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INFINITE CROSSED PRODUCTS
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ABSTRACT. In this paper, we precisely determine when a crossed product R * G is
semiprime or prime. Indeed we show that these conditions ultimately depend upon
the analogous conditions for the crossed products R * N of the finite subgroups N of
G and upon the interrelationship between the normalizers of these subgroups and the
ideal structure of R. The proof offered here is combinatorial in nature, using the
A-methods, and is entirely self-contained. Furthermore, since the argument applies
equally well to strongly G-graded rings, we have opted to work in this more general
context.

Let G be a multiplicative group and let R be a ring with 1. Then a crossed product
R*G of G over R is an associative ring determined by G, R and certain other
parameters. To be more precise, for each x € G there exists an element X € R* G
and every element @ € R * G is uniquely writable as a finite sum

a= ) r%
xX€G
with r, € R. Addition in R * G is componentwise and multiplication is given by the
formulas

7=1t(x,y)xy, rx=2xr*
forallx, y€ Gand r € R. Here t: G X G — U is a map from G X G to the group
of units U of R and, for fixed x € G, the map *: r — r¥ is an automorphism of R.
It is a simple exercise to determine the relations on ¢ and the automorphisms *

which make R * G associative. From this it follows easily that R * G has an identity
element, namely 1 = #(1,1)"'T, and that each X is invertible. Indeed

® = {ux|lue U, x € G}

is a multiplicative group of units in R * G, the group of trivial units. Thus the
equation rx = Xr* is equivalent to X 'rx = r* and hence the automorphism * is
merely conjugation by a unit in R*G. In fact, it is clear that & acts on R by
conjugation. In general, R * G does not contain an isomorphic copy of G. However,
we do have R C R*G by way of the embedding r —» r1 and then U< & and
&/U=G.
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An interesting problem, studied for the past 20 years, concerns finding reasonable
necessary and sufficient conditions for R * G to be semiprime or prime. In the case
of ordinary group algebras these are results of the author [13] and of I. G. Connell
[4], respectively. They were obtained using a coset counting argument known as the
A-method, which effectively reduced the question to the finite normal subgroups of
G. Furthermore, this same technique handled twisted group algebras with little
additional difficulty [14]. However, when G acts nontrivially on the ring R, another
dimension is added to the problem. Here the first result, due to G. Azumaya [1]
showed that if R is a simple ring and G is outer on R, then R * G is simple. S.
Montgomery [9] proved that if R is prime (or semiprime) and G is X-outer on R,
then R * G is prime (or semiprime, respectively). In [6], J. Fisher and S. Montgomery
settled the semiprime question for G finite. Infinite groups were considered by S.
Montgomery and the author in [10] where the A-methods and the techniques of [6]
combined to handle the case where R is a prime ring. This was extended in [16] to
semiprime coefficient rings and then the problem was essentially solved in [18].

It was apparent from the work of [18] that the semiprime and prime condition for
R * G ultimately depends on the analogous condition for certain crossed products of
finite subgroups of G. In this paper, we give a precise formulation of this fact and
the main result is

THEOREM. Let R * G be a crossed product of G over R. Then R * G contains nonzero
ideals A, B with AB = 0 if and only if there exist:
(i) subgroups N<H C G with N finite,
(1) an H-invariant ideal I of R with I*I = 0 for all x € G\ H,
(iii) nonzero H-invariant ideals A, B of R * N with A, B C I+ N and AB = 0.
Furthermore, A = B if and only if A = B.

The results of [18] are immediate corollaries of the above.

The proof of the main theorem is entirely combinatorial in nature, using the
A-methods and a modification of the bookkeeping procedure of [18]. Indeed the
proof is quite similar to the work of the latter paper. Nevertheless, crossed products
with operators and the ideals ¥( H) and #( H) which played such a prominent role
in the earlier argument no longer occur. Moreover, the results of [10] and [16] are no
longer needed. Because of these many simplifications and because of the delicate
nature of the proof, we have opted to offer a completely self-contained version here.
We hope this will make the paper more readable and the proof more understand-
able.

For a number of reasons, we have decided to work in the more general context of
strongly G-graded rings. First, there is at present a good deal of interest in these
rings and in their prime and nilpotent ideals [2, 3, 5, 11, 12]. Second, the proof is no
harder in this generality and in fact certain aspects, for example the group action on
the ideals of R, actually become more natural. Third, it forced us to rethink and
simplify a number of arguments which seemed to depend upon the existence of the
units x. Finally, it allowed us to further separate this paper from its predecessor [18].
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1. Group-graded rings. Let G be a multiplicative group. An associative ring S is
said to be G-graded if S can be written as S = @ X, ;R,, the direct sum of additive
subgroups R,, indexed by the elements of G, with R, R, C R, forallx, y € G. It
is clear that R; = R is a subring of S and we assume throughout that 1 € R and that
the unit element of R is also the unit element of S. It therefore follows that each R,
is a unital (R, R)-bimodule.

If « € S, we can write a as the finite sum & = X, with a, € R,. The summands
a, are then the homogeneous components of a and the support of « is Supp a = {x
€ Gla, # 0}. In general, we will subscript homogeneous elements of S to indicate
their grade.

The G-graded ring S is said to be strongly G-graded if R,R,= R, for all
x, y € G. As is well known, this condition follows if we merély assume that
R.R,-1 = R, for all x. Furthermore, it is clear that any crossed product over G is a
strongly G-graded ring in a natural way. By a terrible abuse of notation, we will also
denote strongly G-graded rings by R * G. Thus

RxG=@ L R,
XEG
with R; = R. In other words, the notation merely indicates the group G and the base
ring R = R,; all the remaining structural information is somehow embedded in the
star. As with crossed products, we use this with the understanding that if H is a
subgroup of G, then R * H is the natural strongly H-graded subring given by
R+H=@ ) R,
x€EH

In this section, we make a few elementary observations, state the main theorem for
group-graded rings and then prove that result in the trivial direction. We assume
throughout that R * G is a fixed strongly G-graded ring.

LEMMA 1.1. With the above notation:
(i) The right and left annihilators of any R, are zero.

(ii) if @, is a nonzero element of R, and xyz = 1, then R a, R is a nonzero ideal of
R.

PROOF. (i) is clear since 1 € R; = R, R,-1 = R,-1R, and (ii) is immediate since
R.a R is a nonzero (R, R)-subbimodule of R = R;.

We will use this lemma, and its obvious generalizations, freely throughout the
remainder of this paper.

Now suppose N<H C G. For x € H and I an ideal of R * N, we define I* =
R IR . In this way, H acts on the ideals of R* N and basic properties are as
follows.

