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INFINITE CROSSED PRODUCTS
AND GROUP-GRADED RINGS

BY

D. S. PASSMAN1

Abstract. In this paper, we precisely determine when a crossed product R * G is

semiprime or prime. Indeed we show that these conditions ultimately depend upon

the analogous conditions for the crossed products R * N of the finite subgroups N of

G and upon the interrelationship between the normalizers of these subgroups and the

ideal structure of R. The proof offered here is combinatorial in nature, using the

A-methods, and is entirely self-contained. Furthermore, since the argument applies

equally well to strongly C-graded rings, we have opted to work in this more general

context.

Let G be a multiplicative group and let R be a ring with 1. Then a crossed product

R * G of G over R is an associative ring determined by G, R and certain other

parameters. To be more precise, for each x e G there exists an element x e R * G

and every element a e R * G is uniquely writable as a finite sum

a =  £ rxx

with rx e R. Addition in R * G is componentwise and multiplication is given by the

formulas

xy = t(x,y)xy,       rx = xrx

for all x, y e G and reí. Here t: G x G -» U is a map from G x G to the group

of units U of R and, for fixed x e G, the map x: r -> rx is an automorphism of R.

It is a simple exercise to determine the relations on t and the automorphisms x

which make R * G associative. From this it follows easily that R * G has an identity

element, namely 1 = r(l, l)_1ï, and that each x is invertible. Indeed

© = {«3c |« e U, x e G)

is a multiplicative group of units in R * G, the group of trivial units. Thus the

equation rx = xrx is equivalent to x~lrx = rx and hence the automorphism x is

merely conjugation by a unit in R*G. In fact, it is clear that © acts on R by

conjugation. In general, R*G does not contain an isomorphic copy of G. However,

we do have R ç R * G by way of the embedding r -* r\ and then t/ < © and

©/£/ » G.
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An interesting problem, studied for the past 20 years, concerns finding reasonable

necessary and sufficient conditions for R * G to be semiprime or prime. In the case

of ordinary group algebras these are results of the author [13] and of I. G. Connell

[4], respectively. They were obtained using a coset counting argument known as the

A-method, which effectively reduced the question to the finite normal subgroups of

G. Furthermore, this same technique handled twisted group algebras with little

additional difficulty [14]. However, when G acts nontrivially on the ring R, another

dimension is added to the problem. Here the first result, due to G. Azumaya [1]

showed that if R is a simple ring and G is outer on R, then R * G is simple. S.

Montgomery [9] proved that if R is prime (or semiprime) and G is X-outer on R,

then R * G is prime (or semiprime, respectively). In [6], J. Fisher and S. Montgomery

settled the semiprime question for G finite. Infinite groups were considered by S.

Montgomery and the author in [10] where the A-methods and the techniques of [6]

combined to handle the case where R is a prime ring. This was extended in [16] to

semiprime coefficient rings and then the problem was essentially solved in [18].

It was apparent from the work of [18] that the semiprime and prime condition for

R * G ultimately depends on the analogous condition for certain crossed products of

finite subgroups of G. In this paper, we give a precise formulation of this fact and

the main result is

Theorem. Let R*G be a crossed product of G over R. Then R*G contains nonzero

ideals A, B with AB = 0 if and only if there exist:

(i) subgroups N<H ç G with N finite,

(ii) an H-invariant ideal I of R with IXI = Q for all x e G\ H,

(iii) nonzero H-invariant ideals Ä, B of R* N with Ä, B c I * N and ÄB = 0.

Furthermore, A = B if and only if Ä = B.

The results of [18] are immediate corollaries of the above.

The proof of the main theorem is entirely combinatorial in nature, using the

A-methods and a modification of the bookkeeping procedure of [18]. Indeed the

proof is quite similar to the work of the latter paper. Nevertheless, crossed products

with operators and the ideals^(ZZ) and 0>(H) which played such a prominent role

in the earlier argument no longer occur. Moreover, the results of [10] and [16] are no

longer needed. Because of these many simplifications and because of the delicate

nature of the proof, we have opted to offer a completely self-contained version here.

We hope this will make the paper more readable and the proof more understand-

able.

For a number of reasons, we have decided to work in the more general context of

strongly G-graded rings. First, there is at present a good deal of interest in these

rings and in their prime and nilpotent ideals [2, 3, 5, 11, 12]. Second, the proof is no

harder in this generality and in fact certain aspects, for example the group action on

the ideals of R, actually become more natural. Third, it forced us to rethink and

simplify a number of arguments which seemed to depend upon the existence of the

units x. Finally, it allowed us to further separate this paper from its predecessor [18].
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1. Group-graded rings. Let G be a multiplicative group. An associative ring S is

said to be G-graded if 5 can be written as S = ®ÏZxeGRx, the direct sum of additive

subgroups Rx, indexed by the elements of G, with RXRV Q Rxy for all x, y e G. It

is clear that Rx = R is a subring of S and we assume throughout that 1 e R and that

the unit element of R is also the unit element of S. It therefore follows that each Rx

is a uni tal (R, Ä)-bimodule.

If a e S, we can write a as the finite sum a = Lax with ax e Rx. The summands

ax are then the homogeneous components of a and the support of a is Supp a = [x

e G\ax + 0}. In general, we will subscript homogeneous elements of S to indicate

their grade.

The G-graded ring S is said to be strongly G-graded if RXRV = Rxv for all

x, y e G. As is well known, this condition follows if we merely assume that

RxRx-i = Z?, for all x. Furthermore, it is clear that any crossed product over G is a

strongly G-graded ring in a natural way. By a terrible abuse of notation, we will also

denote strongly G-graded rings by R * G. Thus

r*g= e e rx

with Rx = R. In other words, the notation merely indicates the group G and the base

ring R = Rx; all the remaining structural information is somehow embedded in the

star. As with crossed products, we use this with the understanding that if H is a

subgroup of G, then R * H is the natural strongly ZZ-graded subring given by

R*H= 0   Z Rx-
x<EH

In this section, we make a few elementary observations, state the main theorem for

group-graded rings and then prove that result in the trivial direction. We assume

throughout that R * G is a fixed strongly G-graded ring.

Lemma 1.1. With the above notation:

(i) The right and left annihilators of any Rx are zero.

(ii) if ay is a nonzero element of Ry and xyz = 1, then RxayR: is a nonzero ideal of

R.

Proof, (i) is clear since 1 e Rx = RXRX\ = RX>RX and (ii) is immediate since

RxavR: is a nonzero (R, Z?)-subbimodule of R = Rx.

We will use this lemma, and its obvious generalizations, freely throughout the

remainder of this paper.

Now suppose N<H ç G. For x e H and I an ideal of R * N, we define I* =

RX\IRX. In this way, H acts on the ideals of R * N and basic properties are as

follows.

Lemma 1.2. Let N>H c G, let x, y e H and let I, J be ideals ofR*N. Then:

(i) Ix is an ideal of R* N;
(ii)(ixy = vy,il = i;

(iii) if I QJ, then IXQJX;
(iv)(U)x = IXJX.
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Proof. Since N>H and x e H, it follows easily that (R* N)RX = RX(R* N).

