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ON POSITIVE SOLUTIONS OF SOME PAIRS

OF DIFFERENTIAL EQUATIONS
BY

E. N. DANCER

Abstract. In this paper, we discuss the existence of solutions, with both compo-

nents positive, of a Dirichlet problem for a coupled pair of partial differential

equations. The main result is proved by using degree theory in cones. We also

discuss the asymptotic behaviour of solutions as a parameter tends to zero.

In this paper, we discuss the nonnegative solutions of the pair of equations

(1) -u" = u(a(\ - u) - v),    -dv" = v(-v + m(u - y))

on [~L, L], w(-L) = u(L) = v(-L) = v(L) = 0. We assume that y < 1. This sys-

tem was discussed in Conway, Gardner and Smoller [6]. These equations arise when

one looks for equilibrium solutions of a parabolic system. The system is a model

system for a two species predator-prey interaction when both systems undergo

diffusion. A more complete discussion of the significance of the equations and the

choice of nonlinearities can be found in the introduction to [6].

We prove that there is a d(L)> 0 such that, if d > d(L), any nonnegative

solution (u, v) of our system satisfies v(x) = 0 on [-L, L], However, if d < d(L),

there is a nonnegative solution («*, v*) of (1) such that u and v are both strictly

positive on (-L, L). This partially answers a question in [6, p. 316]. In fact, we prove

the existence of a connected set of such solutions (parameterized by a, d or L). We

prove this result by using degree theory in cones and by using the calculation of the

local index of certain solutions in our earlier work [8]. Our methods seem to be

applicable to a great many related problems. We discuss a few of these. In

particular, we prove our main results with (1) replaced by a corresponding set of

elliptic equations. Finally, we discuss the asymptotic behaviour of positive solutions

as d -> 0 and answer another question from [6]. (Once again, we prove our results

for the case of elliptic equations.) We also discuss briefly the case where a(l - u) is

replaced by a(\ - u)(u - b). It turns out that, in certain circumstances, the solution

structure in this case can be rather more complicated. We also obtain a few results

for some competing systems models.

In §1, we prove the existence of the solution (u,v) with both components strictly

positive on (-L, L). In §2, we briefly discuss how our method applies in some more

general situations. Finally, in §3, we prove the results on the asymptotic behaviour of

solutions as d -> 0.
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Throughout, we emphasize the use of positive operator techniques. This has the

advantage that it applies to nonselfadjoint problems. It seems natural to use degree

theory with respect to cones when studying positive solutions.

I should like to thank the referee for informing me of some additional references.

1. The existence of positive solutions. We consider the more general system

(2) -Aw = f(u) - uv,    -Ai> = d~lv{-v + m(u - y))

on a smooth bounded domain Sîç/Î" with Dirichlet boundary conditions. Here

f(y) = ay(l - y). (In fact, we could avoid assuming any smoothness on ß.) The case

in the introduction is when n = 1 and ß = (-L, L). As in [6], we assume that

a, d, m, y > 0 and y < 1. A solution (u, v) is said to be strictly positive if u(x) > 0

and v(x) > 0 for x e ß.

We first obtain some simple estimates for nonnegative solutions (that is, solutions

with u, v both nonnegative in ß), as in [6]. If we look at the point x where u has its

maximum, we easily see that a(\ - u(x)) - v(x) ^ 0. Since v(x) > 0, it follows that

u(x) < 1 in ß. Similarly, by considering the point x, where v has its maximum, we

see that v(xx) < m(u(xx) — y) < w(l - y). Moreover, since « is a solution of a

linear equation and since u is nonnegative, we see that u(x) = 0 on all of ß or

u(x) > 0 on all of ß. A similar property holds for v. Moreover, there can be no

nontrivial nonnegative solution (u, v) such that u(x) = 0 on ß. This follows, since

otherwise, as before v(xx) ^ m(u(xx) - y) = -my < 0. (Here xx is the point where

v has its maximum.) This contradicts our assumption that v is nonnegative.

We need the following well-known lemma for the equation

(3) -Ah=/(w)    inß,       u = 0   ondß.

Note that our system reduces to this if we look for solutions with v = 0.

Lemma 1. (i) If a < \x, (3) has no nontrivial nonnegative solution.

(ii) If a > A,, there is a unique nonnegative nontrivial solution ua of (3).

(iii)Z/«e C(Ü)n WU(Q), ï/0 < ü(x) < 1 in ß, ifü\aü < 0 and if

-&ü(x) < aü(x)(l - ü(x))    in il

in the sense of distributions, then there is a solution u of (3) such that u ^ w.

(iv) For each compact subset KofQ and for each a in (0,1), there is an à > 0 such

that uu(x) > a on K if a > a.

Proof. Parts (i)-(iii) are classical results. For example, (i) and (ii) could be proved

by the classical techniques in Pimbley [14] (see, for example, Berestycki [4]). This

could also be proved by positive operator theory as in Amann [2]. The key point is

thatyf'(y) < f(y) on (0,1). Part (hi) can also be found in [2]. (Note that u(x) = 1 is

a supersolution.) To prove (iv), it suffices to construct a suitable subsolution ü. To

do this, we choose a function s such that s is smooth in ß, s = n, near 3ß, s(x) = a

in a neighbourhood of K, and 0 < s(x) < a in ß. Here hx is the first eigenfunction

of -A on ß with Dirichlet boundary conditions. Since Ai is then bounded on ß, it is

easy to see that s is a subsolution if a is sufficiently large. (Note that 1 - s(x) > 1 - a

on ß.) Thus (iv) follows from (hi).
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The operator La = (-A + ymd'1iyxd~1muaI is a compact operator on C(ß).