LEMMA 1.2. Let N> H C G, let x, y € H and let 1, J be ideals of R * N. Then:
(1) I"* is an ideal of R * N,

() (I*) =1, 1' = I,

(i) if I C J, then I* C J*,

) ()Y = I’'J~
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PROOF. Since N>H and x € H, it follows easily that (R* N)R, = R (R* N).
From this we conclude first that /* C R * N and then that I* is an ideal of this
subring. Now for (ii) and (iv) we have

(1) =R,«I'R, =R, (R-IR )R, =R IR =TI
and
I"J* = (RIR,)(R.+JR,) =R (IRJ)R, = (V)"

since IR = I. Finally, (iii) is obvious so the lemma is proved.

If we let # denote the set of ideals of R * N in the above situation, then (i) and (ii)
assert that the map x — * is a homomorphism of G into Sym(.#). Furthermore, by
(iii) these are inclusion preserving permutations and in particular they preserve the
lattice operations of arbitrary intersections and sums. (iv) says that finite products
are also preserved.

Continuing with this notation, an ideal / of R* N is said to be H-invariant if
I* = I forall x € H. Since R R, = R, 1R, = R, this clearly occurs if and only if
IR, =R [forallx € H.

Note that if N = (1), then R * N = R and, in this way, G acts on the ideals of R.
With this understanding we can now state the main result for group-graded rings.

THEOREM 1.3. Let R * G be a strongly G-graded ring with base ring R. Then R * G
contains nonzero ideals A, B withAB = 0 if and only if there exist:
(1) subgroups N< H C G with N finite,
(i) an H-invariant ideal I of R with I*I = 0 for all x € G\ H,
(iii) nonzero H-invariant ideals A, B of R * N with A, B € I(R* N)and AB = 0.
Furthermore A = B if and only if A = B.

Note that if R * G is a crossed product, then the permutation action on the ideals
as defined above is merely conjugation by the group of trivial units. Thus Theorem
1.3 does generalize the result stated in the introduction. It is convenient to record the
following elementary

LEMMA 1.4. Let H be a subgroup of G and suppose that I is an ideal of R with
I*I = 0 forall x € G\ H. Then:

@) IR, I=0forallx € G\ H,

(i) (R*G)IC I(R*H)C R+ H.

PROOF. (i) is clear since r(R, 1) = 0. Moreover, since R*G = @X ;R,, we

have
I(R*G)I=@ Y IRI=@ Y IRICI(RxH)CR*H
x€G xeH

and (ii) is proved.

We can now offer the

PROOF OF THEOREM 1.3 (EASY DIRECTION). Here we assume that R * G is given and
that H, N, I, A and B exist and satisfy the appropriate properties. We set 4 =
(R*G)A(R*G) and B = (R * G)B(R * G) so that these are nonzero ideals of the
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s}rongly G-graded ring R * G. The goal is to show that AB = 0 or equivalently that
AR B =0forallx € G.
If x € H, then since A is H-invariant, we have

AR B=R _AB=0.
On the other hand, if x € G\ H, then since A, B C I(R * N) we have
AR BCI(R*N)R I-(R*N).
But (R*N)R, = veNxR and Nx C G\ H so Lemma 1.4(i) yields /(R * N)R I
= 0. Therefore AR = 0 and we have shown that AB = 0. Since A = B implies

A = B, this dlrectlon is proved.
Most of the remainder of this paper is devoted to proving the opposite direction.

2. Coset calculus. Let H be a group and let R be a ring. We say that H strongly

permutes the ideals of R if for all x, y € H and ideals I, J of R we have:
(i) I~ is an ideal of R;

() ([ =171 =1,

(i) if I € J then I* C J*;

@Gv) ()Y = 1'J*.

Thus, for example, if we are given the strongly H-graded ring R * H, then Lemma
1.2 asserts precisely that H strongly permutes the ideals of R. As we observed
previously, the first three conditions above imply that the action comes from a
homomorphism of H into the group of inclusion preserving permutations on the set
of ideals of R. In particular, they also preserve the lattice operations of arbitrary
sums and intersections. Thus we also have 0* = 0 and R* = R for all x € H.

Now let J be a nonzero ideal of R. In view of the conclusion of Theorem 1.3, we
are obviously interested in studying those & € H with J%J = 0. Now the A-methods
usually give information which asserts that something occurs for all elements of H
except for those in a finite union of cosets of varying subgroups. In this section we
show how to reformulate such a conclusion so that it in fact holds for all elements in
H \ L where L is a single subgroup of H suitably determined by the situation.

Suppose A and B are subgroups of H and that the left cosets x4 and yB are not
disjoint. If z € x4 N yB, then xA = zA, yB = zB and hence

xANyB=:4AN:zB=1z(AN B).
In other words, the intersection of two left cosets is either empty or a coset of the
intersection. Property (iv) above will be crucial in the next two lemmas.

LEMMA 2.1. Let H strongly permute the ideals of R and let J be a nonzero ideal of R
such that

n
J' =0 forallh € H\UhH,.
1

Here Uth, H, is a fixed finite union of left cosets of the subgroups H, of H. Then there
exists a subgroup L of H and a nonzero product 0 # K = J"J2 - -- J¥r of H-con-
Jjugates of J, with some y, = 1, such that K"K = 0 for all h € H\ L. Furthermore
|L:L N H,| < oo for some k.
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PrOOF. In the course of this proof we will replace { H,, H,,...,H,} by certain
other finite sets % of subgroups of H with the property that 4 € % implies 4 C H,
for some k. We note that if the result is proved for such a set %, then from
|L:L N A|< oo forsomed4 and LN AC LN H, weobtain |L:L N H| < oo. In
other words, the result will then follow for the original subgroups H,, H,,...,H,.

If A is the set of all proper (that is, nonempty) intersections of the H,’s, then ¥ is
finite and closed under intersections. Thus without loss of generality we can now
assume that the H,’s are contained in a finite set 9 closed under intersections and
we prove the result by induction on |%| > 0. If |%| = 0 then the hypothesis and
conclusion both assert that J*J = 0 for all h € H.

Assume now that |%| > 1, let A be a maximal member of % and set A" = A\ {4}.
Then || < |%| and A’ is closed under intersections. We will be concerned with
finite unions of left cosets S = U &, 4, with 4, € . By the support of § we mean
those 4,’s which occur in this representation. Suppose K = J”J¥2 - .. J¥ # (), some
y,=1, and K"K =0 for all h€ H\'S. If A & SuppS, then SuppS C A’ and
induction applies. Thus there exists a finite product / = K“'K*2 --- K* # ( with
some u; = 1 and / kI =0 for all h € H\ L. Since I is also a suitable product of
conjugates of J and since |L:L N A,| < oo for some A, € A’, the result follows in
this case.