From this we conclude first that Ix ç R* N and then that Ix is an ideal of this

subring. Now for (ii) and (iv) we have

(IXY = Ry-JxRy = Ry->(Rx-JRx)Ry = R(xy)->IRxy = I"

and

IXJX = {Rx-JRx)(Rx-yJRx) = Rx-i(IRJ)Rx = (1J)X

since IR = I. Finally, (iii) is obvious so the lemma is proved.

If we let ./denote the set of ideals of R * N in the above situation, then (i) and (ii)

assert that the map x -* x is a homomorphism of G into Sym(./). Furthermore, by

(iii) these are inclusion preserving permutations and in particular they preserve the

lattice operations of arbitrary intersections and sums, (iv) says that finite products

are also preserved.

Continuing with this notation, an ideal I of R * N is said to be ZZ-invariant if

Ix = I for all x e H. Since RxRx-¡ = RX->RX = R, this clearly occurs if and only if

IRX = RXI for all jc e ZZ.

Note that if N = (1), then R* N = R and, in this way, G acts on the ideals of R.

With this understanding we can now state the main result for group-graded rings.

Theorem 1.3. Let R*G be a strongly G-graded ring with base ring R. Then R*G

contains nonzero ideals A, B withAB — 0 if and only if there exist:

(i) subgroups N< H ç. G with N finite,

(ii) an H-invariant ideal I of R with IXI = 0 for all x e G \ H,

(iii) nonzero H-invariant ideals Ä, B of R* N with Ä, B c I(R* N) and ÄB = 0.

Furthermore A = B if and only if A = B.

Note that if R * G is a crossed product, then the permutation action on the ideals

as defined above is merely conjugation by the group of trivial units. Thus Theorem

1.3 does generalize the result stated in the introduction. It is convenient to record the

following elementary

Lemma 1.4. Let H be a subgroup of G and suppose that I is an ideal of R with

IXI = 0 for all x <eG\H. Then:

(i) IRXI = 0 for all x e G\H,

(ii) I(R * G)I Ql(R*H)Q R*H.

Proof, (i) is clear since r(Rx-i) = 0. Moreover, since R*G = (&T,X<EGRX, we

have

I(R*G)I=®   E '**'=©   E IRXIQI(R*H)QR*H
ieC x<EH

and (ii) is proved.

We can now offer the

Proof of Theorem 1.3 (easy direction). Here we assume that R * G is given and

that ZZ, N, Z, A and B exist and satisfy the appropriate properties. We set A =

(R * G)Ä(R * G) and B = (R* G)B(R * G) so that these are nonzero ideals of the
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strongly G-graded ring R*G. The goal is to show that AB = 0 or equivalently that

ÄRXB = 0 for all * e G.

If x e H, then since Ä is ZZ-invariant, we have

ÄRXB = RXÄB = 0.

On the other hand, if x e G \ ZZ, then since Ä, B c I(R* N)we have

iZÎ^ZÎ c /(/? * A0ZvxZ •(« * N).

But (Z? * N)RX = ZysNxRy and NxQG\H so Lemma 1.4(i) yields Z(Ä * N)RXI

= 0. Therefore ÄRXB = 0 and we have shown that AB = 0. Since Ä = B implies

A = B, this direction is proved.

Most of the remainder of this paper is devoted to proving the opposite direction.

2. Coset calculus. Let ZZ be a group and let R be a ring. We say that H strongly

permutes the ideals of R if for all x, y e H and ideals I, J of R we have:

(i) Ix is an ideal of R;
(ii) (IXY = Ixv, I1 = I;

(iii) tilQj then Ix c Jx;

(iv) (IJ)X = IXJX.

Thus, for example, if we are given the strongly ZZ-graded ring R* H, then Lemma

1.2 asserts precisely that H strongly permutes the ideals of R. As we observed

previously, the first three conditions above imply that the action comes from a

homomorphism of H into the group of inclusion preserving permutations on the set

of ideals of R. In particular, they also preserve the lattice operations of arbitrary

sums and intersections. Thus we also have 0A = 0 and Rx = R for all x e H.

Now let J be a nonzero ideal of R. In view of the conclusion of Theorem 1.3, we

are obviously interested in studying those h e H with JhJ = 0. Now the A-methods

usually give information which asserts that something occurs for all elements of H

except for those in a finite union of cosets of varying subgroups. In this section we

show how to reformulate such a conclusion so that it in fact holds for all elements in

H\L where Lisa single subgroup of H suitably determined by the situation.

Suppose A and B are subgroups of H and that the left cosets xA and yB are not

disjoint. If z e xA n yB, then xA = zA, yB = zB and hence

xA n yB = zA D zB = z(A n B).

In other words, the intersection of two left cosets is either empty or a coset of the

intersection. Property (iv) above will be crucial in the next two lemmas.

Lemma 2.1. Let H strongly permute the ideals of R and let J be a nonzero ideal of R

such that
n

JhJ = 0   for all h e ZZ \ \JhkHk.
i

Here U"hkHk is a fixed finite union of left cosets of the subgroups Hk of H. Then there

exists a subgroup L of H and a nonzero product 0 ¥=■ K = JnJy2 ■ ■ ■ JVr of H-con-

jugates of J, with some y, = 1, such that KhK = 0 for all h e H\L. Furthermore

\L : L n Hk\ < oo for some k.
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Proof. In the course of this proof we will replace {Hx, H2,...,Hn) by certain

other finite sets 21 of subgroups of H with the property that A e 21 implies A ç Hk

for some k. We note that if the result is proved for such a set 21, then from

\L:L n A\< oo for some A and L n A ç L n Hkv/e obtain \L:L n Hk\ < oo. In

other words, the result will then follow for the original subgroups Hx, H2,...,Hn.

If 21 is the set of all proper (that is, nonempty) intersections of the ZZ^'s, then 21 is

finite and closed under intersections. Thus without loss of generality we can now

assume that the ZZ^'s are contained in a finite set 2Í closed under intersections and

we prove the result by induction on |2t| > 0. If |2í| = 0 then the hypothesis and

conclusion both assert that JhJ = 0 for all h e H.

Assume now that |2t | ^ 1, let A be a maximal member of 2Í and set 21' = 21 \ {A ).

Then |2l'| < |21| and 21' is closed under intersections. We will be concerned with

finite unions of left cosets S = U hijA¡ with A,; e 21. By the support of S we mean

those A:'s which occur in this representation. Suppose K = JViJy2 ■ ■ • JVr # 0, some

y, = 1, and KhK = 0 for all h e H\S. If A e SuppS, then Supp S ç 21' and

induction applies. Thus there exists a finite product I = K"lK"2 ■ ■ ■ K"> ¥= 0 with

some Uj = 1 and IhI = 0 for all n e ZZ \ L. Since I is also a suitable product of

conjugates of J and since |L : L n A,\ < oo for some A, e 21', the result follows in

this case.

