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FUNCTION THEORETIC RESULTS FOR COMPLEX
INTERPOLATION FAMILIES OF BANACH SPACES

BY

RICHARD ROCHBERG1

ABSTRACT. The theory of complex interpolation of Banach spaces is viewed

as a branch of the theory of vector valued holomorphic functions. Versions

of the Schwarz lemma, Liouville's theorem, the identity theorem and the re-

flection principle are proved and are interpreted from the point of view of

interpolation theory.

I. Introduction and summary. The fundamental construction in the the-

ory of complex interpolation of finite-dimensional Banach spaces produces families

of Banach spaces {Bz} parametrized by the points z of a domain D in the com-

plex plane. One feature of the spaces constructed is that a vector-valued analytic

function / taking values in the {Bz} (i.e. f(z) in Bz) will satisfy a maximum

principle. The fundamental estimates in the theory of complex interpolation of

Banach spaces follow from this function theoretic maximum principle. In this pa-

per we study other aspects of function theory for this type of vector-valued analytic

function. We obtain analogs of the Schwarz lemma, of Liouville's theorem, of the

identity theorem and of the reflection principle. In general, once the appropriate

analogy is established the proofs follow their classical counterparts. In several cases

the results obtained are closely related to known results in interpolation theory.

In §11 we review the ideas of and establish the notation for our discussion of

complex interpolation of Banach spaces.

In §111 we present a "Schwarz lemma". That is, we give a local estimate for

the modulus of continuity of the norm function of B~ as a function of z. The

estimate we obtain is similar to estimates used by Zafran and Sneiberg in studying

the spectrum of operators defined on interpolation families of Banach spaces. We

use the lemma to bound the modulus of continuity of the map which associates to

the point z in D the Banach space £?,. This map is regarded as a map from the

domain D with its hyperbolic geometry into the set of all Banach spaces (of a given

dimension) regarded as a metric space with the Banach-Mazur metric.

Two variations on Liouville's theorem are given in §IV. In both it is assumed

that {Bz} is a complex interpolation family defined on the entire complex plane.

In the first case the conclusion is that all the B~ are isometrically isoniorphic. The

second conclusion, requiring further hypotheses, is that this isometric isomorphism

is implemented by the identity map.

In §V we present an identity theorem for interpolation families. The result is

more in the spirit of the identity theorem for harmonic functions than that for
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holomorphic functions—two interpolation families which agree on an open subset

of their common domain of definition agree throughout the domain. This result

gives a new approach to the recent four-space reiteration theorem of T. Wolff.

In §VI we present two variations of the reflection principle for interpolation

families. The first version which applies to V spaces (and other one-parameter

families) is based on the reflection principle for harmonic functions. The second

version involves reflection of an interpolation family with respect to a fixed Hilbert

space which forms the boundary values of the family on an interval in the boundary.

Roughly the reflected family is the family of dual spaces of the given Banach spaces

with respect to the duality pairing determined by the boundary Hilbert space. This

extends work by S. G. Krein and Y. I. Petunin on construction of scales of Banach

spaces containing three given spaces. Some discussion is given to the problem of

reflecting across boundary values which are not Hilbert spaces.

We should emphasize that all of the analysis we give is for /tmie-dimensional

Banach spaces. There are two reasons for this beyond technical convenience. First,

much of infinite-dimensional interpolation theory deals with Banach spaces de-

fined up to equivalent norms (i.e. an isomorphic rather than isometric theory).

Most of the results here deal with the isometric theory and do not have clear

analogs in the isomorphic theory. Second, many of the arguments in this paper

use the existence of certain "extremal functions". Such functions need not exist in

the infinite-dimensional theory (although they do in many important cases). The

validity of these results in the infinite-dimensional case has not been studied.

Our discussion is in the context of interpolation theory. The operator theoretic

significance of these results is not clear. One result of this type which does have

direct operator theoretic significance is the Cauchy estimates for the derivative of

an analytic function. That estimate is developed and studied systematically in [9].