Thus we can assume, for all such pairs K and S as above, that A € Supp S. Of
course there is at least one such pair by hypothesis and now we choose K and S so
that S has the smallest number, say m > 1, of cosets of 4 occurring in its
representation. Then

S=24U2,AV ---Uz AUT

where T is a finite union of cosets of groups in A’ and we define L by
m m
L= {h € H|h(Uz,.A) = UziA}.
1 1

Suppose K*K # 0 for some x € H. Then K*K is a nonzero finite product of
H-conjugates of J with some conjugating element equal to 1. Furthermore the
symbolic formula K "\K = 0 yields K* " ¥\SIK = 0 so (K*K)"(K*K) = 0 for
all & with

he (H\S)Ux(H\S)=H\(Snxs).

Since U is closed under intersections, it is clear that S N x~1S is also a finite union of
left cosets of members of A. Indeed, since clearly Supp x~'S = Supp S, S N x"'Sisa
union of cosets of groups of the form B N C with B, C € Supp S. Furthermore,
since A4 is a maximal member of %, we note that A = B N C can occur if and only if
B = C = A. By definition of m, S N x~'S contains m’ > m cosets of A.

Since

x!S=x"z4Ux"'2,40 - UxT'z, AU X7IT,
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the A-cosets of S N xS come from
m m
(Uz,-A Ux‘lz,»A).
1 1

But cosets of A are either disjoint or identical so this intersection has m’ < m terms.
Thus we must have m’ = m so

N

m m
Uz4 = x‘l(Uz,A)
1 1

and hence x € L. In other words, we have shown that K‘"\DK = 0

Now H permutes the set Q of left cosets of 4 by left multiplication and L is the set
stabilizer of the finite subset A = {z,4, z,4,...,z,,A} of Q. Thus L is a subgroup
of H. Moreover if a = zA € A, then H, = {h € H|ha = a} = zAz"" and it follows
that |L:L N (zAz7')| < 0. We can eliminate this conjugating element z™' by
conjugating both L and K by z. However in so doing we lose the property of K that
some y; = 1. Thus we must take a different approach.

Suppose first that L N z;,A = @ for all i = 1,2,...,m. Then K"K = 0 for all A
with

he (H\S)U(H\L)=H\(LNS)
and, by the above assumption, LN S =L N T is a finite union of cosets of the
groups in B = {L N A|4 € A’}. Since |B| < |A’| < || and since P is clearly closed
under intersections, induction applies here. Thus, as before, there exists I = K“1K 2
-+- K* # 0 with some u; = 1 such that I*I = 0 for all h € H\ L with |[L: L n B
< oo for some B € 3. Since I has the appropriate form, the result follows in this
case.

Finally, if LN z,A # & for some i, we may assume that z =z, € L. Since
|L:L N (zAz7')| < oo, conjugating this expression by z € L then yields |L: L N A]
< oo and the lemma is proved.

We remark that the same result holds with J*J replaced by JJ*. Indeed, in the
proof, merely replace all occurrences of K*K by KK”. Furthermore both of these
hold if left cosets are replaced by right cosets. Merely note that J%J = 0 is equivalent
to JJ""' = 0 and that replacing h by k! effectively interchanges right and left cosets.
The form of the lemma proved here is the one we will use.

Moreover, suppose that H = Ujh, H, is given, let H act trivially on the ideals of
any ring R with 1 and take J = R. Then the hypothesis of the above lemma is
vacuously satisfied and the conclusion implies that R*R = 0 for all h € H\ L. Thus
we must have L = H and |H: H,| < oo for some k. In other words, Lemma 2.1
generalizes the well-known result concerning the existence of subgroups of finite
index. We actually require the following slight strengthening of the above.

LEMMA 2.2. Let H strongly permute the ideals of R and let J be a nonzero ideal of R
such that

n

J' =0 forallh € w\Uw,H,.
1
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Here W is a subgroup of H of finite index and Ujw, H, is a fixed finite union of left
cosets of the subgroups H, of W. Then there exists a subgroup L of H and a nonzero
product 0 # K = J"J¥2 --- J¥ of H-conjugates of J, with some y, =1, such that
K"K =0 for allh € H\ L. Furthermore,|L:L N H,| < oo for some k.

PrROOF. Since |H:W|< oo and J# 0 we can choose the sequence A =
{hy, hy,...,h,} C H to be of maximal size subject to:

(i) 1 € A and the A, are in distinct right cosets of W in H;

(i) K = JhJh2 ... Jhs £ 0.
Now let x € H and suppose that K*K # 0. Then, by considering the right cosets of
W, we must have WAx = WA. Indeed, if this were not the case then, for some i, h;x
would be in a new right coset of W. We would then have

Jhxghgha o ghs D KXK # 0
contradicting the maximality of A. Since 1 € A and WA x = WA, this implies that
h,x € W for some i. Furthermore J**J D K*K # 0 so, by hypothesis since h,x € W,
we must have h,x € Ujw, H,.
We have therefore shown that K*K # 0 implies that x € h;*(Uf'w, H,) for some i.
Equivalently, we have

K"Kk =0 forallhe H\Uh;'w, H,.
ik

We can now apply Lemma 2.1 to this situation to obtain a nonzero product
I=K"nK>» ... KYi# ()

with some y; = 1 and a subgroup L of H with |[L:L N H,| < oo for some k and
I"I =0forallh € H\ L. Since 1 € A, I is an appropriate product of H-conjugates
of J, thereby completing the proof.

Again there are three other forms of this lemma which are equally valid. We close
this section with some definitions and minor observations. We assume in the
remaining three lemmas that G strongly permutes the ideals of R.

LemMMA 2.3. Let I be an ideal of R.
(i) I¢ = X, eI is the smallest G-invariant ideal of R containing I.
(ii) If I is G-invariant, then so are rg(I) and Ig(I).

PROOF. (i) is clear since the action of G preserves arbitrary sums and (ii) follows
from the formula (1J)* = I'J*. '

Now let I be a G-invariant ideal of R. Then I is said to be G-nilpotent-free if I
contains no nonzero G-invariant nilpotent ideal of R. Similarly 7 is said to be
G-annihilator-free if for all nonzero G-invariant ideals A, B C I we have AB # (.
Obviously the latter property implies the former. When I = R these conditions
assert precisely that R is G-semiprime or G-prime, respectively.

LEMMA 2.4. Let I be a G-invariant ideal of R.

(i) If I is G-nilpotent-free then rg(I1) = rg(I?).

(i) If H is a subgroup of G of finite index, then I is G-nilpotent free if and only if it is
H-nilpotent-free.
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PROOF. (i) Obviously rgx(I) C rg(I*) = J and these are G-invariant ideals of R.
Since 1%/ = 0, we see that 1J is a G-invariant ideal contained in I with (IJ)>* C I -
(I7)=10.Thus IV = 0 and J C rg(I).

(i) If I is H-nilpotent-free then it is obviously G-nilpotent-free. Conversely
suppose I is G-nilpotent-free and let J be an H-invariant nilpotent ideal of R
contained in I. Then since |G: H| < oo, J is a finite sum of the nilpotent ideals J*
and hence J ¢ is nilpotent. Thus J¢ = 0 and J = 0.