Thus we can assume, for all such pairs K and S as above, that A e Supp S. Of

course there is at least one such pair by hypothesis and now we choose K and S so

that S has the smallest number, say m>\, of cosets of A occurring in its

representation. Then

S = zxA U z2A U • • • U zmA U T

where T is a finite union of cosets of groups in 2Í ' and we define L by

/ I m \        m

L= \h^H\h i\Jz,A \=\jz,A

Suppose KXK # 0 for some x e H. Then KXK is a nonzero finite product of

ZZ-conjugates of / with some conjugating element equal to 1. Furthermore the

symbolic formula KiH^S)K = 0 yields KXX~'(H\S)K = 0 so (KxK)h(KxK) = 0 for

all n with

h e (H\S) U x~x(H\S) = H\(S n x~xS).

Since 2Í is closed under intersections, it is clear that S n x~xS is also a finite union of

left cosets of members of 21. Indeed, since clearly Supp x~xS = Supp S, S n x'xS is a

union of cosets of groups of the form B D C with B,C e Supp 5. Furthermore,

since A is a maximal member of 21, we note that A = B n C can occur if and only if

B = C = A. By definition of m, S n x-1S contains m' > m cosets of .4.

Since

jc_1S = x_1z,y4 U x~xz2A U  • ■ • U x~xzmA U x_17,
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the A -cosets of 5 n x XS come from

¡UzJ nUjx-^A

But cosets of A are either disjoint or identical so this intersection has m' < m terms.

Thus we must have m! = m so

m I m \

\Jz,a = x-1 LM

and hence x e L. In other words, we have shown that K(H^L)K = 0

Now H permutes the set fi of left cosets of A by left multiplication and L is the set

stabilizer of the finite subset A = {zxA, z2A,..-,zmA} of Q. Thus L is a subgroup

of H. Moreover if a = zA e A, then Ha = {h e ZZ|na = a} = z/lz"1 and it follows

that |L:L Pi (z^z_1)| < oo. We can eliminate this conjugating element z"1 by

conjugating both L and K by z. However in so doing we lose the property of K that

somey, = 1. Thus we must take a different approach.

Suppose first that L n z¡A = 0 for all i = 1,2,..., m. Then KhK = 0 for all ñ

with

n e (H\S)U(H\L) = H\(LC\ S)

and, by the above assumption, L P\ S = L C\ T is a finite union of cosets of the

groups in $ = {L n i|i e 21'}. Since |$| < |2l'| < |2I| and since % is clearly closed

under intersections, induction applies here. Thus, as before, there exists I = KUiK"2

• •• Ku** 0 with some u} = 1 such that IhI = 0 for all n e ZZ\L with |L:L n B\

< oo for some B e $. Since Z has the appropriate form, the result follows in this

case.

Finally, if L n z,j4 ¥= 0 for some /', we may assume that z = z¡ e L. Since

\L:L C\ (zAz~x)\ < oo, conjugating this expression by z e L then yields \L:L C\ A\

< oo and the lemma is proved.

We remark that the same result holds with JhJ replaced by JJh. Indeed, in the

proof, merely replace all occurrences of KhK by KKh. Furthermore both of these

hold if left cosets are replaced by right cosets. Merely note that JhJ = 0 is equivalent

to //'' = 0 and that replacing n by n"1 effectively interchanges right and left cosets.

The form of the lemma proved here is the one we will use.

Moreover, suppose that H = \J"hkHk is given, let ZZ act trivially on the ideals of

any ring R with 1 and take J = R. Then the hypothesis of the above lemma is

vacuously satisfied and the conclusion implies that RhR = 0 for all n e H\ L. Thus

we must have L = H and |H : Hk.] < oo for some k. In other words, Lemma 2.1

generalizes the well-known result concerning the existence of subgroups of finite

index. We actually require the following slight strengthening of the above.

Lemma 2.2. Let H strongly permute the ideals of R and let J be a nonzero ideal of R

such that

n

JhJ = 0   forallh e W\\JwkHk.
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Here W is a subgroup of H of finite index and \J"wkHk is a fixed finite union of left

cosets of the subgroups Hk of W. Then there exists a subgroup L of H and a nonzero

product 0 + K = JyiJV2 • • • Jy' of H-conjugates of J, with some y, = 1, such that

KhK — Oforallh e H\L. Furthermore, \L:L n Hk\ < oo for some k.

Proof. Since \H:W\< oo and / # 0 we can choose the sequence A =

{n,, h2,...,hs) ç H to be of maximal size subject to:

(i) 1 e A and the n, are in distinct right cosets of W in H;
(ii) K = Jh^Jh2 ■ ■ ■ J"' * 0.

Now let x e ZZ and suppose that KXK ¥= 0. Then, by considering the right cosets of

W, we must have WAx = WA. Indeed, if this were not the case then, for some /', n,x

would be in a new right coset of W. We would then have

jhtxjh,jh2 ... jh, 3 KxK # o

contradicting the maximality of A. Since 1 e A and WAx = WA, this implies that

h¡x e IF for some ;'. Furthermore Jh,xJ 2 KXK ¥= 0 so, by hypothesis since h¡x e W,

we must have n,x e (J"wkHk.

We have therefore shown that KXK # 0 implies that x e h~x({J"wkHk) for some i.

Equivalently, we have

KhK = 0   forallheH\\Jh;1wkHk.
i,k

We can now apply Lemma 2.1 to this situation to obtain a nonzero product

I = Ky'K>2 ■ ■ ■ Ky' # 0

with some y¡ = 1 and a subgroup L of H with \L:L D Hk\ < oo for some k and

IhI = 0 for all n e H\ L. Since 1 e A, I is an appropriate product of ZZ-conjugates

of J, thereby completing the proof.

Again there are three other forms of this lemma which are equally valid. We close

this section with some definitions and minor observations. We assume in the

remaining three lemmas that G strongly permutes the ideals of R.

Lemma 2.3. Let I be an ideal of R.

(i) Ia = lZx<EGIx is the smallest G-invariant ideal of R containing I.

(ii) If I is G-invariant, then so are rR(I) and lR(I).

Proof, (i) is clear since the action of G preserves arbitrary sums and (ii) follows

from the formula (IJ)X = IXJX.

Now let I be a G-invariant ideal of R. Then I is said to be G-nilpotent-free if Z

contains no nonzero G-invariant nilpotent ideal of R. Similarly Z is said to be

G-annihilator-free if for all nonzero G-invariant ideals A, B ç I we have AB + 0.

Obviously the latter property implies the former. When I - R these conditions

assert precisely that R is G-semiprime or G-prime, respectively.

Lemma 2.4. Let I be a G-invariant ideal of R.

(i) If I is G-nilpotent-free then rR(I) = rR(I2).

(ii) If H is a subgroup of G of finite index, then I is G-nilpotent free if and only if it is

H-nilpotent-free.
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Proof, (i) Obviously rR(I) Q [R(I2) = J and these are G-invariant ideals of R.

Since I2J = 0, we see that IJ is a G-invariant ideal contained in I with (IJ)2 Q I ■

(IJ) = 0. Thus IJ = 0 and J ç rR(I).

(ii) If I is ZZ-nilpotent-free then it is obviously G-nilpotent-free. Conversely

suppose I is G-nilpotent-free and let J be an ZZ-invariant nilpotent ideal of R

contained in I. Then since |G: H\ < oo, JG is a finite sum of the nilpotent ideals /*

and hence JG is nilpotent. Thus JG = 0 and 7 = 0.