Here, and henceforth when we write (-A + al)~x, we assume Dirichlet boundary

conditions. We use r to denote the spectral radius.

If a < Xx, we define ua = 0. Thus, in this case, r(La) = 0. We now state our main

result.

Theorem 1. (i) If r(La) < 1, the only nonnegative solutions (u, v) of (2) have

v(x) = 0 on ß.

(ii) If r(La) > 1, there is a strictly positive solution (u*, v*) of (2).

Remark. As we will see in Proposition 2, there is at most one a for which

r(La) = 1. Moreover, if r(La») = 1, then r(La) < 1 for a < a* and r(La) > 1 for

a > a*. We will obtain alternative conditions equivalent to r(La) < 1 or > 1 in

Proposition 2.

Before proving Theorem 1, we need some preliminaries. First note that we can

calculate r(La) in the subspace C0(ß) = {u e C(ß): u\SQ = 0} since La maps C(ß)

into C0(ß). Now the set K of nonnegative functions in C0(ß) is a closed cone in

C0(ß) in the sense of Krasnosel'skii [12, p. 17] and La(K) ç K. (In the usual

terminology, Lu is positive.) By the maximum principle, La maps nonnegative

elements of K to elements of C0(ß) which are positive in ß. With the terminology of

[8], La maps K\ {0} to demi-interior elements of K and so La is a demi-interior

operator. Here an element x in a cone C in a Banach space E is said to be

demi-interior to C if l(x) > 0 for every / e C* \ {0}, where C* = {/ e E*: l(x) > 0

on C}. Moreover, a positive operator L is demi-interior if, for each x e C\ {0},

L"x is demi-interior to C for some nonnegative integer n. Implicit in the above was

the following simple lemma.

Lemma 2. Suppose x e K ç C0(ß). Tnen x « demi-interior to K if and only if

x(t)> 0 on all of ß.

Proof. The necessity of the condition x(t) > 0 on ß is obvious by using Dirac

measures. To prove sufficiency, suppose / e K*. It follows easily from Schaefer [17,

Theorem 5.5.4] that / extends to a positive linear functional on C(ß). Thus, by the

Riesz representation theorem (cf. Rudin [16, p. 40]), / is given by integration with

respect to a positive Borel measure ju. (¡x is not unique as we could change it by

measures supported in 3ß.) Hence l(x) = fax d¡x. Since ¡i is positive and x(t) > 0 in

ß, it follows that, if l(x) = 0, then the support of jti is contained in 3ß. However, this

implies that / vanishes on C0(ß) and so the result follows.

Now it is a well-known result that, when r(La) > 0 (that is, when a > Xx), there is

an ha e K\ {0} such that Laha = r(La)ha and that ha is the only positive eigenvec-

tor of La. (For example, this follows since La is a demi-irreducible operator.

However, it is a classical result.) We consider the operators

La! = {-¿i+{myd-x + t)l)~\d-xmua + t)l   fort> 0.

By arguments similar to those above, Lu, has similar spectral properties to La.

Moreover, if Laha = ha, we see by simple calculation that Latha = ha and con-

versely. Thus r(La) — 1 if and only if r(La ,) = 1 for some (and hence all) t > 0. By



732 E. N. DANCER

continuous dependence of the spectral radius of compact operators (cf. Kato [11,

Theorem 4.3.1 and §4.3.5]), it follows that, if r(La) < 1, then r(La ,) < 1 for all

t ^ 0, while if r(La) > 1, then r(La,) > 1 for all t > 0. We say u < v if v - u e

K\{0).
Proof of Theorem l(i). If (u, v) is a nonnegative solution of (2) with v ^ 0, then

-A« = au(\ - u) - uv < au(\ - u).

Thus, by Lemma l(iii), ua ^ u. Now

-Au + myd~xv = d~xv(-v + mu) < d~xmuav.

Hence v < (-A + ymd'lI)'1d'lmuav, that is, u < Lav. By a standard result (cf. [12,

Theorem 2.5]), r(La) ^ 1. It remains to obtain a contradiction if r(La)= 1. If

/•(La) = 1, then, by the Krein-Rutman theorem (cf. [17, p. 265]) there is an

/e K* \ {0} such that /= L*J. Thus_/(x) = (L*J)(x) = f(Lax) > 0 if x # 0
(since Lux is demi-interior to K). Hence/(x) > 0 if x e ZC\ {0}. Since Laf; - f < 0,

it follows that/(Lüí;) - f(v) < 0. This is impossible since/(f) = (L*f)(v) = f(Lav).

This completes the proof. (The same argument as in the last part of the proof could

be used to prove a general result for demi-interior operators.)

Before proving the second part of Theorem 1, we need one more lemma. If C is a

cone in a Banach space E, and z e C\ {0}, let zJ-= {/e C*: l(z) = 0},S, = {x e

E: l(x) = 0 for all / in z1} and C. = {x e £: /(*) > 0 for all / in z±}.

Lemma 3. // E =_C0(ß) © C0(ß), if C =_K ® K and if z = (u,0) where u(x) > 0

;n ß, then S, = C0(ß) © {0} am/ C = C0(ß) © ZC

Proof. Note that / e £* if and only if / = (/,, f2) where/ e C0(ß)*. Moreover, /

is positive if and only if fx and /2 are positive. Now / = (fx, f2) e zL if and only if

/,(») = 0. As in the proof of Lemma 2, this is only possible if fx = 0. Thus

z1- = {0} © K*. Hence (jc, y) e 5Z if and only if l(y) = 0 for all / in K* and thus if

and only if y = 0. Similarly (x, y) e Ç if and only if l(y) > 0 for all / e K*, that

is, y e K. Hence the result follows.