LEMMA 2.5. Let H be a subgroup of G and let I be an ideal of R. Suppose that
I’'I =0forallx € G\ H.
(i) I" is an H-invariant ideal of R with

(I"Y*(I") =0 forallx € G\ H.

(ii) Let I € J with I an H-invariant ideal and with J a G-invariant ideal. If J is
G-nilpotent-free (or G-annihilator-free), then I is H-nilpotent-free (or H-annihilator-
free, respectively).

PROOF. (i) If a, b € H and x € G\ H, then I**I® = (I***"[)? = 0 since axb™' &
H.

(i) Let 4 and B be H-invariant ideals of R contained in / with AB = 0. By
considering the cases x € H and x € G\ H separately, we see that A*B = 0 for all
x € G. It then follows that A° and B¢ are G-invariant ideals of R contained in J
with A°B¢ = 0. If J is G-annihilator-free then A% or B¢ is zero and hence I is
H-annihilator-free. Finally by taking 4 = B we obtain the analogous result for
nilpotent-free ideals.

3. A-methods. Let R * G be a strongly G-graded ring. By Lemma 1.2, G strongly
permutes the ideals of R. Therefore all the results and definitions of §2 apply here.
We will use this observation without further comment.

If H is a subgroup of G, then there is a natural projection map 7,;: R*G - R* H
given by

7TH( )y “x) = 2 a,.

x€G xe€H

This is easily seen to be an (R * H, R * H)-bimodule homomorphism.
Again, if H C G then the almost centralizer of H in G is defined by

D;(H) = { x € G||H: Cy(x)| < 0}.

It is clear that D;(H) is a subgroup of G normalized by H. Furthermore, H N
D;(H)=D,(H) = A(H) where A(H) denotes the f.c. (finite conjugate) center of
H.

The main result of this section is

PROPOSITION 3.1. Let R * G be a strongly G-graded ring and assume that the base
ring R is G-semiprime. Suppose that A and B are nonzero ideals of R * G with AB = 0.
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Then there exists a subgroup H C G, a nonzero H-invariant ideal I of R and an
element 8 € B such that:
(1) I"I = 0 for all x € G\ H,
(ii) Imy(A) # 0, Imy(B) # O where A = A(H);
(iii) Imy(A) - IB = 0.

The above conditions motivate the following definition. Suppose A and B are
nonzero ideals of R * G with AB = 0. We say that the 4-tuple (H, D, I, B8) is a form
for A, B if:

()Hc< G,D=Dy(H),

(ii) I is an H-invariant ideal of R with I*] = Q forall x € G\ H,

(i) B€ B, IB #+ 0,14 # 0.

For the remainder of this section we assume the hypotheses of Proposition 3.1.
The proof of the latter proceeds in a sequence of lemmas.

LEMMA 3.2. Forms exist.

PROOF. Take H = G, D = A(G) and I = R. Since A, B # 0 and 1 € R we have
IA # 0, IB # 0 for any 8 € B\ 0.

We define n = (H, D, I, B)*, the size of the form, to be the number of right
D-cosets meeting SuppfB. We now assume for the rest of this argument that
(H, D, I, B) is a form whose size n is minimal. In the next lemma we make a slight
change in B. Afterwards, no additional changes in the form will be made. Set
A= A(H).

LeMMA 3.3. With the above notation:
(i) 1 is H-nilpotent-free and ry , (1) = rg . c(1?);
(ii) Imy(A) # 0 and we may assume that Im,(B) # 0;
(iii) if y € R * D, then IyB = 0 if and only if Iym,(B) = 0.

PRrOOF. (i) By assumption, R is G-semiprime. Since [ is H-invariant and I*] = 0
for all x € G\ H, it follows from Lemma 2.5(ii) that I is H-nilpotent-free. Hence, by
Lemma 2.4(i), rg(I) = rg(I?). Finally, rg, (1) C rg.s(I?) and suppose y = Ly, is
contained in rg, ;(1?). Then for all x we have 1%y, = 050 Y, R, C rg(1?) = rg(1).
This yields Iy, R,-+ = 0so Iy, = 0 and hence y € rg,;(I).

(i1) Since I4 # 0 we have JAR, # 0 for all x. Thus since AR, C A4 it follows
immediately that Imy(A) # 0. Now write 8 = ¥8,. Since I8 # 0 we have IB, # 0 for
some x € G. Thus IB R -1 # 0 and we can choose 0,-1 € R -1 with IB,0,-1 # 0. It is
now clear that (H, D, I, Bo,-1) is also a form with the additional property that
Imy(Bo,-1) # 0. Furthermore, we have

(H,D,1,Bo,)* <(H,D, I,8)"

so (H, D, I, Bo,-1) also has minimal size n. We now replace 8 by Bo,- for the
remainder of the proof of the proposition, or equivalently we can assume that
Im(B) # 0. This implies in particular that m,(8) # 0 and hence #,(8) # 0 since
D 2 A.
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@iii) If Iy8 =0, then applying 7, yields Iym,(B8) = 0. Conversely suppose
Iym,(B) = 0. Then for any s € I we have syB € B and Supp syB meets less than n
right cosets of D since Yy € R * D, mp(syB) = 0 but m,(B) # 0. By definition of n,
this implies that (H, D, I, syB) is not a form. Thus Isy8 =0 for all s €I so
I*yB = 0. We conclude from (i) above that Iy = 0.

It follows from the above that H, I and B satisfy (i) and (ii) of the conclusion of
Proposition 3.1. If in addition they satisfy condition (iii), then the result is proved.
Thus we will assume throughout the remainder of this section that Imy(A4) - I8 + 0
and we derive a contradiction.

LEMMA 3.4. With the above assumption, there exists W a subgroup of H of finite
index,a = Ya, € A N (R* H) and d € Supp 7p(a) such that:
(i) W centralizes Supp m,(a) and Supp 7,(8);
(ii) for someu € W

Imp(@)B 2 (TayR 1) mp(@)B # 0;
(iii) forally € W
Iade-'y"’D(a)WD(.B) = IWD(a)Rd“_vad"TD(B)'

PROOF. (i) By assumption Im,(A) - IB # 0 and hence, since rg, (1) = rg.o(1?)

we also have

Im\(IAI)B = I*m(A) - IB # 0.
Thus there exists a € IAI C A with Im(a)B # 0. Observe that a« € I(R*G)I C
R+*H, by Lemma 1.4(ii). Thus since D " H=A we have m,(a) = m(a) and
Imy(a)B # 0.

We can now assume that a is chosen so that [Supp 7, (a)| is minimal subject to
a € AN(R+*H)and Im,(a)B # 0. Let W be the intersection of the centralizers in
H of the elements of Supp m,(a) and of Supp m,(B). Since Supp 7,(a)U
Supp 7,(B) is a finite subset of D = D;(H), it is clear that |H: W| < co. Note that
I is an H-nilpotent-free ideal, by Lemma 3.3(i), and hence it is also W-nilpotent-free
by Lemma 2.4(ii). This completes the proof of (i).