Lemma 2.5. Let H be a subgroup of G and let I be an ideal of R. Suppose that

IXI = 0forallx<E G\H.

(i) IH is an H-invariant ideal of R with

(IH)x(IH) = 0   forallx&G\H.

(ii) Let I Q J with I an H-invariant ideal and with J a G-invariant ideal. If J is

G-nilpotent-free (or G-annihilator-free), then I is H-nilpotent-free (or H-annihilator-

free, respectively).

Proof, (i) If a, b e H and x e G\ H, then IaxIh = (Iaxh~I)h = 0 since axb~x <£

H.

(ii) Let A and B be ZZ-invariant ideals of R contained in I with AB = 0. By

considering the cases x e H and x e G\H separately, we see that AXB = 0 for all

x e G. It then follows that AG and BG are G-invariant ideals of R contained in /

with AGBG = 0. If / is G-annihilator-free then AG or BG is zero and hence I is

ZZ-annihilator-free. Finally by taking A = B we obtain the analogous result for

nilpotent-free ideals.

3. A-methods. Let R * G be a strongly G-graded ring. By Lemma 1.2, G strongly

permutes the ideals of R. Therefore all the results and definitions of §2 apply here.

We will use this observation without further comment.

If H is a subgroup of G, then there is a natural projection map mH: R * G -» R * H

given by

"#/    E ax   =   E «v

This is easily seen to be an (R * H, R * H)-bimodule homomorphism.

Again, if ZZ ç G then the almost centralizer of H in G is defined by

DG(ZZ)= {xeG||Z/:Cff(x)|<oo}.

It is clear that DC(ZZ) is a subgroup of G normalized by H. Furthermore, H n

DC(ZZ) = DH(ZZ) = A(ZZ) where A(ZZ) denotes the f.c. (finite conjugate) center of

H.

The main result of this section is

Proposition 3.1. Let R*G be a strongly G-graded ring and assume that the base

ring R is G-semiprime. Suppose that A and B are nonzero ideals of R*G with AB = 0.
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Then there exists a subgroup H ç. G, a nonzero H-invariant ideal I of R and an

element ß e B such that:

(i) ri = 0 for all x e G\H;

(ii) Im^A) + 0, ImA(ß) # 0 where A = A(ZZ);

(iii)/%O4)-/j8-0.

The above conditions motivate the following definition. Suppose A and B are

nonzero ideals of R * G with ;4Z? = 0. We say that the 4-tuple (ZZ, D, I, ß) is a /owi

for A, B if:

(i)ZZ£G,£> = Dc(ZZ);
(ii) Z is an ZZ-invariant ideal of R with Z*Z = 0 for all x e G \ ZZ;

(iii) ß e Zi, Zß * 0,1 A * 0.

For the remainder of this section we assume the hypotheses of Proposition 3.1.

The proof of the latter proceeds in a sequence of lemmas.

Lemma 3.2. Forms exist.

Proof. Take H = G, D = A(G) and I = R. Since A, B ¥= 0 and 1 e R we have

I A * 0, Iß # 0 for any 0 e 5 \ 0.

We define n = (H, D, I, ß)#, the size of the form, to be the number of right

Z)-cosets meeting Supp/1 We now assume for the rest of this argument that

(H, D, I, ß) is a form whose size n is minimal. In the next lemma we make a slight

change in ß. Afterwards, no additional changes in the form will be made. Set

A = A(ZZ).

Lemma 3.3. With the above notation:

(i) I is H-nilpotent-freeandrR,G(I) — rR,G(I2);

(ii) Im^(A) ¥= 0 and we may assume that Im^(ß) + 0;

(iii) if y e R* D, then Iyß = 0 if and only ifIymD(ß) = 0.

Proof, (i) By assumption, R is G-semiprime. Since I is ZZ-invariant and IXI = 0

for all x e G \ ZZ, it follows from Lemma 2.5(h) that I is ZZ-nilpotent-free. Hence, by

Lemma 2.4(i), rR(I) = rR(I2). Finally, rR,G(I) QrRtC(I2) and suppose y = Ey^. is

contained in rR,G(I2). Then for all x we haveZ2yx = 0 so y,.Z<x-i ç rR(I2) = rR(I).

This yields IyxRx-i = 0 so Zyx = 0 and hence y e rRtG(I).

(ii) Since IA + 0 we have IARX ¥= 0 for all x. Thus since ARX Q A it follows

immediately that Imà(A) # 0. Now write ß = Lßx. Since Iß # 0 we have Ißx ¥= 0 for

some x e G. Thus IßxRx-i ¥= 0 and we can choose ax-i e Rx-i with Ißxax-i ¥= 0. It is

now clear that (H, D, I, ßaxi) is also a form with the additional property that

ImA(ßax-\) ¥= 0. Furthermore, we have

(ZZ,ZJ>,Z,j8ax-,)#<(ZZ,Z?,Z,/i)#

so (H, D, I,ßax-i) also has minimal size n. We now replace ß by ßox-i for the

remainder of the proof of the proposition, or equivalently we can assume that

Im^(ß) # 0. This implies in particular that mä(ß) # 0 and hence mD(ß) J= 0 since

i>2 A.
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(iii) If Iyß = 0, then applying mD yields IymD(ß) = 0. Conversely suppose

IymD(ß) = 0. Then for any s e I we have syß e B and Supp syß meets less than n

right cosets of D since y e R * Z), mD(syß) = 0 but 7rD(ß) # 0. By definition of n,

this implies that (H, D, I, syß) is not a form. Thus Isyß = 0 for all s e Z so

I2yß = 0. We conclude from (i) above that Iyß = 0.

It follows from the above that H, I and ß satisfy (i) and (ii) of the conclusion of

Proposition 3.1. If in addition they satisfy condition (iii), then the result is proved.

Thus we will assume throughout the remainder of this section that ImA(A) ■ Iß # 0

and we derive a contradiction.

Lemma 3.4. With the above assumption, there exists W a subgroup of H of finite

index, a = Eav e A C\ (R * H) and d e Supp mD(a) such that:

(i) Wcentralizes Supp trD(a) and Supp mD(ß);

(ii) for some u e W

IirD(a)ß 2 (IadRd-y)uTrD(a)ß * 0;

(iii) for all y e W

IadRd-yymD{a)mD{ß) = ImD{a)Rd-yyadmD{ß).

Proof, (i) By assumption Im^A) ■ Iß # 0 and hence, since rRtG(I) = rR,G(I2)

we also have

Im^IA^ß = I\(A) -7/3^0.

Thus there exists a & IAI <z A with Imh(a)ß * 0. Observe that a e I(R * G)I ç

R* H, by Lemma 1.4(h). Thus since D n H = A we have mD(a) = mA(a) and

ImD(a)ß * 0.

