are, if m ¥= 2,4 and 8,

Bk(M) = Bf(M) = ]]q2-r I»,       (q - \)(m - 1) < k < q(m - 1),

bk(M) = Bk(M),       k*m-\,

bm_x(M) = fim = Bm_2(M) = < Bm_x(M) = ßm.

If we choose m and n such that m-l#0 (mod n - 1), then ZZ„_,(ßAf) is

spherically generated so that pi„ is automatically onto when /'* is, yet bn_x(M) =

Bn_x(M). Thus the converse of 1.10(b) does not hold.

2.2. Example. Let M = Sm X S", m < n < 2m - 1, but now let S" have radius 2

while Sm retains radius one. The second factor now dominates, but with some
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influence from the first. The values now are, for m, n # 2,4 or 8,

2m]lq2 + 1 , 7a - 3 < k < Iq,
B*{M) = Bk(M)

and

m\j4q2 + 8a + 5 ,    Iq < k < Iq + 3,

bk(M) = Bk{M),       k*m-lom-l,

bm_x(M) = mfi = Bm_2(M) < Bm_x{M) = my/%,

b„_x(M) = mj% = Bn_2(M) < Bm_x(M) = 77VT7 .

2.3. Example. Let M = RP", n > 2, with metric induced by the projection

S" -> RF". The loopspace ßR£n ~ 5° X ßS" and the Morse theory is easy to

calculate. We find that

B*(RP") = Bk(RP") = qm,       (q - 1)(« - 1) « k < q{n - 1).

Thus these numbers coincide with those of S". Since any two points of R£" may be

connected by a path of length no greater than 77/2,

b0(RP") = 77/2 < w = B0{RP").

The standard application of Theorems 1.10 and 1.15 yields that

bk(RP") = bk(S"),       k>\.

We note that all three of these examples are consistent with our conjecture that bk

is always equal to either Bk or Bk_x. The next examples illustrate the gaps that may

occur between our upper bounds on Bk(M) and our lower bounds on Bk(M).

2.4. Example. Let M be the ellipsoid in R3 given by the equation (x/a)2 + y2 +

z2 = 1, with a > 1. If x = (0,1,0) and x' is any sufficiently nearby point, then for

small values of m the space ti2vm(x, x') is not connected, in similar fashion to

Example 1.8. But the Ricci curvature is everywhere positive on M. By well-known

Morse theory, see e.g. [8], for every k there exists X such that i „ is an isomorphism

on 77¿ for all nonconjugate x, x' e M. In this case there is a gap between the value of

X for which i„ becomes onto and the value for which it becomes isomorphic.

Although Bk(M) and Bk(M) must lie in this range of values, our present methods

do not tell us where.

2.5. Example. Let M = G, a Lie group with a bi-invariant metric. For each pair

x, x' of nonconjugate points in G, all geodesies from x to x' have even index [1], It

follows that if i„: Hk(üx(x, x'y) -» Hk(ü(x, x')) is onto for some k and À, then i„ is

an isomorphism on Hk for all À' > X. We thus obtain

Bf(G) = Bk(G) = inf{A: /* is onto for X and all x, x' e G).

Since these numbers are completely determined by the Morse theory, we may turn

to the bk(G). If x and x' are nonconjugate points then Hk(üx(x, x')) = 0 =

Hk(Sl(x, x')) for all odd k. It follows that Bln+X(G) = £2„(C7) for all n. Suppose
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that X is such that B2n(G) > X. Then ;'„, is not onto in degree k = 2n for some

(x, x'). Thus bk(G) > X for k > 2n + 1, so b2n+l(G) > B2n(G) and hence equals

S2B+1(G).

The number b2n(G) needs more information. We recall that G is the rational

homotopy type of the product of odd-dimensional spheres, say G ~QS2"l~l x

• • • X S2"'"1. Thus if 2n £ {2nx - 2,... ,2n, - 2}, the image of the Hurewicz map

on ßG in dimension 2n must be zero. It follows that in all but this finite set of cases

b2n(G) = B2n(G).

In the next two sections we prove the theorems of §1.

III. Upper bounds. We begin by fixing some notation. If x, y e M, let dist(x, y)

be the length of a minimal geodesic from x to y. Let pM be the injectivity radius of

M, so that if dist(x, y) < pm there exists a unique minimal geodesic m(x, y) from x

toy. Let B(x, e) denote the open e-ball with respect to the metric disc.