Proof of Theorem 1(h). We choose/? > myd'1 such that a(l - u) - v + p > 0

and p — v + m(u -y)^0if0<«<2 and v < m(2 - y). We define Aa: T -> C

by

/la(M, u) = (-A +/)Z)~1(«[a(l - u) - t; + p],d~lv[dp - v + m(u - y)]),

where T = {(u, v) e C: u(x) < 2, v(x) < w(2 - y) on ß}. Here we are abusing

notation slightly by using (-A + pl)~l to also denote the obvious extension of this

operator to ordered pairs. Note that the fixed points of A are the solutions of (2). It

is easy to see that A is completely continuous and Fréchet differentiable. We will use

degrees relative to the cone C. Since any fixed point of A is a solution of (2) and thus

satisfies u(x) < 1 and v(x) < m(\ - y) on ß (by our earlier estimates), it follows

that all solutions lie in the interior of T (where the interior is with respect to C). Thus,

by homotopy invariance degc(Z - Aa, int T) is independent of a. If a < Xx, then by
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our earlier results, the only solution is (0,0). By Theorem 1 in [8], this solution will

have index 1 if r(A'a(0,0)) < 1. Hence it will follow that

(4) degc(Z-^a,intr) = l

for all a if we prove that r(A'a(0,0)) < 1 for a < A,. Now by an easy calculation

A'a(0,0)(u, v) = ((-b+piy1{p + a)u, (-A + piy\p - md-xy)v).

Thus it suffices to prove that (-A + pl)'l(p + a)I and (-A + pl)'l(p - md~xy)I

each has spectral radius less than 1. These results follow easily. For example, by the

spectral mapping theorem the first of these operators has spectra

{(A + /?)" (p + a): X is an eigenvalue of -A with Dirichlet boundary conditions]

and thus all its spectra has modulus less than lif a < Xx. (For future reference, note

that the same argument shows that r(A'a(0,0)) > 1 if a > A,.)

Secondly, we prove that, if a > X,, then (0,0) is an isolated solution with index 0.

It suffices to prove that h ¥= A'a(0,0)h if h e C\ {0} and if a > Xx because we

proved above that r(A'a(0,0)) > 1 if a > Xx and it is easy to show that 50 = E. (We

use Theorem 1 in [8] again.) If n = (r, k) e C\ {0} and h = A'a(0)h, then r =

(-A + pl)~x(p + a)r and k = (-A + pl)'l(p + md'1y)k. Now, by arguments sim-

ilar to those in the previous paragraph, both of these operators have spectral radius

not equal to 1. Hence, since r, k e K, the required result follows from our earlier

comments on the eigenvectors of these two operators.

Thirdly, we prove that, if r(La) > 1, then the solution z = (wu,0) is also isolated

and has index zero. A simple calculation shows that

A'(z)(r, k) = (-A +piy1{[a{l - 2ua)+p]r- uak, d-x[m(ua - y) +p]k).

To prove z is isolated, we need only prove that h + A'(z)h if n e W,\ {0} (cf. [8,

§2]). Now, if (r, k) is an eigenvector of A'(z) corresponding to X = 1, then

-Ar = a(l - 2ua)r   or   k = Lak

(plus the boundary condition for r) has a non trivial solution. Note that (r, k) e IF.

implies that k e K (by Lemma 3). Since r(La)> 1, our earlier comments imply that

the equation k = Lak has no non trivial solution in K. Thus, if (r, k) e IF, \ {0}

and if (r, k) = A'(z)(r, k), then r must be a nontrivial solution of

-Ar = a(l-2ua)r   inß,       r = 0   on3ß.

However, the proof of Lemma 1 (cf. [4 or 14]) shows that this does not occur and

hence our solution is isolated. By Lemma 3, Sz = C0(ß) © {0}. Now M = {0} ©

C0(ß) is a complement to S, in E. Thus, by Theorem 1 in [8] and by Remark 3 after

Lemma 3 of [8], z will have index zero provided that r(PA'(z)\M) > 1, where P is

the projection onto M parallel to S,. (In other words, P(x, y) = (0, y).) Thus z has

index zero if r(La,) > 1 (for t = p - md~ly). As before, we see that our assumption

that r(La) > 1 implies that r(Lat) > 1 for all / > 0, and hence we have proved the

required result.
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We now complete the proof of Theorem 1(h). Suppose that the result is false.

Then, by our earlier comments, the only nonnegative solutions of our equation are

(0,0) and (wa,0). Thus

degc(Z - Aa, T) = indexc(Z - Aa,(0,0)) + indexr(Z - Aa,(ua,0)).

However, this is impossible by what we have proved since the left-hand side is 1

while the right-hand side is 0 + 0 = 0.   D

By using standard arguments (cf. Dancer [7] or Rabinowitz [15]), one could show

that, if r(La) > 1 for some a, then there is an unbounded connected subset T of

solutions in C x [a*, oo) such that (u, v) is a strictly positive solution if (u, v, a) e

T\ {(«a.,0, a*)} and such that (wa.,0, a*) e T. (The important point is that the

strictly positive solutions have nonzero index sum in C.) Note that, as before,

r(La,)=l.

We now want to return to discuss the condition on r(La). Our main results on

r(La) are summarized in the following

Proposition 1. (i) r(La) > 1 implies that a > Xx.