We can now assume that a is chosen so that |Supp mD(a)\ is minimal subject to

a e A n (Z? * ZZ) and ImD(a)ß ¥= 0. Let IF be the intersection of the centralizers in

H of the elements of Supp7rD(a) and of Supp mD(ß). Since Supp7rD(a)U

Supp mD(ß) is a finite subset of Z) = DC(ZZ), it is clear that \H:W\ < oo. Note that

I is an ZZ-nilpotent-free ideal, by Lemma 3.3(i), and hence it is also IF-nilpotent-free

by Lemma 2.4(h). This completes the proof of (i).

(ii) This part does not use the minimal nature of Supp mD(a). Set y = mD(a)ß and

write a = LxeGax, ß = LxeGßx and y = LxeGyx. Then mD(a) = Ld^Dad and we let

J be the W-invariant ideal of R given by / = T,d<ED(RadRd-i)w. Notice that for all

d e D, y e G we have

adßyRy-yd-y ç RadRd-y ■ RdßyRy-id-y QJR=J

and from this it follows that yxRx-' Q J for all x e G. Now suppose that Uy = 0.

Then UyxRx-\ = 0soyxRx-¡ ç rR(IJ) and hence, by the above,

ZyxZ<x-i QIJ nrR(IJ) = 0

since the latter is a JF-invariant nilpotent ideal contained in I. This yields Zyv = 0

and therefore ImD(a)ß = Zy = 0, a contradiction by the choice of a. Thus we have

UmD(a)ß * 0 and hence, by definition of J, there exist d e Supp mD(a) and u e W

with I(RadRd-i)umD(a)ß + 0. Since u e W Q H and I is ZZ-invariant, this part is

proved.
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(iii) Let y e VF and choose any ay-\ e Z?,.-i and bd-¡y e Rd-ty. We study the

element

Y = ay-yadbd-yya - ay-iabd-yyad.

Clearly y e (R * H) n A and since a = £xeCax we have y = LxeGa(x) where

a(x) = ay-yadbd-yyax - ay-iaxbd-¡yad.

Observe that, since y centralizes d, the summands in a(x) have grades x and y~xxy,

respectively. In particular, if x £ D then neither of these grades is in D since y e H

normalizes D. On the other hand, if x e D then x e Supp7rD(o) so y commutes

with x and hence both these summands have grade x e D. It follows that mD(y) =

ExeCa(x) and that |Supp77D(y)| < |Supp 7r0(a)|. In fact, this inequality is strict

since clearly o(d) = 0.

The minimality of |Supp7rD(a)| now implies that ImD(y)ß = 0 and hence, by

applying mD, that ItrD(y)ttD(ß) = 0. Now as we observed above, mD(y) comes

precisely from the Z>homogeneous components of a so we have

MY) = V^V'/M0) - ay-^D(a)bd-\vad

and hence

Iay-y(adbd-yywD(a) - mD(a)b^yad)mD{ß) = 0.

Notice that this formula holds for all ay-¡ e Ä -i and that /Ä -i = Z?,.-iZ since I is

ZZ-invariant. We can therefore cancel the R y-¡ factor and obtain

Iadbd-iymD(a)mD(ß) = ImD(a)bd-lyadmD(ß)

and since this holds for allbd-\y e Rd-\y, the lemma is proved.

The following A-lemma is a variant of [8, Lemma 1.5]. Fix a = Eax, d, W and u as

in the preceding result for the remainder of this argument.

Lemma 3.5. With the above notation,

(Ia.R^y -mD(a)ß = 0

for all y e FF\UJx,ZZ,. Here U{x,ZZ, is a fixed finite union of left cosets of the

subgroups Hi and each H¡ is the centralizer in W of some element of (Supp ß) \ D.

Proof. We freely use the fact that I is ZZ-invariant and, in particular, that

RhI = IRh for all n e H.

Let y e W and suppose that

(IadRirl)ymD(a)ß*0.

Then

l(RadRd-y)ymD(a)-ß*0

so Lemma 3.3(iii) yields

I(RadRd->ymo{a)mD(ß)*0.
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Thus we have

IadRd-iymD(a)mD(ß) * 0

so Lemma 3.4(iii) yields

IwD(a)Rd-lyadwD(ß)*Q

and therefore finally

IvD(a)Rd-lyadirD(ß)Ry-y*Q.

Write a = mD(a) + à and ß = mD(ß) + ß. Thus since IaRdiyadßRv-i ç AB = 0

we have

l{mD(a) + ä)Rd->yad{mD(ß) + ß)Ry-y = 0.

We now consider the supports of each of the four summands obtained from the

above expression to see how cancellation can occur. Observe that y e W so y

normalizes D and centralizes d e Supp mD(a). In particular, we have Rd-iyad ç Ry

and from this it follows easily that the sets

ImD(a)Rd-tyadßRy-1   and   IäRd-yyadirD(ß)Ry-y

have supports disjoint from D. On the other hand,

0 ± ImD(a)Rd->yadmD{ß)Ry-> Q R* D

by the work of the preceding paragraph so it follows that this expression must be

cancelled by terms from the fourth summand

IäRd-yyadßRy-y.

In particular, the latter two summands must have a support element in common.

Thus there exist / e Supp à, g e Suppß, a e Supp mD(a) and b e Supp mD(ß)

with ayby~x = fygy~x. Since y e W centralizes b e Supp mD(ß), this yields gy =

yg?~l = f~lctb so y e xCw(g), some fixed left coset of C^(g) depending only on

the finitely many parameters/, g, a, b. Since g e Supp/S = (Suppß)\D, the lemma

is proved.

We remark that the truncation from ß to mD(ß), using Lemma 3.3(iii), in the

above argument is crucial. Otherwise the subgroups H¡ turn out to be centralizers of

elements in (Supp a) \ D.

Lemma 3.6. Contradiction.

Proof. We use the notation of the preceding two lemmas and we set y = mD(a)ß

= Ex6Cyv. Then by Lemma 3.4(h), there exists x e Supp y with (IadRd-\)uyx # 0

and hence

J = (IadRd-y)uyxRx-y

is a nonzero ideal of R contained in I since I is ZZ-invariant and we W ç H.

Furthermore, since J ç (IadRd-i)" we have /""' ç Za^ZÎ^-i and hence J" ' ç

(IadRd-¡)y for ally e W.
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It follows from the above and Lemma 3.5 that J" ymD(a)ß = 0 for all y e

W\\J[xiHi or equivalently that JymD(a)ß = 0 for all y e IFXUitT^ZZ, since

u e W. In particular, Jyyx = 0 for these y so Jy(RyxRx-y) = 0 and hence JyJ = 0.

Since |ZZ : IF| < oo, Lemma 2.2 applies and there exists a subgroup L of H and a

nonzero product K = JViJ"2 ■ ■ • /"« such that KhK = 0 for all n e ZZ\L. Further-

more, v¡ = 1 for some i so K ç J ç Z and |L : L n Z/J < oo for some k > 0.