(ii) This part does not use the minimal nature of Supp =, (a). Set y = m,(a)B and
writea =X, s, B=X ccB.and y = X 7, Then mp(a) = L, pa, and we let
J be the W-invariant ideal of R given by J = X, p(Ra,R ,-1)". Notice that for all
d € D,y € G we have

adByRy—ld-l Cc Rade-x . RdB_VRy-ld—l cJ:-R=J

and from this it follows that y,R,-1 C J for all x € G. Now suppose that IJy = 0.
Then IJy,R - = 050 Y, R C rg(1J) and hence, by the above,
IvR ClNr(lJ)=0

since the latter is a W-invariant nilpotent ideal contained in /. This yields Iy, = 0
and therefore Im,(a)B = Iy = 0, a contradiction by the choice of «. Thus we have
L7, (a)B # 0 and hence, by definition of J, there exist d € Supp m,(a) and u € W
with J(RayR 4-)“mp(a)B # 0. Since u € W C H and I is H-invariant, this part is
proved.
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(ii)) Let y € W and choose any a,-1 € R -1 and b;1, € R;-1,. We study the
element
Y = a,ayby0 = aaby .
Clearlyy € (R* H)N A and since a = ¥ . ;a, we have y = ¥ . ;0(x) where

O(X) = ay‘ladbd'l_va.\' - ay‘laxbd'l_vad'

Observe that, since y centralizes d, the summands in o(x) have grades x and y~lxy,
respectively. In particular, if x &€ D then neither of these grades is in D since y € H
normalizes D. On the other hand, if x € D then x € Supp 7,(a) so y commutes
with x and hence both these summands have grade x € D. It follows that 7, (y) =
Y. .epo(x) and that [Supp 7p(y)| < [Supp 7p(a)| In fact, this inequality is strict
since clearly o(d) = 0.

The minimality of |Supp 7,(a)| now implies that I7,(y)8 = 0 and hence, by
applying 7, that Im,(y)m,(B)=0. Now as we observed above, m,(y) comes
precisely from the D-homogeneous components of « so we have

mp(y) = ay—nadb‘,-nyvru(a) —a,mp(a)b,a,
and hence
Ia_,,-l (adbd-ly'”b(a) = p( a)ba'"yaa' ) ‘770( B)=0.

Notice that this formula holds for all a,-+ € R,-+ and that IR -1 = R -] since [ is
H-invariant. We can therefore cancel the R -1 factor and obtain

Iaabd-'yﬂn(a)ﬂn(ﬁ) = Iﬂo(a)bd-lyad'”p(ﬁ)

and since this holds for all b;-1, € R -1, the lemma is proved.
The following A-lemma is a variant of [8, Lemma 1.5]. Fix « = X« , d, W and u as
in the preceding result for the remainder of this argument.

LEMMA 3.5. With the above notation,
(TayR )" - mp(a)B =0
for all y € W\ Uix,H,. Here Uix;H, is a fixed finite union of left cosets of the

1

subgroups H, and each H, is the centralizer in W of some element of (Supp B8) \ D.

ProoF. We freely use the fact that / is H-invariant and, in particular, that
R,I=1IR,forallh € H.
Lety € W and suppose that

(IayR )" mp(a)B # 0.
Then
I(RayR ) mp(a) - B+ 0
so Lemma 3.3(ii1) yields

I(RayR 1) mp(@)mp(B) # 0.
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Thus we have
TayR 1,mp () mp(B) # 0
so Lemma 3.4(iii) yields
Imp(a) R -y mp(B) # 0
and therefore finally
Imp(@)R 1,0, (B)R -1 # 0.

Write a = m,(a) + & and 8 = m,(B8) + B. Thus since JaR ;-1,a,8R -1 € AB =0
we have

I(mp(a) + &) R0, (mp(B) + B)R, = 0.

We now consider the supports of each of the four summands obtained from the
above expression to see how cancellation can occur. Observe that y € W so y
normalizes D and centralizes d € Supp 7,(«). In particular, we have R ;-1 a, C R,
and from this it follows easily that the sets ' 4

Imy(a)Ry1,0,BR - and  I&R 4,0 mp(B)R -
have supports disjoint from D. On the other hand,
0 # Imp(a)R . aymp(B)R, - C R*D

by the work of the preceding paragraph so it follows that this expression must be
cancelled by terms from the fourth summand

IaR ;-1,0,BR 1.

In particular, the latter two summands must have a support element in common.

Thus there exist f € Supp & g € Supp B, a € Supp 7p(a) and b € Supp 7, ()
with ayby™! = fygy~!. Since y € W centralizes b € Supp 7, (8), this yields g«V'l =
ygy™t = flab so y € xC,,(g), some fixed left coset of C,,(g) depending only on
the finitely many parameters f, g, a, b. Since g € Supp 8 = (Supp 8) \ D, the lemma
is proved.

We remark that the truncation from B to m,(f8), using Lemma 3.3(iii), in the
above argument is crucial. Otherwise the subgroups H, turn out to be centralizers of
elements in (Supp a) \ D.

LEMMA 3.6. Contradiction.

PROOF. We use the notation of the preceding two lemmas and we set y = mp(a)f
= X, ecYx Then by Lemma 3.4(ii), there exists x € Supp y with (Ja, R -1)"y, # 0
and hence

J = (layR )"y, R

is a nonzero ideal of R contained in I since [ is H-invariant and u € W C H.

. - -1,
Furthermore, since J € (layR -1)" we have J* ' C Ja R, and hence J“ ' C
({a R 1) forally € W.



720 D. S. PASSMAN

It follows from the above and Lemma 3.5 that J “_'-"WD(a)B =0 for all y €
W\Uix,H, or equivalently that J*m,(a)B =0 for all y € W\ Uiu!x,H, since
u € W. In particular, J”y, = 0 for these y so J'(Ry,R,-1) = 0 and hence J*J = 0.
Since |H : W| < oo, Lemma 2.2 applies and there exists a subgroup L of H and a
nonzero product K = J*'J*2 - -+ J% such that K"K = 0 for all h € H \ L. Further-
more, v; = 1 forsomeiso K € J € Iand|L:L N H;| < oo for some k > 0.