(ii) r(La) is strictly increasing in a if a > Xx.

(hi) There is at most one a* such that r(La,) = 1.

(iv) There is an a* such that r(La.) = 1 if and only if(\ - y)m > Xxd.

(v) Let c be defined by the property that HhJI^ = y, where || H^ denotes the

supremum norm. Then a* ^ c and a* -» c as d -* 0 (where the other parameters are

kept fixed ).

(vi) r(La) < 1 // and only if the first eigenvalue of -dA — m(ua - y)Z (with

Dirichlet boundary conditions) is positive.

Proof, (i) La = 0 if a < Xx since ua = 0 in this case. Thus r(La) > 1 implies that

a > Xx.

(ii) To prove this, we first show that uh(x) > ua(x) on ß if b > a > Xx. Now, we

easily see that ua is a subsolution of (4) (with a replaced by b). Since 0 < ua(x) < 1

in ß, there is a subset of ß of positive measure such that the inequality in the

definition of subsolution is strict. It follows easily that the solution ux of -Au + 2bu

= bua(3 - ua) satisfies üx(x) > uu(x) in ß. (Since if g(x) > 0 on ß and if g is

positive on a set of positive measure, then the solution of

-Az + 2bz = g   in ß,       z = 0   on 3ß

is strictly positive in ß.) Since by(3 - y) is increasing on [0,1] and since u(x) = 1 is a

supersolution, then a well-known result (cf. Amann [2]) ensures that ux(x) is the first

term of an increasing sequence of functions which converge to uh. Thus uh(x) >

ùx(x) > ua(x) in ß, as required. (It is possible to give a more abstract proof of

this by showing that the map a -» ua is differentiable and by using comparison

results for positive linear operators to prove r(G'(ua)) < 1, where G(u) =

(-A + piyl(au(\ - u) + pu) for u e C0(ß), and p > 2a.) It follows easily that

Lh(x) > La(x) if x > 0 and b > a > Xx. Suppose/e K* \ {0} is an eigenfunction

corresponding to r(La). (The Krein-Rutman theorem ensures that /exists since it is

easy to prove that r(La) > 0.) Since Lu maps K\ {0} to demi-interior points, it
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follows easily that/(y) > 0 for y e K\ {0}. Suppose by way of contradiction that

b > a and r(Lh) = r(La). Then there exists xh e K\ {0} such that r(Lb)xb = Lbxh.

Then r(La)xh = r(Lh)xh = Lh(xh) > Lax„.

Thus

r{Lu)f{xh) > f{Laxh)   (since/is strictly positive)

= L*J(xb) = r(La)f(xh).

Hence we have a contradiction and thus r(Lh) > r(La) if b > a > Xx.

(hi) follows trivially from (ii).

(iv) By Lemma 1, ua -* 1 in LP(Q) as a -» oo for all p < oo. It follows easily by

considering La as an operator on Lp(ü) and by using the continuity of the spectral

radius that r(La) -» r(F) as a -> oo, where F = (-A + ymd~ll)d~xml. (Alterna-

tively one could work on C0(ß) and use collective compactness as in [3].) Since

r(La) = 0 if a < A,, we see that a* exists if and only if r(F) > 1. Since the spectrum

of Fis {(A + ymd~x)d-1m:X e a(-A)}, r(F) > 1 if and only if

d~xm{Xx + yd^m)'1 > 1,

that is if and only if (1 - y)d'lm > Xx. (Note for future reference that this always

holds if d is sufficiently small and the other parameters are kept fixed.) Thus a*

exists if and only if (1 - y)m > Xxd.

(v) If a < c, llwjl^, < y, and thus La < (-A + myd'x)d'1myl (in the positive

operator sense). Since the second operator is easily seen to have spectral radius less

than 1, it follows from [12, p. 94] that r(La) < 1 as well. Thus a* > c. To see that

a* -* c as d -» 0 (and the other parameters are held fixed), note that if z > c, then

II";IL > Y- ll follows easily that there is an open subset D of ß with smooth

boundary such that u,(x) > yx > y on D. Hence, if b > z, then uh(x) > yx on D.

Let Xx denote the first eigenvalue of -A with Dirichlet boundary conditions on D

and let hx denote the corresponding first eigenfunction. We define w(x) to be hx(x)

on D and to be zero otherwise. Now dxym(uh(x) - y) > 2XX on D if d is small and

b ^ z. It follows easily that, if d is small and b > z,

-Aw < d~xymw(uh — y)

on ß in the sense of distributions (cf. [13]). Thus we see that Lhw > w if d is small

and if b > z. By Theorem 2.4 in [12], it follows that r(Lh) > 1 if d is small and

b > z. Thus a* < z if í/ is small and the result follows.

(vi) As is well known, the smallest eigenvalue X of -dA - m(ua - y) has a

corresponding eigenfunction n which is positive on ß. Now, by a simple calculation,

(-A + ymd'lI)"h > d~xmu~h if Xx is positive. (Recall that u > v means that u > v

and u ¥= v.) By applying (-A + ymd~lI)~x, we find that La~h < n. If /is defined as

in the proof of (ii), we see that f(Lah) < f(h). (Remember f(u) > 0 if u > 0.) As in

(ii), it follows that r(La)f(h) < ¡(h). Thus, since/(A) > 0, r(La) < 1. Similarly, if A

is negative, we find that La~h > n and thus r(La) > 1. If A = 0, LJi = n and thus

r(La) = 1. This completes the proof of Proposition 1.
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Suppose a > Xx. It follows from (vi) and an easy calculation that r(La) < 1 (> 1)

implies that (wa,0) is stable (unstable) for the corresponding parabolic equation (as

in [6]). Here stability means linearized stability (though in suitable spaces, this is

equivalent to stability in the usual sense).