We claim that (L,DG(L), KL, mD(a)ß) is also a form. To start with, we have

KhK = 0 for all h e ZZ\L and K c I so Z^Zí = 0 for all g e G\L. Thus, by

Lemma 2.5(i), KL is a nonzero L-invariant ideal of Z? with (ZCL)gZCL = 0 for all

g e G\L. Furthermore, since Ä is G-semiprime, Lemma 2.5(h) implies that KL is

L-nilpotent-free and in particular (KL)2 # 0. Suppose KLy = KLmD(a)ß = 0. Then

KLyx = 0 so KL(RyxRx-i) = 0 and hence ZC1/ = 0. But rR(KL) is L-invariant, by

Lemma 2.3(h), so this yields KLJL = 0 and hence, since K <z J, we have (KL)2 = 0,

a contradiction. Thus KLmD(a)ß + 0. Furthermore, this imphes that KLmD(a) ¥= 0

so since a e A we have ZCL,4 =£ 0. Thus since mD(a)ß e Z?, (L,DG(L), ZiL, mD(a)ß)

is indeed a form.

It remains to compute the size of this new form. Since ZZ 2 L we have DG(L) 2

DG(ZZ) = D. Thus since mD(a) e R * D, it is clear that Supp mD(a)ß meets at most n

right cosets of D and hence at most n right cosets of DG(L). But observe that

|L:L n Hk\ < oo and that ZZA = C^(g) for some g e (Suppß)\ZJ>. Thus

|L : CL(g)| < oo so g e DG(L) and, in fact, Dg Q DG(L). Since mD(ß) + 0, the two

ZJ>-cosets D and Dg which meet elements in Supp/J merge to the single coset DG(L)

and therefore Supp mD(a)ß meets less than n right cosets of DG(L). In other words,

{L,DG(L),KL,mD(a)ß)# <(H,D,I,ßf,

contradicting the minimal nature of (ZZ, D, I, ß).

As we observed previously, the contradiction of Lemma 3.6 is based on the

assumption that ImA(A) ■ Iß + 0. Thus ImA(A) ■ Iß = 0 and Proposition 3.1 is proved.

4. The main theorem. The goal of this section is to complete the proof of Theorem

1.3 and to obtain its corollaries on primeness. As we will see, the interesting work

has already been done and only a series of routine reductions remain. We first

require a few simple observations.

Suppose A is a nonzero ideal of the strongly IF-graded ring R*W and let N < W.

Then we denote by min^ the span of all elements a ¥= 0 of A whose support meets

the minimal number of cosets of N.

Lemma 4.1. Let R*G be given, let H Q G and let N< W be subgroups of G

normalized by H. If A is a nonzero H-invariant ideal of R*W, then:

(i) minNA is a nonzero H-invariant ideal of R*W.

(ii) mN(A) is a nonzero H-invariant ideal of R* N.

Proof, (i) By definition, min^ is nonzero and let a e A be any generator of this

set. If w e W, then Supp aRw c (Suppa)w and Supp Z^a ç w(Suppa) so, since

N<W,  it  follows  that minNA   is  an ideal  of R * W.  Finally,  if h e H,  then
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Supp Rh-iaRh Q n"'(Supp a)h so, since A is ZZ-invariant and N is normalized by H,

we see that min^ is ZZ-invariant.

(ii) We know that mN is an (R * N, R * Ar)-bimodule homomorphism so mN(A) is

an ideal of R * N. Next if a e A and n e H then, since H normalizes N, we have

mN(Rh-\aRh) = RhimN(a)Rh and therefore mN(A) is ZZ-invariant. Finally choose

0 ¥= a = Exe wax e A. If x e Supp a, then aZ\xi ç /I and clearly mN(aRx-y) ¥= 0.

Lemma 4.2. Lei R * W be given, let N< W and assume that W/N is a unique

product group (for example, an ordered group). If A and B are nonzero ideals of R*W

with AB = 0,then

mN(minNA) ■ mN(minNB) = 0.

Proof. If a = LweWaw, then by summing the homogeneous components over

each coset of N, we can write a uniquely as a = Y,X<BW/Nax. In this way, R*W

becomes a strongly (W/N)-graded ring and we use this notation here. In particular,

mN(a) = oq.

Let a = Ea; and ß = Lßy be generators of minNA and min^Z?, respectively.

Since W/N is a unique product group, we can let x0y0 be a unique product element

in (Supp a)N/N ■ (Suppß)N/N. From aß = 0 we deduce that as ß* = 0. Then

aß* e A and the support of this element meets less cosets of N than does Supp a.

Hence, by the minimal nature of a, we have a/L = 0 and therefore a?/L = 0 for all
'   J "yo x >o

x e W/N. Similarly a^ß e B and the support of this element meets less cosets of N

than does Supp/i. Thus a^ß = 0 so axßy = 0 for all x, y e W/N. In particular,

M«)Mß) = aißl = o.
We can now offer the

Proof of Theorem 1.3 (hard direction). We assume that R *G is a strongly

G-graded ring and that A and B are nonzero ideals of R * G with AB = 0. Suppose

first that R is not G-semiprime. Then there exists a nonzero G-invariant ideal Ä of R

with Ä2 = 0. The result now follows with H = G, I = R, N = (1) and B = Ä.

We can therefore assume that R is G-semiprime so Proposition 3.1 applies. Thus

there exist ZZ c G, I a nonzero ZZ-invariant ideal of R, and ß e B such that:

(i)Z*Z = 0 for all x e G\H;

(ii) Imà(A) + 0, ImA(ß) * 0 where A = A(ZZ);

(iii) ImA\A) ■ Iß = 0.

We have therefore found an appropriate H and Z. It remains to find N, Ä and B.

Set Ax = ImA(A) and Bx = I ((R* a)mA(ß)(R * A))". By Lemma 4.1 and (ii)

above, Ax is a nonzero ZZ-invariant ideal of R * A. Since ImA(A) ■ Iß = 0 we have

ImA(A) ■ ImA(ß) = 0 and, by (ii) again, it follows that Bx is a nonzero ZZ-invariant

ideal of R * A with AXBX = 0. Note that Ax, BXQ I(R*b) and, since ImA(ß) ç

ImA(B), we have Z^ ç ZwA(ZÍ).

Since y4j and Bx are nonzero and since every element of A(ZZ) has only finitely

many ZZ-conjugates, it is clear that there exists a normal subgroup W of H with

Wc L\,W finitely generated and A2 = Ax n (R * W) and B2 = Bx n (Z? * IF) both

nonzero. Certainly A2 and Z?2 are nonzero ZZ-invariant ideals of R * W contained in

¡(R * W) with A2B2 = 0.
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Now IF is a finitely generated subgroup of A(ZZ) so by [13, Lemma 4.1.5(iii)], W

has a finite characteristic subgroup N with W/N torsion-free abelian. Set A3 =

minNA2, AA = mN(A3), B2 = min^Z^ and Z?4 = mN(B3). Since N<H, Lemma 4.1

implies that A3 and B3 are nonzero ZZ-invariant ideals of R * W contained in

I(R * W) and then that AA and Z?4 are nonzero ZZ-invariant ideals of R * N contained

in I(R* N). Furthermore, since W/N is an ordered group and A2B2 = 0, Lemma

4.2 implies that A4B4 = 0. For general A and B, the result now follows by taking N

as above, Ä = A4 and B = B4.