In the proof of Theorem 1.14 we shall replace the space M' by its subspace £

consisting of piecewise smooth paths of constant speed. If Ax, A2 c M, E(AX, A2)

will be the subspace of £ consisting of paths whose endpoints lie in Ax and A2,

respectively. The topology of £ is that of [1], so that path length becomes a

continuous function on £. The projection £ -* M X M is fiber-homotopy equivalent

to M' -* M x M. If a, ß e E and a(l) = ß(0), let a * ß denote the concatenation of

a with ß reparametrized so as to have constant speed. If a e E and 0 < s < t < 1,

then a[s, t] is the portion of a from a(s) to a(t) reparametrized so as to be in £.

Theorem 1.14 is an immediate consequence of the following somewhat stronger

theorem about £x = £ n (M')x.

3.1. Theorem. Let k > 1 and X > 0. If there exists a dense set of points 2 =

{(x, x')} a M X M such that for every e' < pm there exists e < e' such that

mt(Ex+e(x, x')) -» m¡(E(x, x')) is an isomorphism for all i < k, then Ex -» M X M

has the XCHP(Â: - 1).

The proof will use the following two lemmas.

3.2. Lemma. IfX > 0, e < \pM and x, x' e M, then the map

<¡>: Ex(B(x, e), B(x', e)) -* Ex+2t(x, x')

given by

$(w) = m{x, w(0))* w*m(w(l), x')

is a homotopy equivalence.

Proof. This is just a restatement of Lemma 1.6 of [3] generalized from the special

case M = S". The formulas given there show that a homotopy inverse to 0 is given

by *(a) = a[8,1 - 8], where 8 = e/(X + 2e).   D

3.3. Lemma. Let e', 8' > 0 and (x, x') e 2. Under the hypotheses of Theorem 3.1,

there exists e < e' such that if (p, p') e 2 n (B(x, e) X B(x', e)) there exists 8 <
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min{e - dist(/?, x), e - dist(x', p'), 8'} such that

m,{Ex{B(p,8), B(p',8))) ^ m^E^Bix^), B(x',e)))

is an isomorphism for 0 ^ i < k.

Proof. If e, 8 satisfy the above inequalities, we have the diagram

Ex{B(P,8),B(p',8))      -     Ex+2S(p,p')

fi lg

Ex(B(x,e),B(x',e))       -Ï      Ex + 2e(x,x')

in which / is inclusion and g(a) = m(x, p)* a* m(p', x'). This diagram is not

commutative, but it is homotopy-commutative, since the map T given by

r(a,i) = m{x, m(p,a(0)(s)))* m(p, a(0))[s,l]*a

*m{a(l),p')[0,l - s]*m{m{a(\),p')(l - s),x')

has

r(a,0) = m(x, p)*m{p,a(0))*a*m(a(l), p')*m(p',x') = g($/)(a)),

and

T(a,l) = m{x,a(0))*a*m{a{l),x') = Qx{a) = $,(/(«)).

We now choose e, 8 such that

^¡{Ex + iÁP-P')) ->Vi(E(P,P'))

and

7r,(£\ + 2f(^^')) ->Vi(E(x, x'))

are isomorphic for 0 < / < /c, as guaranteed by hypothesis.

We next extend g to g': E(p, p') -* E(x, x') by the same formula as g. This map

is clearly a homotopy equivalence (its inverse is given by ß -* m(p, x)

* ß * m(x', p')).

Thus in the diagram

£a+2«(/></)      -»     E{P>P')

I I
E\ + 2ÁX>X')      -*     E(x,x')

the top, bottom and right-hand arrows induce isomorphisms on 77,, 0 < 1< k - 1.

Consequently g and hence / also induce isomorphisms.   D

Proof of Theorem 3.1. The proof follows standard lines. By the "bridge"

argument of [9] it suffices to consider X a polyhedron. We content ourselves with a

description of the inductive step of an induction on the skeleta of X; cf. [5].
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We suppose given a map

H: {AJ X Z, A/ X{1}) -> {B(x,e) XB(x',e),U),

where Ay is a closed /-simplex, e is as in Lemma 3.3, and U is an open subset of

B(x, e) X B(x', e). Let b be the barycenter of A7 and (p, p') = H(b,l). We may

adjust (p, p') very slightly so that (p, p') e 2; hence there is 8 as in Lemma 3.3

such that B(p, 8) x B(p', 8) c U. Let aJ be an open subsimplex of A; such that

b e AJ and

H(ojx{l}) c B(p,8) XB(p',8).