We claim that (L,Dg(L), K*, mp(a)B) is also a form. To start with, we have
K"K =0 for al h€ H\ L and K< I so K8K =0 for all g € G\ L. Thus, by
Lemma 2.5(i), K© is a nonzero L-invariant ideal of R with (K*)8K% = 0 for all
g € G\ L. Furthermore, since R is G-semiprime, Lemma 2.5(ii) implies that K is
L-nilpotent-free and in particular (K *)? # 0. Suppose K“y = K mp(a)B = 0. Then
K%y, =050 K“(Ry,R,) =0 and hence K“J = 0. But rg(K*) is L-invariant, by
Lemma 2.3(ii), so this yields KJ* = 0 and hence, since K C J, we have (K£)? =0,
a contradiction. Thus K “m,(a)B # 0. Furthermore, this implies that K ‘7, (a) # 0
so since @ € A4 we have K*4 # 0. Thus since m,(a)B € B, (L,Dg(L), K*, mp(a)B)
is indeed a form.

It remains to compute the size of this new form. Since H 2 L we have D;(L) 2
D;(H) = D. Thus since mp(a) € R * D, it is clear that Supp 7,(a)B8 meets at most n
right cosets of D and hence at most n right cosets of D;(L). But observe that
|[L:L N H) <o and that H = C,(g) for some g € (SuppB)\ D. Thus
|IL:C,(8)] < 0 so g € D;(L) and, in fact, Dg € D, (L). Since m,(8) # 0, the two
D-cosets D and Dg which meet elements in Supp 8 merge to the single coset D;(L)
and therefore Supp 7, ()8 meets less than n right cosets of D;(L). In other words,

(L,DG(L), K%, my(a)B)* < (H, D, I,B)%,

contradicting the minimal nature of (H, D, I, B).
As we observed previously, the contradiction of Lemma 3.6 is based on the
assumption that Imy(A) - I8 # 0. Thus Im,(A) - I8 = 0 and Proposition 3.1 is proved.

4. The main theorem. The goal of this section is to complete the proof of Theorem
1.3 and to obtain its corollaries on primeness. As we will see, the interesting work
has already been done and only a series of routine reductions remain. We first
require a few simple observations.

Suppose A4 is a nonzero ideal of the strongly W-graded ring R * W and let N W.
Then we denote by min y A the span of all elements a # 0 of 4 whose support meets
the minimal number of cosets of N.

LemMMA 4.1. Let R*G be given, let H C G and let N W be subgroups of G
normalized by H. If A is a nonzero H-invariant ideal of R * W, then:

(1) min y A is a nonzero H-invariant ideal of R * W.

(it) my (A) is a nonzero H-invariant ideal of R * N.

PROOF. (i) By definition, min 4 is nonzero and let a € A be any generator of this
set. If w € W, then Supp aR,, C (Supp a)w and Supp R, a € w(Supp a) so, since
N<W, it follows that minyA4 is an ideal of R#*W. Finally, if A € H, then
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Supp R,-1aR,, € h™'(Supp a)# so, since A is H-invariant and N is normalized by H.
we see that min y 4 is H-invariant.

(it) We know that 7y is an (R * N, R * N )-bimodule homomorphism so =, (A4) is
an ideal of R * N. Next if « € 4 and h € H then, since H normalizes N, we have
Tn(Ry1aR,) = Ryamy(a)R, and therefore my(A) is H-invariant. Finally choose
0#a=Y.pa, €A.If x € Supp a, then aR -1 C A and clearly 7y (aR 1) # 0.

LEMMA 4.2. Let R *W be given, let N W and assume that W/N is a unique
product group ( for example, an ordered group). If A and B are nonzero ideals of R * W
with AB = 0, then

7y(minyA) - 7y (miny B) = 0.

PrOOF. If @ =¥,y a,, then by summing the homogeneous components over
each coset of N, we can write a uniquely as @ = X;cy, yaz In this way, R* W
becomes a strongly (W /N )-graded ring and we use this notation here. In particular,
my(a) = aj.

Let a = Xa; and B = LB; be generators of minyA and min,B, respectively.
Since W/N is a unique product group, we can let X, J, be a unique product element
in (Supp @) N/N - (SuppB)N/N. From aff = 0 we deduce that a; B; = 0. Then
af; € A and the support of this element meets less cosets of N than does Supp a.
Hence by the minimal nature of &, we have aB; = 0 and therefore a;8; = 0 for all
X € W/N. Similarly a;8 € B and the support of this element meets less cosets of N
than does Suppf. Thus a;8 =0 so a;8; =0 for all X, y € W/N. In particular,
Ty (@) 7y (B) = azBi = 0.

We can now offer the

PROOF OF THEOREM 1.3 (HARD DIRECTION). We assume that R * G is a strongly
G-graded ring and that A and B are nonzero ideals of R * G with AB = (. Suppose
first that R is not G-semiprime. Then there exists a nonzero G-invariant ideal 4 of R
with 4 = 0. The result now follows with H = G, I = R, N = (1) and B = 4.

We can therefore assume that R is G-semiprime so Proposition 3.1 applies. Thus
there exist H C G, I a nonzero H-invariant ideal of R, and 8 € B such that:

(@) I"'I =0forall x € G\ H;

(ii) Imy(A) # 0, Imy(B) # 0 where A = A(H);

(iii) Imy(A) - IB = 0.

We have therefore found an appropriate H and 1. It remains to find N, 4 and B.

Set A, = Imy(A) and B, = I - (R*A)m(B)R*A))". By Lemma 4.1 and (ii)
above, A4, is a nonzero H-invariant ideal of R * A. Since Im(A4) - I8 = 0 we have
Imy(A) - Imy(B) = 0 and, by (ii) again, it follows that B, is a nonzero H-invariant
ideal of R *A with 4,B, = 0. Note that 4,, B, C I(R*A) and, since Im(B) C
Imy(B), we have B, C Im(B).

Since A, and B, are nonzero and since every element of A(H ) has only finitely
many H-conjugates, it is clear that there exists a normal subgroup W of H with
W C A, W finitely generated and A, = A, N (R*W) and B, = B, N (R * W) both
nonzero. Certainly 4, and B, are nonzero H-invariant ideals of R * W contained in
I(R*W) with A,B, = 0.
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Now W is a finitely generated subgroup of A(H) so by [13, Lemma 4.1.5(iii)], W
has a finite characteristic subgroup N with W/N torsion-free abelian. Set 4; =
minyA4,, A, = my(A4;), B; = miny B, and B, = my(B;). Since N<H, Lemma 4.1
implies that A; and B; are nonzero H-invariant ideals of R* W contained in
I(R * W) and then that A, and B, are nonzero H-invariant ideals of R * N contained
in I(R * N). Furthermore, since W/N is an ordered group and A,B, = 0, Lemma
4.2 implies that A, B, = 0. For general 4 and B, the result now follows by taking N
as above, A = A, and B = B,.

Finally if A = B, then since

B, C Imy(B) = Im(4) = 4,

we have B} = 0. It then follows as above that B? = 0 for all i so we can take
A = B = B,. This completes the proof.

We now consider a few consequences. The first is really just a reformulation and
slight extension of Theorem 1.3. To avoid trivialities we will assume that R is
G-semiprime. We start with some definitions.