Finally if A = B, then since

BxQlmA(B) = ImA(A) = Ax

we have Bx = 0. It then follows as above that Bf — 0 for all i so we can take

Ä = B = Z?4. This completes the proof.

We now consider a few consequences. The first is really just a reformulation and

slight extension of Theorem 1.3. To avoid trivialities we will assume that R is

G-semiprime. We start with some definitions.

Let G strongly permute the ideals of R and let I be an ideal of R. Then we denote

by

G,= {x e G\IX = I)

the stabilizer of I in G. The nonzero ideal I is said to be a trivial intersection ideal if

for all x e G either Ix = I or Ix n Z = 0. Note that Ix n Z = 0 implies IXI = 0.

Lemma 4.3. Let R be a G-semiprime ring, H a subgroup of G and I a nonzero

H-invariant ideal of R. Suppose that IXI = 0 for all x e G\H. Then:

(i) G, = H;
(ii) Z is a trivial intersection ideal;

(iii) if X is a right transversal for H in G, then IG = © Eïe x1*-

Proof. Since R is G-semiprime, Lemma 2.5(h) implies that I is ZZ-nilpotent-free

and hence that I n lR(I) = 0. In particular, I2 # 0 so (i) is immediate. Next observe

that

/ni   E   z*)ç/n/R(/) = o
Vï6G\//        '

and this clearly yields the direct sum in (iii). Since (ii) follows from (iii), the lemma is

proved.

Corollary 4.4. Let R*G be a strongly G-graded ring whose base ring R is

G-semiprime. Then R*G contains nonzero ideals A, B with AB = 0 if and only if there

exist:

(i) a trivial intersection ideal I of R;

(ii) a finite group N with normalizer NG(/V) = G,\

(iii) nonzero G ¡-invariant ideals Ä,BofR*N with Ä, B Q I(R* N) and ÂB = 0.

Furthermore, A = B if and only if A = B.
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Proof. If Z, N, Ä and B exist, then so do A and B by Theorem 1.3. Conversely

suppose A and B exist. We apply Theorem 1.3 and use its notation. In particular, N

is a finite group and N ç H c NG(N)_= H. Since IXI = 0 for all x e G\Z7ç

G\H, Lemma 2.5(i) implies that Z = IH is an ZZ-invariant ideal of R with Z7 = 0

for all x e G \ ZZ. By Lemma 4.3, I is a trivial intersection ideal with stabilizer

Gf=H = WG(N).
Now we consider the action of H D H on R * N. Set A = ÄH and B = BH so that

these are ZZ-invariant ideals of R * N clearly contained in I(R* N). Since IXI = 0

for all x e H\ H and since TV ç ZZ, it follows easily that (I(R * N))x ■ I(R * N) = 0

for all x e ZZ \ ZZ and hence that ÄXB = 0 for all such x. But Ä is ZZ-invariant and

ÄB = 0 so this yields ÄHB = 0. Hence, since the right annihilator of ÄH is ZZ-

invariant, we conclude that A B = AHBH = 0.

As is to be expected, the main theorem is used to obtain sufficient conditions for

R * G to be prime or semiprime. The real stumbling block to obtaining a precise

answer in either case is that the answers for G finite are just not satisfactory. This is

so even if R * G is assumed to be a crossed product. Thus in [8], it is shown that the

primeness of a finite crossed product eventually depends on the G-primeness of

certain suitably constructed twisted group algebras. But even the question of

primeness of a finite twisted group algebra is unbelievably complicated. Indeed, the

best result [7] requires the full classification of the finite simple groups. We finesse

the problem by merely assuming that the finite groups which occur are all trivial.

Let G be an arbitrary group. We denote by A+(G) the join of all the finite normal

subgroups of G. In particular, A+(G) = (1) if and only if G has no nontrivial finite

normal subgroups.

Corollary 4.5. Let R*G be a strongly G-graded ring whose base ring R is

G-prime. Suppose that, for every trivial intersection ideal I of R, we have A+(G7) = (1).

Then R*G is prime.

Proof. We use Corollary 4.4. Suppose I is a trivial intersection ideal of R and N is

a finite subgroup of G with NC(ZV) = G,. Then N ç A+(G,) = (1), by assumption,

so clearly N = (1), R * N = R and G, = NG(ZV) = G. Since R is G-prime, it follows

that R* N = R can contain no nonzero G-invariant ideals Ä and B with ÄB = 0.

Thus by Corollary 4.4, R * G is prime.

Observe that if G is torsion free, then the hypothesis A+(G/) = (1) is clearly

satisfied. Thus we obtain

Corollary 4.6. Let R*G be a strongly G-graded ring whose base ring R is

G-prime. If G is torsion free, then R*G is prime.

If R * G is a crossed product, then this is Theorem II of [18]. In a different

direction, suppose that R is a prime ring so that it is certainly G-semiprime. Let I be

any trivial intersection ideal of R with G, = H. From IXI = 0 for all x e G \ H, we

conclude that H = G and thus I is merely a G-invariant ideal of R. It now follows

that if (i), (ii) and (iii) of Corollary 4.4 are satisfied for I, then they are satisfied for
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Z = R. Corollary 4.4 therefore yields

Corollary 4.7. Let R*G be a strongly G-graded ring whose base ring R is prime.

Then R*G is prime ( or semiprime ) if and only if, for every finite normal subgroup N of

G, R* N is G-prime (or G-semiprime, respectively).

When R * G is a crossed product, this is Theorem 1.9 of [10].

5. Maschke's theorem. It remains to obtain an appropriate sufficient condition for

R * G to be semiprime. Again the precise answer eludes us because of finite group

complications, but the results here are not too bad. Indeed for R * G a finite crossed

product over a semiprime ring, we need only assume that R has no | G |-torsion to

deduce that R * G is semiprime [6]. Furthermore, the analogous result holds for

strongly G-graded rings [2, 11]. We actually require an operator version of this fact

which does not readily follow from the known results. It does, however, follow easily

from the techniques of [17].

We study (right) R * G-modules and we use IFesss V to indicate that W is

essential as an S-submodule of V.

Lemma 5.1. Let R*G be a strongly G-graded ring, let V be an R* G-module and let

Wbe an R-submodule. Then:

(i) WR x is an R-submodule for all x e G;

(ii) if WessR V, then WR xessR V;

(iii) flxeGWR x is an R* G-submodule of V contained in W.

Proof, (i) is clear since RXR = Rx. For (ii) suppose that U is a nonzero

Zc-submodule of V. Since RX-¡RX = R, it follows from (i) that URx-¡ is also a

nonzero Zv-submodule. Thus since WessR F we have W C\ URx-> ¥= 0 so

WRX n Í/2 (WC\ URx-y)Rx * 0.

Finally if v e C\xeGWRx andy e G, then vRy ç WRxRy = WRxy for all x e G so

vRyQ  p  WRxy =  fl WRX,
x e G x e C

and the lemma is proved.

The next result is the version of Maschke's theorem which is known to hold in the

context of strongly G-graded rings (see, for example, [11]). If G is finite, an additive

group V is said to have no |G|-torsion if v\G\ = 0 for v e V implies that v = 0. If V is

an R * G-module, we denote by VR the restriction of V to R.