We assume inductively that on the complex

L = (A>x{0}) u(Bd(A>) x/)u((A> V) X{1})

we are given a map H: L -» £x such that

(/>tf(L), pH{Bd(aJ) X {1})) c (£(*, e) X B{x', e), B(p, 8) X B{p', 8)).

Thus H defines an element of

mJ{Ex{B{x, e), B{x', e)), £x(£(/>, 8), B{p', 8))),

which group is zero of 0 < / < k - 1.

Hence H extends to map (Ayx/,AJX {1}) into

{Ex{B(x,e),B(x',e)),Ex{B(p,8),B(p',8)))

and the inductive step is completed.   D

The next lemma will be used in the proof of Theorem 1.15. We fix some more

notation. If x, x' e M and e < pM, let U(x, x'; e) = B(x, e) X B(x', e).

3.4. Lemma. Let x, x' e M, k > 0 and v > 0 be such that mi(E(x, x'), E„(x, x')) =

0 for i < k. Let Y be a complex of dimension k or less and W c Y a subcomplex. Let

U = U(x, x'; e). Suppose that g: (Y, W) -* (E(U), E„_2e(U)) is a map. Then there is

a vertical homotopy

H:(Y,W)XI^(E(U),EV+2C(U))

such thatH(y,0) = g(y)andH(Y x {1}) c Ep+2c(U).

Proof. Define g: (Y,W)^ (E(x, x'), Ev(x, x')) by

g{y) = m(x,g(y)(0))*g(y)*m(g(y)(l),x').

By hypothesis, there exists

H:(Y,W)XI ^ {E(x,x'),Ep(x,x'))

such that ZZ(y,0) = g(y) and H(Y X {1}) c E„(x, x'). We now define

ZZ(y, i) = m(g(y)(0), x)*H(y, t)*m(x', g(y)(l)).
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Then

H(y,0) = m{g(y)(0),x)*m{x,g(y)(0))

*H(y,t)*m{g(y)(l),x')*m{x',g(y)(l)).

Hence g(y) is homo topic to ZZ(y,0) by shrinking down the end segments while

keeping the ends fixed at g(y)(0) and g(y)(l). The required H is the concatenation

of this homotopy with H.   D

3.5. Construction. We next suppose that A' is a complex of dimension k or less

and that g: X -» £ is a map. Let e > 0 and {(x, x')} be an e-dense set of pairs in

M X M. We may partition (a subdivision of) X into subcomplexes {Xa}a<EA such

that p(g(Xa)) is contained in some U(x, x'\ e) and such that A = Ax U • ■ • U Ak + l

where XaC\Xß= 0 if a, ß e Ap a * ß.

Theorem 1.15 will be an application of the next

3.6. Theorem. Suppose 2 = {(x, x')} is an e-dense set of pairs in M X M, and

X, e, k are such that

m,{E(x,x'), Ex,(x,x')) = 0

for 0 < i < k, (x, x') e 2 and X < X' < X + (4k + 2)e. Let X be a complex of

dimension < k and Z a subcomplex. If g0: ( X, Z) -* (£, £x) is any map, then there is

a vertical deformation

H:(X,Z)XI^{E,EX+Mk+X)e)

such that H(x,0) = g0(x), andH(Xx {1}) c £x+4(/t+1)£.

Proof. We construct a sequence of maps gj(j = 0,1,... ,k + 1) as follows. Let X

be partitioned as in 3.5 and define

BJ = U{Xa\a^AJ}.

Let C, = U(5Sy£,. We suppose that g, is defined for 0 < ; < j such that g0 is the

hypothesized g0 and if 1 < i < j that

g,:(X,C,UZ)-*(E,Ex+4te)

is vertically homotopic to g0 as a map of pairs.

For every a & A¡, let Xa be a "halo complex" of Xa in X such that if a + ß then

Xa n % = 0 an<^ sucn tnat P(8o(Xa)) is contained in some U(x, x'\ e) which we

name Ua. Thus we have r\a: X -> I such that T\a(Xa) = 1 and r/a(X\ Xa) = 0.

We now apply Lemma 3.4, taking U = Ua, Y = Xa, W= Xa n (Cj_x u Z),

g = gj-X\Xamdv = \ + (4j-2)e.

Let Ha. (Xa,Xan(CJ_xUZ))xI^(E(Ua),Ex+4je(Utt)) be the homotopy

given by 3.4.