Let G strongly permute the ideals of R and let I be an ideal of R. Then we denote
by

G, ={xeGI*=1)

the stabilizer of I in G. The nonzero ideal I is said to be a trivial intersection ideal if
forall x € Geither I* = I or I* N I = (. Note that I* N I = 0 implies I*I = 0.

LEMMA 4.3. Let R be a G-semiprime ring, H a subgroup of G and I a nonzero
H-invariant ideal of R. Suppose that Il = 0 for all x € G\ H. Then:
()G, = H;
(i1) { is a trivial intersection ideal,
(ili) if X is a right transversal for H in G, then I = @ L 4 I*.

PROOF. Since R is G-semiprime, Lemma 2.5(ii) implies that I is H-nilpotent-free
and hence that I N /(1) = 0. In particular, 7> # 0 so (i) is immediate. Next observe
that

m( Y IX)QIOIR(1)=O
x€G\H

and this clearly yields the direct sum in (iii). Since (ii) follows from (iii), the lemma is
proved.

CoROLLARY 44. Let R*G be a strongly G-graded ring whose base ring R is
G-semiprime. Then R * G contains nonzero ideals A, B with AB = 0 if and only if there
exist:

(1) a trivial intersection ideal I of R;

(ii) a finite group N with normalizer N;(N) = G;

(iii) nonzero G -invariant ideals A, Bof R NwithA, BC I(R*N)and AB = 0.

Furthermore, A = B if and only if A = B.
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PRrOOF. If I, N, A and B exist, then so do A and B by Theorem 1.3. Conversely
suppose 4 and B exist. We apply Theorem 1.3 and use its notation. In particular, N
is a finite group and N € H C N4(N) = H. Since I*"] =0 for all x € G\ H C
G\ H, Lemma 2.5(i) implies that I = /"' is an H-invariant ideal of R with 1"/ = 0
for all x € G\ H. By Lemma 4.3, [ is a trivial intersection ideal with stabilizer
Gi= H = Ng(N).

Now we consider the action of 2 Hon R* N. Set A = A" and B = B so that
these are H-invariant ideals of R * N clearly contained in I(R * N). Since I*] = 0
forall x € H\ H and since N C H, it follows easily that (I(R * N))X I(R*N)=
for all x € H\ H and hence that 4B = 0 for all such x. But 4 is H-invariant and
AB =0 so this yields A7B = 0. Hence, since the right annihilator of 47 is A-
invariant, we conclude that 4 B = A"B" = 0.

As is to be expected, the main theorem is used to obtain sufficient conditions for
R *G to be prime or semiprime. The real stumbling block to obtaining a precise
answer in either case is that the answers for G finite are just not satisfactory. This is
so even if R * G is assumed to be a crossed product. Thus in [8], it is shown that the
primeness of a finite crossed product eventually depends on the G-primeness of
certain suitably constructed twisted group algebras. But even the question of
primeness of a finite twisted group algebra is unbelievably complicated. Indeed, the
best result [7] requires the full classification of the finite simple groups. We finesse
the problem by merely assuming that the finite groups which occur are all trivial.

Let G be an arbitrary group. We denote by A*(G) the join of all the finite normal
subgroups of G. In particular, A*(G) = (1) if and only if G has no nontrivial finite
normal subgroups.

COROLLARY 4.5. Let R*G be a strongly G-graded ring whose base ring R is
G-prime. Suppose that, for every trivial intersection ideal I of R, we have A*(G,) = (1).
Then R * G is prime.

PROOF. We use Corollary 4.4. Suppose [ is a trivial intersection ideal of R and N is
a finite subgroup of G with N;(N) = G,. Then N € A*(G,) = (1), by assumption,
soclearly N = (1), R* N = Rand G, = N;(N) = G. Since R is G-prime, it follows
that R * N = R can contain no nonzero G-invariant ideals A and B with 4B = 0.
Thus by Corollary 4.4, R * G is prime.

Observe that if G is torsion free, then the hypothesis A*(G,) = (1) is clearly
satisfied. Thus we obtain

COROLLARY 4.6. Let R*G be a strongly G-graded ring whose base ring R is
G-prime. If G is torsion free, then R * G is prime.

If R+G is a crossed product, then this is Theorem II of [18]. In a different
direction, suppose that R is a prime ring so that it is certainly G-semiprime. Let I be
any trivial intersection ideal of R with G, = H. From "] = 0 for all x € G\ H, we
conclude that H = G and thus 7 is merely a G-invariant ideal of R. It now follows
that if (i), (ii) and (iii) of Corollary 4.4 are satisfied for /, then they are satisfied for
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I = R. Corollary 4.4 therefore yields

COROLLARY 4.7. Let R * G be a strongly G-graded ring whose base ring R is prime.
Then R * G is prime (or semiprime) if and only if, for every finite normal subgroup N of
G, R * N is G-prime (or G-semiprime, respectively).

When R * G is a crossed product, this is Theorem 1.9 of [10].

5. Maschke’s theorem. It remains to obtain an appropriate sufficient condition for
R * G to be semiprime. Again the precise answer eludes us because of finite group
complications, but the results here are not too bad. Indeed for R * G a finite crossed
product over a semiprime ring, we need only assume that R has no |G|-torsion to
deduce that R * G is semiprime [6]. Furthermore, the analogous result holds for
strongly G-graded rings [2, 11]. We actually require an operator version of this fact
which does not readily follow from the known results. It does, however, follow easily
from the techniques of [17].

We study (right) R * G-modules and we use WessgV to indicate that W is
essential as an S-submodule of V.

LEMMA 5.1. Let R * G be a strongly G-graded ring, let V be an R * G-module and let
W be an R-submodule. Then:
(1) WR is an R-submodule for all x € G;
(ii) if WessgV, then WR .essgV;
(ii)) N, GWR, is an R * G-submodule of V contained in W.

PROOF. (i) is clear since R R = R,. For (ii) suppose that U is a nonzero
R-submodule of V. Since R -1R, = R, it follows from (i) that UR_ -1 is also a
nonzero R-submodule. Thus since Wessg V' we have W N UR - # 0 so

WR.NU2(WNUR, )R, #0.
Finallyifv € N,c;WR, and y € G, thenvR, C WR R, = WR,, forall x € G so
UR_V < n WRX)‘ = n WRx’

XEG XEG
and the lemma is proved.

The next result is the version of Maschke’s theorem which is known to hold in the
context of strongly G-graded rings (see, for example, [11]). If G is finite, an additive
group V is said to have no |G|-torsion if v|G| = 0 for v € V implies thatv = 0. If V'is
an R * G-module, we denote by V} the restriction of V to R.

LEMMA 5.2. Let R*G be a strongly G-graded ring with G finite. Suppose that
W C V are R * G-modules with no |G|-torsion and that Wy, is a direct summand of V.
Then there exists an R * G-submodule U of V with (W @ U)essg V. Furthermore if
V =V |G|, then Wis a direct summand of V.