We could use alternative parameterizations. In [6], d was used as a parameter and

not much needs to be changed. One difference is that it is easy to check that there is

always a positive d for which r(La)= 1. (One uses similar arguments to above to

show that r(La) > 1 if a* is small and r(La) < 1 if d is large.) The only point that

needs checking is the uniqueness of d for which r(La) = 1. To prove this, one can

use the variational characterization of eigenvalues or use a theorem of Hess and

Kato [10]. (The second method is also valid for nonselfadjoint problems.) We could

also parametrize by ß. More precisely, we could replace ß by Lß and use L as a

parameter, though it is unclear that there is unique L such that r(La) = 1 unless we

assume that Lxti ç L2ß if 0 < Lx < L2. (This holds if ß is convex.) Once again,

with both d and L parametrizations, one can show the existence of connected sets of

solutions.

It seems likely that the strictly positive solution is unique when it exists. Any proof

of this is likely to show that the solution is an attractor, as conjectured in [6], Note

that the uniqueness question seems to be related to uniqueness problems for

decreasing maps because the pair of equations can be reduced to a single equation

involving a decreasing mapping (by solving the first equation for u as a function of

v). In a later paper, we will prove the uniqueness of the strictly positive solution if

n = 1 and d is sufficiently small (and positive).

2. Generalizations. The method we used in §1 seems to be a very flexible method

for proving the existence of solutions. In this section, we consider rather briefly some

generalizations to illustrate this.

Firstly, the results of §1 still hold if we replace A by a general second order elliptic

operator (not necessarily selfadjoint and different operators in the two equations)

and for other boundary conditions. Note that, if ß is not reasonably regular, it is

necessary to work in the space L°°(ß) or Lp(ti) for large p. Moreover, our proof of

the existence of the strictly positive solution (u*,v*) does not use the specific

nonlinearity a great deal except on the subspace where v = 0. (Even this ca:~ be

weakened as we see later.) Our proof of the existence of a solution (u*, v*) for d

sufficiently small can also be used if we take/(y) to be ay(y - b)(l - y) instead of

ay(l - y), where 0 < b < \, at least when n = 1 and ß = (-L, L). (If b > \, it can

be shown that there is no nontrivial nonnegative solution. This is still true if n > 1

provided that ß is convex.) We assume that we are in the case where (3) has 2

positive solutions ux, u2. (When this occurs is discussed in [6].) It is not difficult to

show that ux < u2. Moreover, it can be shown (cf. [18]) that, under the above

assumptions, -A" - f'(u¡)h with Dirichlet boundary conditions is invertible for

i = 1,2. Assume now that ||w2lloc > Y > Il"îlloc where || ||œ denotes the sup norm. By

similar arguments to those in §1, one finds that there is a d2 > 0 such that the

system of equations has no strictly positive solution if d > d2 while a strictly positive
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solution exists if d < d2. Here d2 is the unique positive value of d for which

-dh" = m(u2 - y)h has a positive solution (satisfying the boundary conditions).

The idea in the proof is to show that (0,0) has index 1 in C, (ux,0) has index -1

always, while (u2,0) has index 0 if d < d2. Note that, as before, the sum of the

indices of all nonnegative solutions is 1. On the other hand, if \\u2\\x < y, every

nonnegative solution must have v = 0, while if \\ux\\œ > y, it is unclear what the best

result is. In this case, there is a dx in (0, d2) such that the equation

-dh" = m(ux — y)h

has a nontrivial positive solution satisfying the boundary conditions. Our earlier

arguments imply the existence of the strictly positive solution (u*,v*) of our

equations if dx < d < d2 but the proof does not work if 0 < d < dx. (The difference

occurs because (ux, 0) has index -1 if d > dx but has index 0 if d < dx.) In fact, we

will see in the next section, that, in some such cases, no solution («*, v*) need exist

for small d. This implies that in this case the branch of strictly positive solutions

which bifurcates at d = d2 must terminate at d = dx by meeting (w,,0). We do not

understand exactly when this behaviour occurs. Note that it is unclear in which

direction the branch of solutions bifurcates at d = dx and, in this case, if strictly

positive solutions exist for d < dx, we would not in general expect them to be

unique. We will discuss the problem further at the end of §3. Note that the difficulty

in extending these results to the case where n > 1 is in understanding the solutions

of (3).

Our methods can also be used to study the existence of strictly positive solutions

of other equations. For example, consider the system of equations

-Au = u(g - au — bv),   -Av = v(e - cu - dv)

in ß with Dirichlet boundary conditions. Here a, b, c, d,e, g > 0. Our methods can

be used to prove the existence of a solution with both components positive under

suitable assumptions. We sketch this very briefly. For simplicity assume that e < g.