Lemma 5.2. Let R*G be a strongly G-graded ring with G finite. Suppose that

W Q V are R * G-modules with no \G\-torsion and that WR is a direct summand of VR.

Then there exists an R* G-submodule U of V with (W © U)essR V. Furthermore if

V = V • \G\, then W is a direct summand of V.

Proof. For each x e G we have 1 e R = RxRx-i so we can write 1 = T,iaxibx-il,

a finite sum with axi e Rx and bx-y¡ e Rx~i. But assumption WR is a direct summand
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of VR, so there exists an Z?-projection m: V -> W. We then define X: V -» IF by

»x = E E^O'V1.
A-G G     i

for all ü e F. Since IF is an Z? * G-submodule, X is clearly an additive map from V to

IF.

We claim that À is an R * G-homomorphism. To this end, let ay e Ry and consider

(vay)x. Observe that, for each x e G, ayaxi e /?    and then that

ayaxi = lLalyx)Jblyxyij\ -(ayaxi).
j

Furthermore, since b( xyi¡(aYax¡) e R, m is an Zv-homomorphism and Liaxibx-ii = 1,

we have

(^«J)A = E(i>«).öx,)'V',
A',/

=      E     (^(,A)/(VA)-V«VaA/)'r^-',

A,/, 7

=    E   (üa(^u)**(.r.v)-'ya..- "ûxA-'i
A./../

= E(fö(^)y)\vxrVav
■W

= (E(«wx;)*Vv) •«, = 0X-«r
Vv,/ '

Thus À is an R * G-homomorphism and hence if U = ker X then U is an R*G-

submodule of V.

Set n = |G| and observe that for w e IF we have waxi e IF so (waxiy = waxi and

therefore

wx = E^'^v/^v-'/= E^ = wn-
X,i X

Thus since V has no n-torsion we see that IF n Í/ = 0. Now let t; e V and set

w = ox e IF. Then (t>n)x = vxn = wx so (vn - w)x = 0 and we deduce that Vn c

W © U. In particular, if X is an Ä-submodule of V with (IF © U)(l X = 0, then

A>2 ç ( IF © f/ ) n A' = 0 and, since V has no n-torsion, we conclude that X = 0.

Thus (IF © L/)ess„ F. Finally if V = Ftj, then V = W ® U.

As a consequence we obtain the essential version of Maschke's theorem.

Proposition 5.3. Let R*G be a strongly G-graded ring with G finite. Suppose that

W ç F are R*G-modules with no \G\-torsion. Then WessR,GV ;/ and only if

WessR V.

Proof. If IFessfiFthen certainly IFessfi.cF. Conversely, suppose IFessÄ.GF

and let L be an Z?-submodule of V maximal with respect to IF n L = 0. Then

(IF © L)essR Fand hence, by Lemma 5.1(h), (W © L)RxessR Ffor all x. Moreover,
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if E is the finite intersection E = rixeG(IF© L)RX, then EessRV and E is an

R * G-module by Lemma 5.1(iii). Since IF is an R * G-submodule of V, we see that

IF ç E ç IF © L and hence E = W ® (E C\ L). In other words, WR is a direct

summand of ER. Thus Lemma 5.2 applies and there exists an R * G-submodule U of

£ with (IF© U)essRE. Hence (IF© U)essRV. But IFessR,GFand WC\ U = 0,

so U = 0 and the result follows.

It is now clear that much of the crossed product work of [17] carries over to

strongly G-graded rings. However, this is not the appropriate place to pursue this

line of thought. Rather we will content ourselves with obtaining the necessary

operator version of the Fisher-Montgomery theorem. It is clear that the following

proof only requires that H strongly permutes the ideals of R * G and of R in a

suitably compatible manner. However we will simply state the result in the form we

will use it.

Lemma 5.4. Let R* H be a strongly H-graded ring, let G be a finite normal subgroup

of H and let I be an H-invariant ideal of R. If I is H-nilpotent-free with no \G\-torsion,

then I(R*G) is an H-nilpotent-free ideal of R * G.

Proof. We first observe that I(R*G) has no |G|-torsion. Indeed suppose y

= Exyx e I(R * G) with |G|y = 0. Then, for all x e G we have |G|yxZ?x-i = 0 and

yxRx-y e I. Since I has no |G|-torsion, we conclude that YxZ?xi = 0 and hence that

y = 0.
Now suppose A is an ZZ-invariant ideal of R * G contained in I(R*G) with

A2 = 0. If L = l[(R.G)(A), then L is a two-sided ideal of R * G. Furthermore, as

right (R * G)-modules, we have LessRtGI(R*G). Indeed suppose K is a nonzero

right ideal of R * G contained in I(R * G). If KA * 0, then A2 = 0 implies that

0 * KA c L n K. On the other hand, if KA = 0 then 0 # K ç L n K.

Since LessR,G I(R * G) and I(R*G) has no |G|-torsion, we deduce from Proposi-

tion 5.3 that LessR I(R * G) and therefore that L n I = I ¡(A) is essential, as a right

Z?-module, in I c I(R * G). Now observe that L' = l,(A) is an ZZ-invariant ideal of

R contained in I and that I is ZZ-nilpotent-free, by assumption. Thus L' n r¡(L') = 0

and since L'essR I we have r,(U) = 0. Finally, if a = Eax e A ç. I(R * G), then

L'a = 0 implies that L'axRx-\ = 0 for all x. Thus since axRx-y ç Z we have

axZ?x-i ç r,(L') = 0 and therefore a = 0. We conclude that A = 0 and hence that

I(R * G) is ZZ-nilpotent-free.

If V is an additive abelian group and G is arbitrary, then we say that V has no

|G|-torsion if, for all finite subgroups N of G, F has no lA'j-torsion. We can now

quickly prove

Corollary 5.5. Let R*G be a strongly G-graded ring whose base ring R is

G-semiprime. Suppose that, for every trivial intersection ideal I of R, I has no

\¿s+(Gr)\-torsion. Then R*G is semiprime.

Proof. Let I be any trivial intersection ideal of R and set H = G,. Then

ri c Ix n Z = O for all x e G \ H so Lemma 2.5(h) implies that I is ZZ-nilpotent-

free. Suppose N is a finite normal subgroup of H. Then N ç A+(G;) so, by
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assumption, I has no lA^-torsion. We can therefore conclude from Lemma 5.4 that

I(R * N) is an ZZ-nilpotent-free ideal of R * N and Corollary 4.4 yields the result.

Observe that if R has no |G|-torsion, then certainly I has no | A+(G,)|-torsion for

any ideal I of R. Thus we obtain

Corollary 5.6. Let R*G be a strongly G-graded ring whose base ring R is

G-semiprime. If R has no \G\-torsion, then R*G is semiprime.

If R * G is a crossed product, then this is Theorem I of [18]. Furthermore, since

any semiprime ring is G-semiprime, this includes the main result of [16].

Finally, we remark that the results of this paper have been extended to more

general group-graded rings by D. Quinn [19] using a refinement of the duality

developed in [2]. In addition, that paper contains a much less computational proof

of the essential version of Maschke's theorem.
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