PrROOF. For each x € G we have 1 € R = R _R -1 so we can write 1 = X.a,;b.-,
a finite sum with a ; € R, and b,-;; € R .. But assumption Wj is a direct summand
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of Vy, so there exists an R-projection 7: V' — W. We then define A: V' —» W by
UA = Z Z(vaxi)ﬂbx"i
xX€G i

for all v € V. Since W is an R * G-submodule, A is clearly an additive map from ¥ to
w.

We claim that A is an R * G-homomorphism. To this end, let a, € R, and consider
(vay)". Observe that, for each x € G, a,a,; € R, and then that

alraxi = (Za(yx)jb(yx)"j) '(ayaxi)'

J

Furthermore, since b, ,,)-1;(a,a,;) € R,  is an R-homomorphism and X;a,;b,-;, = 1,
we have

(Ua,v))\ = Z(Ua\' xi)ﬂbx'li

X,

)y (Ua()‘x)jb(y.\')"jayaxi)ﬂb_\-"i

X,

Z (va()’»\')])"b()'.\')"ja_r : a.\'ibx"i

X..j
=2 (Ua()'X)j)ﬂb(_\'X)"j ta

X,J

= (Z(vaxj)wb.\'"j) Q.= o ay.

X,

Thus A is an R * G-homomorphism and hence if U = ker A then U is an R * G-
submodule of V.

Set n = |G| and observe that for w € W we have wa,; € Wso (wa,;)” = wa,, and
therefore

W)\ = Zwaxibx'li = ZW = wn.
XL X

Thus since ¥ has no n-torsion we see that W N U = 0. Now let v € V and set
w = v* € W. Then (vn)* = v*n = w* so (vn — w)* = 0 and we deduce that Vn C
W & U. In particular, if X is an R-submodule of V with (W & U) N X = 0, then
Xnc (We® U)Nn X =0 and, since V has no n-torsion, we conclude that X = 0.
Thus (W & U)essg V. Finallyif V' = Vn,then V=W & U.

As a consequence we obtain the essential version of Maschke’s theorem.

PROPOSITION 5.3. Let R * G be a strongly G-graded ring with G finite. Suppose that
W C V are R *G-modules with no |G|-torsion. Then Wessg,;V if and only if
WessgV.

PROOF. If WessgV then certainly Wessg, ; V. Conversely, suppose Wessg, V
and let L be an R-submodule of ¥V maximal with respect to W N L = (. Then
(W @ L)essg V and hence, by Lemma 5.1(ii), (W © L)R  essg V for all x. Moreover,
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if E is the finite intersection E =N, (W ® L)R,, then EessgV and E is an
R * G-module by Lemma 5.1(iii). Since W is an R * G-submodule of V, we see that
WCECW®L and hence E= W & (E N L). In other words, Wy is a direct
summand of E. Thus Lemma 5.2 applies and there exists an R * G-submodule U of
E with (W @ U)essg E. Hence (W @ U)essg V. But Wessg,;V and Wn U =0,
so U = 0 and the result follows.

It is now clear that much of the crossed product work of [17] carries over to
strongly G-graded rings. However, this is not the appropriate place to pursue this
line of thought. Rather we will content ourselves with obtaining the necessary
operator version of the Fisher-Montgomery theorem. It is clear that the following
proof only requires that H strongly permutes the ideals of R*G and of R in a
suitably compatible manner. However we will simply state the result in the form we
will use it.

LEMMA 5.4. Let R * H be a strongly H-graded ring, let G be a finite normal subgroup
of H and let I be an H-invariant ideal of R. If I is H-nilpotent-free with no |G|-torsion,
then I(R * G) is an H-nilpotent-free ideal of R * G.

PrROOF. We first observe that /(R *G) has no |G|-torsion. Indeed suppose y
= XY, € I(R *G) with |G|y = 0. Then, for all x € G we have |G|y, R, = 0 and
Y, R -1 € I. Since I has no |G|-torsion, we conclude that y, R -+ = 0 and hence that
y=0.

Now suppose A4 is an H-invariant ideal of R * G contained in I(R *G) with
A*=0.If L =l;z.5(A), then L is a two-sided ideal of R * G. Furthermore, as
right (R * G)-modules, we have Lessg,; I(R * G). Indeed suppose K is a nonzero
right ideal of R * G contained in I(R *G). If KA # 0, then 4> = 0 implies that
0 # KA € L N K. On the other hand, if KA = 0then0 #* KC L N K.

Since Lessg,; I(R *G) and I(R * G) has no |G|-torsion, we deduce from Proposi-
tion 5.3 that Lessg /(R * G) and therefore that L N I = /,(A) is essential, as a right
R-module, in I € I(R * G). Now observe that L’ = [,(A) is an H-invariant ideal of
R contained in I and that / is H-nilpotent-free, by assumption. Thus L’ N r;,(L") = 0
and since L’essg I we have r;(L’) = 0. Finally, if a = Xa, € 4 € I(R *G), then
L'a =0 implies that L'a,R -+ =0 for all x. Thus since a,R,-1 €I we have
a, R, -1 Cr,(L)=0 and therefore a« = 0. We conclude that 4 = 0 and hence that
I(R * G) is H-nilpotent-free.

If V is an additive abelian group and G is arbitrary, then we say that V" has no
|Gl-torsion if, for all finite subgroups N of G, V has no |N|-torsion. We can now
quickly prove

COROLLARY 5.5. Let R*G be a strongly G-graded ring whose base ring R is
G-semiprime. Suppose that, for every trivial intersection ideal I of R, I has no
|A*(G,)|-torsion. Then R * G is semiprime.

Proor. Let I be any trivial intersection ideal of R and set H = G,. Then
I'IcI*nI=0forall x € G\ Hso Lemma 2.5(ii) implies that / is H-nilpotent-
free. Suppose N is a finite normal subgroup of H. Then N C A*(G,) so, by
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assumption, I has no |N|-torsion. We can therefore conclude from Lemma 5.4 that
I(R * N) is an H-nilpotent-free ideal of R * N and Corollary 4.4 yields the result.

Observe that if R has no |G|-torsion, then certainly / has no |A*(G,)|-torsion for
any ideal I of R. Thus we obtain

COROLLARY 5.6. Let R*G be a strongly G-graded ring whose base ring R is
G-semiprime. If R has no |G|-torsion, then R * G is semiprime.

If R*G is a crossed product, then this is Theorem I of [18]. Furthermore, since
any semiprime ring is G-semiprime, this includes the main result of [16].

Finally, we remark that the results of this paper have been extended to more
general group-graded rings by D. Quinn [19] using a refinement of the duality
developed in [2]. In addition, that paper contains a much less computational proof
of the essential version of Maschke’s theorem.
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