We can obtain apriori bounds on positive solutions much as before and, also much

as before, we find a unique nontrivial nonnegative solution (ïi, 0) which exists if

Xx < g. Similarly there is a unique nontrivial nonnegative solution of the form (0, v)

for Xx < e. As before, the solution (0,0) has index 0 for Xx < e and the sum of the

indices of solutions is 1 (where everything is calculated with respect to C.) Thus, if

we can prove that (w,0) and (0, v) each of index zero, it will follow that there is

another solution, as required. Note that, as before, such a solution can only exist if

Xx < e. Assume that

Ax = (-A + pl)~\e + p - cü)I

and

A2 = (-A + piy\g + p-bv)I

each have spectral radius greater than 1. (Here p is a suitably large constant. As

before, the conditions on the spectral radius are independent of p.) Note that these

conditions hold if e and g are large while b and c are small. Then, as before, (ü,0)
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and (O, v) each have index zero and hence there must be another solution («*, v*). Once

again, it appears likely that this strictly positive solution (u*, v*) is unique and stable

(for the natural corresponding parabolic equations). Note also that Lazer, in some

unpublished work, gives a different proof of the above result by using Schauder's

fixed point theorem. However, the proof above is valid for more general classes of

nonlinearities. (We only need assumptions near u = 0, near v = 0 and some condi-

tion giving a suitable a priori bound.)

Note that u(x) < a~xg and v(x) < d~le on ß. (Similar results were proved at the

beginning of §1.) It follows easily that r(Ax) > 1 and r(A2) > 1 if e - ca~xg > Xx

and g - bd~xe > Xx (since e - cu(x) > Xx and g - bv(x) > Xx on ß). Thus we see

that the above result establishes the existence of a strictly positive solution under

weaker assumptions than those in Leung [19] and Pao [20]. Note, however, that they

discuss a number of other questions. In addition, in [19], Leung discusses more

general nonlinearities. For more general nonlinearities, our results on the existence

of a strictly positive solution do not include his (and vice versa). It can also be

proved that there is a third nontrivial nonnegative solution ifr(Ax) < 1 and r(A2) < 1.

(This case occurs if e > Xx, g > Xx and a and d are small.) In this case, if there is

only one strictly positive solution, it will not be an attractor. We do not know

exactly when the system has a strictly positive solution. It is easy to see that, in order

for our system to have a strictly positive solution, g - (ax + by) - e + (ex + dy)

vanishes identically or changes sign on {(x, y): 0 < x < \\u\\x, 0 < y < \\v\\x).

Note that this problem was discussed in Brown [5] for Neumann boundary condi-

tions.

Our methods can be applied to systems of more than 2 equations. For example,

consider

-Aw = u{a(\ — u) — vx — v2),

-dxAvx = vx{-vx + mx(u - y,)) + fx(vx, v2),

-d2Av2 = v2(-v2 + m2(u - y2)) + f2{vx, v2)

on ß with Dirichlet boundary conditions. rierefx(vx, v2) > 0 if v2 > 0 and vx > 0,

fi(vx, v2) ^ kxv2 if vx, v2 > 0, f2(vx, v2) > 0 if vx > 0 and v2 > 0 and f2(vx, v2) <

k2vx if vx, v2 > 0. For simplicity, assume that /x and/2 have zero derivative at (0,0).

Lastly assume that kxk2 < (Xxdx + mxyx)(X2d2 + m2y2). (The last condition im-

plies that there are no nontrivial, nonnegative solutions with u = 0.) Our assump-

tions also ensure that, if (u, vx, v2) is a nonnegative solution with vx = 0, then v2 = 0

(and vice versa). Our earlier arguments imply that there is a solution with all 3

components strictly positive if

(-A + m^y^m^uj

has spectral radius greater than 1 for / = 1 or 2. (The proof is simpler if we also

assume that neither of the operators has spectral radius 1.) Note that the above

result covers cases in which the bifurcation point, where solutions with all compo-

nents positive branch off from (ua,0,0), is at a double eigenvalue. Hence the local

bifurcation argument in [6] is not valid at this point.
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Lastly, the invertibility requirements required to apply the index theorem in [8] are

often difficult to verify. Thus we state, without proof, two simple results showing

how the invertibility conditions can be weakened. Assume that C¡ is a cone in a

Banach space E¡, i = 1,2. Let E = Ex © E2 and C = Cx® C2. Define C2 s = {v e

C2: \\v\\ < 8}.

Proposition 2. Assume that A: C -» C is completely continuous and continuously

differentiable and U c Cx © {0} is relatively open and bounded such that u # PxA(u,0)

for u e dU, where Px is the natural projection on the first factor and the boundary is

relative to Cx. In addition, assume that A(U X {0}) ç Cx X {0}. Let T = {u e U:

u = PxA(u,0)} andP2 = I - Px.

(i) Suppose that r(P2A'(u,0)\R(P .) > 1 for u e T, that 1 is not an eigenvalue of

P2A'(u,0)\R,p . corresponding to an eigenvector in C2for each u e T and that there is

a 8 > 0 and a number p such that P2A'(u, v)\R(P , ^ -pi (in the positive operator

sense) for u near T and v e K2S. Then, degc( I - A, U X C2e)is defined and equals 0

for sufficiently small positive e.

(ii) Ifr(P2A'(u, 0)| R(p2)) <\foru^T, then degc(Z - A, U X C2l) is defined for

small positive e and equals degC[((Z - PxA)\RiP ,, U).

We do not give the proof here. We intend to discuss it and generalizations

elsewhere. The result could be used to obtain the existence of strictly positive

solutions of (2) in some cases where n > 1 and where/(y) = ay(b - y)(\ - y).

Finally, assume the notation and basic conditions of Proposition 2. Suppose that

(u„, v„) = A(u„, v„) where (un, v„) e C and u„ # 0 and that (un, vn) -» (ü,0) as

n -> oo. Then it is not difficult to show that P2A'(u,0)\R(P) has 1 as an eigenvalue

with corresponding eigenvector in C2. This provides a necessary condition for

solutions bifurcating from the subspaceEx X {0} into C\(EX X {0}).