Now define

J \gj-i(x) otherwise.

Clearly g satisfies the inductive hypothesis. Completing the induction, we arrive at
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gk+x: (X, Z) -» (£, Ex+Mk + l)e)

which is vertically homotopic to g0 as a map of pairs.   D

Proof of Theorem 1.15. Lifting a map (/, g): X -» M X M to £x produces a

homotopy from / to g of width less than X. Suppose that X is a ^-dimensional

complex, that A <z X, and that H: X X I -* M is a homotopy such that |ZZ|J < A.

By Theorem 1.14 we may deform H\(Xa~X) x Z) (rel. X'^1» x {0,1}) to have

width less than X in such a way that H\(A{k~l) x I) is deformed through homotopies

of with < X. The proof of the homotopy extension theorem together with a patching

argument similar to that of Theorem 3.7 of [10] shows that we may extend this

deformation to A X I to obtain a deformation of

H\{Xlk~X)UA) XI    (rel. (X{k~l)UA) X{0,1})

such that H\(A XI) is deformed through homotopies of width < X. Another

application of the homotopy extension theorem allows us to extend this deformation

(relative to X x {0,1}) to all of X x I. Thus we may assume without loss of

generality that H satisfies this condition. Thus H may be regarded as a map of pairs

H:(X, X(k~l)UA)^ (£, £x). Forô > 0, choose an e-dense set {(x, x')} c M X M

for some e < 8/(4k + 4). We apply Theorem 3.6 to these data to obtain

H : X ^ £x+4(/t + i)f c E\ + 8

that is vertically homotopic to H. Since this can be done for arbitrarily small 8,

Bk(M) < A.   D
Proof of Theorem 1.17. Let 0 < e < pM. Let A" be a /c-dimensional complex and

let H: K x I -» M be a homotopy between maps f,g:K^>M. We subdivide K so

that the image of each simplex under the map (/, g): K ^> M X M is contained in

U(x, x'; e/8) for some (x, x') e 2.

Since Bk_x(M) < X we may deform H\(Kik~X) X I), keeping endpoints fixed, to

a homotopy H of width < A + e/4. We use the homotopy extension property to

extend H to all of K x I as a homotopy from/ to g.

Let A be a ^-simplex of K and suppose that (£, g)(A) c U = U(x, x'; e/8). Now

ZZ|(A X Z) determines a map h: (A, Bd(A)) -> (E(U), £x+f/4(i/)).

Since (E(U), Ex+e/4(U)) ~ (E(x, x'), Ex + t/2(x, x')), the hypothesis guarantees

that Â|Bd(A) extends to a map h: A -» Ex+e/4(U). If H: A x I -> U is the

homotopy determined by h, then H is no longer a homotopy from/|A to g|A; but

since/(A) and ZZ(A X 0) (resp. g(A) and ZZ(A x 1)) are both in B(x, e/8) (resp.

B(x', e/8)), we may compose with geodesies of length < e/4 at each end of H to

obtain a homotopy H of width < X + 3e/4 from/|A to g|A. Since H agrees with H

on Bd(A) x I, we may carry out this process on each /c-simplex of K to extend

H\(K<k-l) X I) to H: K X I -» M, a homotopy from / to g of width < A + 3e/4.

Hence bk(M) < A.   D

IV. Lower bounds. The lower bounds we shall obtain require only null-homotopic

maps and homotopies to the constant map. Hence we shall concentrate in this

section on the subspaces PM(x) of M' consisting of those paths emanating from
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x e M. We shall use the principal action tj: ü(x, x) x PM(x) -* PM(x) given by

îj(a, w) = a* w.

Proofs of Theorems 1.10 and 1.11. For the first part of Theorem 1.10, suppose

that x, x' e M, X > 0, and k are such that ¡ *: Hk(Slx(x, x')) -> Hk(ü(x, x')) fails to

be onto. We may choose a ft-dimensional complex K and map/: K -* ß(x, x') such

that f# is epimorphic on Hk. If we regard / as a homotopy between the constant

maps at x and x', respectively, then a deformation of the homotopy keeping

endpoints fixed amounts simply to a homotopy of/in ü(x, x'). If Bk(M) < X, we

could deform / into ßx(x, x'), contradicting the fact that /# is onto. Hence

Bk(M)^X. (Clearly this portion of the proof applies also to mk, and indeed to any

homotopy functor for which the inclusion of the fc-skeleton into a complex induces

an epimorphism.) Since this bound uses only constant maps, the calculation is

identical to that of Gromov [7],

To show that bk + l(M) > A, we begin with the map f:K-> ß(x, x') of the

preceding paragraph, then extend in any fashion to the cone on K to obtain /:

CK -» PM(x). We regard / as a homotopy from the constant map [x] at x to the

map pf: CK -* M. Since f\K = /, which does not factor through ßx(x, x'), the

width of / is certainly greater than or equal to A. We shall show that if g is any

homotopy from [x] to pf regarded as a map g: CK -» PM(x) then g = g|Zv does not

factor through ßx(x, x').

Now any lift of pf to PM(x) is vertically homotopic to one of the form

CK^CKX Ck"^ Q(x,x) X PM{x) ^ PM(x).

Thus g#:Hk(K)^ Hk(ti(x,x')) factors as

Sa

Hk(K) - Hk(Q(x,x'))

|AS Î

Hk(KXK)    ->    Hk(CKxK) Hk(ti(x,x)xQ(x,x'))

I T

H0(CK)®Hk(K) a®l*       HQ{Q(x,x))9Hk(Q(x,x'))

where r\ = i)|(ß(x, x) X Q(x, x')).

Thus g# differs from/# only by Pontryagin multiplication by the element a#(i),

where t generates H0(CK). In particular g# is onto, so g cannot factor through

PxM(x). Since dim(CZi) = k + 1, bk + l(M) > A.

To consider bk(M), we consider the Â:-dimensional complex K = ZvU C(K{k~X))

and f = f\K. Again, any lifting g: K -> PM(x) of pf differs from /, up to vertical

homotopy, by the principal action of a map a: K -* ß(x, x). Hence if g = g|A\ we
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factor g# (using the fact that K is homotopic to a bouquet of spheres) as

Hk(K)^Hk(KxK)       - Hk(k)®H0(K)®H0(K)®Hk(K)

l(«X/)# la,®/«

Hk(ü(x, x) x ti(x, x'))     <-     Hk(Q(x, x)) ® Hk(Q(x, x')) e H0(Q(x, x')) ® Hk(Q(x, x'))

/z,(n(x,x')

The right-hand groups are as in the preceding case, hence the only difficulty in g#

being onto must arise through

Hk(K)® H0(K)a*®f*Hk{Sl(x, x)) ® H0{ü(x, x')).

Since a#(Hk(K)) consists of spherical classes, the composition pg# is onto the

group Hk(ü(x, x'))/ {spherical classes}. Thus g cannot have its image in PxM(x)

and so bk(M) > X.   D

Proofs of Theorems 1.10(c) and 1.11(b). We follow the general outline of the

previous proof except that we choose K to be a (k + l)-dimensional complex such

that/: K -* ß(x, x') induces an isomorphism on Hk. Setting K = K U C(K(k)), we

again extend/to/: (K, K) -> (PM(x), Q(x, x')). If g: K -> £Af(x) is any other lift

of p/and g = g\K, then g# factors as in the previous diagram. Since in the present

case, K is homotopic to a wedge of (k + l)-spheres, g# =/# on Hk. If g(K)c

tix(x, x'), then we would have the commutative triangle:

ZZ,(Zv) - Hk(Q(x,x'))

ZZA(ßx(x,x'))

Hence i# admits a section.

A similar diagram for 77^ yields 1.11(b).   D

Proof of Corollary 1.19. The hypotheses of Theorem 1.15 guarantee that both

mj(ü(x, x'), Slx,(x, x')) and Hj(Q(x, x'), ßx-(x, x')) are trivial for A' > A and/ < k.

Thus the relative Hurewicz morphism

h: vk+l(Q(x, x% Qx,(x, x')) -> Hk+x(Q(x, x'), Qx,(x, x'))

is an isomorphism. Consequently there arises the following (Mayer-Vietoris) exact

sequence:

vk+l(Q(x, x')) © Hk+1(Qx.(x, x')) - Hk+1{Q(x, x'))

- 77,(ßvO, x')) i mk(Ü(x, x')) 0 Hk{üx,(x, x')).
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The kernel of ß is ker(i„) n ker(ñ). By exactness, the kernel of ß is also equal to the

cokernel of a. Thus ker(/*) n ker(n) =£ 0 => a is not epic. By Theorem 1.10(b),

bk + x(M)> X' > X.   D
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