3. An asymptotic result. In this section, we consider the asymptotic behaviour of

strictly positive solutions (u*, v*) as d -» 0. By the results in §1, at least one such

solution exists if d is sufficiently small and a > Xx. Our results prove another

conjecture in [6].

As in [6], let h(y) = f(y) - my(y - y)+. As before,/(y) = ay(\ - y). Note that

n is locally Lipschitz andy_1n(y) is decreasing. It turns out that the equation

(5) -Au = n(u)

in ß with Dirichlet boundary conditions has no nontrivial nonnegative solution if

a < Xx but has a unique nontrivial nonnegative solution u if a > Xx. The nonex-

istence follows easily from the ideas in §1 while the existence follows easily from

Theorem 2 in Dancer [7] or by the method of sub- and super-solutions. To prove

uniqueness, we note that z(x) = 1 is a supersolution and every solution must be less

than or equal to z. Thus, by a standard argument, one can obtain a maximal solution

w by using the iteration un = (-A + pl)~x(h(un_x) + pu„_x) where ux = z and/? is

chosen such that h(y) + py is increasing on [0,1]. If there is a second nontrivial

nonnegative solution v, a simple calculation shows that

-A(w - v) = h(w) - h(v) < v~xh(v)(w - v)
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in ß since y xh(y) is decreasing. (Note that w — v must be positive in ß since it is

nonnegative and solves a linear elliptic equation.) As in §1, it follows that

r{(-A + pl)'\p + a)l) > 1,  whereá(x) = {v(x)ylh(v(x)) on ß.

However, since -A» = (v~lh(v))v and v(x) > 0 in ß, the Krein-Rutman theorem

implies that r((-A + pl)'l(p + a)I) = 1. Hence we have a contradiction and the

result follows.

Theorem 2. Assume a > Xx. Suppose that dn -» 0 as n -> oo and (u*, v*) are

strictly positive solutions of (2) for d = d„. Then (u*, v*) -» (ü, m(ü - y)+) in C:(ß)

X Lp(ti)as n -> oo for each p < oo.

Remark. This answers another conjecture in [6]. If ß is not smooth, CL(ß) should

be replaced by L°°(ß). We will indicate how the result can be improved after the

proof.

Proof. By §1, 0 < u*(x) < 1 and 0 < v*(x) < m(\ - y) in ß. Thus, by the first

equation, Au* is bounded in ß. By a standard regularity result (cf. Friedman [9,

§19]), it follows that u* is bounded in W2'P(Q). Hence by the Sobolev embedding

theorem (cf. Adams [1, Theorem 5.4]), {h*}"=1 is compact in Cx(ti). Thus, by

choosing a subsequence, we may assume that u* converges to ü weakly in W2'P(Q)

and strongly in Cx(ü). Moreover, since {v*}x=x is bounded in Lp(ti), we can

choose a subsequence such that v* converges weakly to v in Lp(ü). Similarly, we can

assume that (v*)2 converges weakly to w in LP(Ü). Since {e e L°°(ß): 0 < i> <

m(\ - y)) is strongly closed in Lp(ü) and convex, it is weakly closed. Thus v is

nonnegative and in Lx(ti). A similar property holds for w. Now

(6) (v* - vf = (v*f - 2v*v +(v)2 -> w -(e)2

weakly in LP(Q) as n -» oo. As above, it follows that w - (v)2 > 0 in ß, that is,

w > (v)2. The main part of our proof will consist in proving that w = (v)2.

From the first equation,

-(«*, A<i>) = {au*(l - u*) - u*v*,<t>)

for all smooth <¡> of compact support in ß. Here ( , ) denotes the usual scalar product.

Passing to the limit, we see that

(-Ü, A<¡>) = (au(l - ü) - uv, (j>).

(For the term («*, v*, i>), note that it equals (v*, u*<f>) and note that u*<j> -* ü<p in

L°°(ß).) Thus we see that

(7) -Aw = flw(l - w) - uv

in ß and w(.v) = 0 on 3ß. Now the second equation becomes

-d„(v*. A*) = (-(i<*)2 + m(u* - y)v„,<t>)

for each smooth <¡> of compact support in ß. Since v* is bounded in Lx($l), the

left-hand side tends to zero as n -» oo and thus we find that

0 = (-vv + m (ii — y)v,<¡>)
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for all smooth $ of compact support in ß. Hence w = m(ü - y)v. Since w > (v)2

and v is nonnegative, it follows that v(x) < m(ü(x) - y) when ü(x) > y, and

w(x) = v(x) = 0 when ü(x) < y.

If we can prove that v(x) = m(ü(x) - y) when ü(x) > y, (7) implies that w is a

solution of (5) and thus « = w. (Note that w # 0. Otherwise -v* + m(u* — y) < 0

on ß for large n and the second equation gives a contradiction.) Moreover, since

w = m(u - y)v, it follows that w = (v)2. Hence by (6), (v* - v)2 -* 0 weakly in

Lp(tl). Choose a test function 4>(x) = 1 in ß. It follows that v* -* v strongly in

L2(ß). If v* -» 5 strongly in L2(ß) and v* -> ö weakly in Lp(ß), Holder's inequality

implies that v* -» f> strongly in L*(ß) for 2 < q < p. Thus the result reduces to

proving that v(x) > m(ü(x) - y) a.e. where ù(x) > y. (Note that the whole se-

quence must converge because every subsequence has the same limit.)

To prove this, we use subsolutions again. Suppose e > 0. Choose p > 0 such that

|w(x) - ù(y)\ < \em~x if x, y e ß and ||x - y|| < p. Hence, if n is large, \u*(x) -

w*(y)| < \em~x for ||x - y|| < p. Suppose x0 e ß and ü(x) > y if ||x - x0|| < p.

Let a = m(ü(x0) - y) - e, let B denote the ball of radius p with centre xQ, and let B

be the concentric ball of half the radius. Choose a smooth function h such that

h(x) = 0 on dB, 0 < h(x) < a inside B, h(x) = a on ZÏ, and |An| < ZCn in B. Let

w(x) = n(x) in B and 0 otherwise. By a tedious calculation we find as in §1 (cf. [13])

that w is a subsolution of

(8) -Av = d~M-v + m(u*„ - y))

if n is large. (Note that d„ is small and m(u*(x) - y) > a + \e on Z?.) Thus (cf.

Lemma 1 of §1), the unique solution vn of (8) satisfies vn > w. However, this unique

solution is v*. Thus v* > w for large n. Hence C > w a.e. on 5. In particular, v > a

a.e. on Z?. In other words v(x) > w(w(x0) - y) - e a.e. on B. Hence

¿5(x) ^ w(w(x) - y) - 2e   a.e. on B

(by the definition of p). Thus we see that v(x)> m(ù(x) - y) - 2e a.e. where

d(x, T) ^ ju. Here T = {x e ß: «(x) < y}. Since we can choose p small if e is

small, it follows that v(x) > m(u(x) - y) a.e. on ß \ T. This completes the proof.

Theorem 2 can be improved. By considering where the function v*(x) -

m(u*(x) - y) has its minimum or by examining carefully the last part of the proof,

we see without difficulty that, if e > 0, then v*(x) - m(u*(x) - y) > -e on ß for n

large. Conversely, let w(x) = sup{e, w(w(x) - y) + e}. Then w is C2 except where

ü(x) = y. By perturbing w by at most ^e near {x: w(x) = y}, we can obtain a C1

function w such that w(x)(-w(x) + w(w(x) - y)) < - \e2 on ß. Thus, for n large,

we see by a simple calculation that w is a supersolution of the equation satisfied by

v*. Hence v*(x) < w(x) on ß for n large. This and the first result of the paragraph

imply that v* ->m(w(x)-y)+inC(ß)asn -» oo. Hence there is no boundary layer.

Note that the proof of Theorem 2 is quite insensitive to the dependence upon u in

the first equation. In particular, it applies if we take f(y) to be ay(y - b)(\ — y)

instead of ay(l - y). One slight difference occurs. If (5) has more than one solution

u with llwll^. > y, then the sequence {(w*, v*)}x_x has

{(w,m(w-y)+):wisa solution of (5), \\ù\\x > y j
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as its possible limit points. If (5) has no nontrivial solution w with HwH^ > y, it

follows that (2) has no solutions with both components positive for d sufficiently

small. This was mentioned in §2. Note that (5) has no nontrivial nonnegative

solutions if h(y) < Xxy on (0,1). (For example, this holds if y is near b and m is

large.) In the case where n = 1, this property could be discussed in more detail by

the methods of [6]. (Some discussion of this property appears in [6].)

It is possible to show that, // w is an isolated nonnegative solution of (5) of nonzero

index k and if\\w\\x > Y, then there is a solution (u*, v*) near (w, m(w - y)+) for all

sufficiently small positive d. Moreover, the sum of the indices of such solutions is k.

(This is proved by using Theorem 2 and degree theory and by deforming (2) to a

system where v in the first equation is replaced by m(u - y)+ and w in the second

equation is replaced by w. Once again, this proof is quite insensitive to the formula

for/.

The above result can be used to construct examples where n = 1, ß = (-L, L),

f(y) = a(l - y)(y - b) and there is relatively complicated solution structure. We

consider cases where (3) has 2 distinct nonnegative solutions ux, u2 with \\ux\\x > y

and w2 > ux and where (5) has 2 distinct nonnegative nontrivial solutions «,, ü2. We

assume these conditions hold for the remainder of the paragraph. As before, we

consider das a parameter. There are examples where the solution branch Bx of

strictly positive solutions branching from (w,,0) at d = dx continues to exist for all d

in (0, dx). Similar properties hold for the branch B2 bifurcating from (w2,0) at

d = d2. Moreover, these branches do not intersect and have distinct limits as d -» 0.

(Note that dx and d2 were defined earlier in §2.) In particular, there are two distinct

strictly positive solutions for all d in (0, dx). (To construct such an example, one

shows that, if m is small, then, for any strictly positive solution (w, v) of (2), u is near

ux or u2. Moreover, this holds uniformly in d.) Secondly, there are examples where

there are <Z's in (0, dx) for which (2) has no strictly positive solution. It follows in

this case that the branch Bx of strictly positive solutions bifurcating from (w1(0) at

d = dx has (u2,0) in its closure and inf{<Z: (w, v, d) e Bx) > 0. Moreover, the

branch of solutions Bx bifurcating from (w,,0) at d = 0 must return to (w2,0) (for

d = 0) and Bx n Bx = 0. (To construct such an example one starts with a such that

ux = u2, increases a slightly and chooses m very small. One also uses the result that,

if (3) has a unique nontrivial nonnegative solution, then every nonnegative solution

of (2) has v = 0. This last result is proved by combining some of the ideas in §1 with

those in [8].) Finally, other more complicated solution structures must occur. If we

deform the parameters a, m, y for the first example in the paragraph to those for the

second in such a way that the basic assumptions of this paragraph hold throughout

the deformation, there must be a place where the solution structure changes. (Note

that it can be proved that such a deformation exists.)
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