II. Interpolation. The vector spaces we consider will all be finite dimensional.

By a Banach space we will mean Cn equipped with a norm function || • ||. For a

family of Banach spaces {Bz} indexed by z, we will use the same subscripts for

the norm. Thus the norm of Bz will be denoted || • ||2 or || ■ \\b,. For 1 < p < oo

we denote by lp the space C" with the norm ||(vi,...,vn)\\p — (J2 |t>¿|p)1//p. Z£°

will denote C™ with the norm \\(vx,... ,vn)||oo — max|i>¿|. If there is a complex

linear norm-preserving map of the Banach space B to l\ we will call B a Hilbert

space. We denote the dual of a Banach space B by B* and establish the duality

with respect to the bilinear (not the sesquilinear) pairing. Thus

j ^u¿wí ;||(wi,...,«;n)||B = l|.\\(Vl,...,Vn)\\B*  =SUp

We now present without proof the main features of the theory of complex inter-

polation of finite-dimensional Banach spaces. More details, including proofs of the

statements in this section and applications of this theory, are in [3, 4 and 5]. A

comprehensive view of interpolation theory can be found in [1 or 2],

Let D be an open subset of C. Let Hol(D) be the space of holomorphic Cn

valued functions defined on D. We regard D x C" as a family of vector spaces

parametrized by points of D. Suppose that for each z in D there is specified a

norm function || • \\z defined on the vector space {z} x C" = C". Generally this

norm will vary from point to point. We denote the normed vector space (C™, || • ||2)

by Bz. Thus {Bz}zeo is a family of Banach spaces parametrized by points of D.
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We say the family {Bz} is continuous if the function ||u||2 is continuous for (z,v)

in D x C". We say that {Bz} is a subinterpolation family on D if given any F

in rlol(D), log ||F(^)||2 is a subharmonic function of z for z in D. If the family of

dual spaces {B*} also form a subinterpolation family then we say that {Bz} is a

(complex) interpolation family.

The results of [4] insure the existence of interpolation families with given bound-

ary values. Start with a smooth simple closed curve Y which bounds a region D and

with a norm function || • ||2 specified for each z in T. We suppose that || • ||2 is a contin-

uous function of z and that there are constants Cx, C2 so that Cx < ||f|U/¡|f H2 < C2

for all v in C™, for all z in T (these assumptions are unnecessarily strict). Then

there is a unique interpolation family {Bz} defined on D which has the given || • ||2 as

its boundary values. (Here boundary values are taken in the sense of nontangential

convergence of the norm function on a set of T of full measure with respect to arc

length.) Furthermore if {Dz} is any subinterpolation family on D which extends

toTUD and satisfies for all z in T

(2.1) IM|d, <N|a   V«eC",

then (2.1) also holds for all z in D. (This is a version of the fundamental maximum

principle mentioned in the introduction.) Finally, given z0 in D and v in Cn there

is an extremal function for v at zr,; that is, there is an F in Hol(D) which satisfies

F(zo) — v and ||F(,s)||2 = ||t>||20 for all z in D. The fundamental step in the

construction of the norm on Bz is to define || • ||2o for zq in D by setting, for v in
Cn,

(2.2) |M¡2o=inf{sup||F(¿)||2;FeHol(D), F(z0) = v\ .

The extremal functions are those for which the infimum in (2.2) is attained.

In one dimension the situation is simple. The norm function || ■ ||2 is fully

specified by the positive function w(z) = ||1||2. A family of Banach spaces will be

a subinterpolation family exactly if logw(z) is subharmonic. Since ||1||* = w(z)~l,

the family is an interpolation family exactly if logw(z) is harmonic. In this case

the existence theorem of the previous paragraph becomes an existence theorem for

the Dirichlet problem for the equation A log w = 0.

In n dimensions, one class of examples is especially easy to describe. Suppose

|| ■ || is given and that T2 is a family of invertible linear maps of Cn to Cn which

vary analytically with z for z in D. Define || • ||2 by ||i>||2 = ||T2í;||. The family

{Bz} defined by Bz = (Cn, || ■ ||2) is an interpolation family. We call families of

this form flat (some geometric consequences of this hypothesis are in [8]). Every

one-dimensional interpolation family is locally flat. That is because every solution

of A log w(z) = 0 is locally of the form w(z) — \f(z) | for some holomorphic function

/. The same is true in higher dimension for Hilbert spaces. If the norms specified

on a curve are all Hilbert space norms then the interpolation family with those

boundary values will consist entirely of Hilbert spaces and will form a flat family.

(This is proved in [4|. The crucial fact is that the extremal function for v at a point

zq depends linearly on v.)

Not every interpolation family is flat. For an open set D and p(z) a function on

D which satisfies 1 < p(z) < 00, the family \Bz}zeo given by Bz = l'r,     will be
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an interpolation family exactly if l/p(z) is harmonic. Because /£' and ZP2 are not

linear isometric for px ^ p2 this cannot be a flat family.

III. A Schwarz lemma. Let D be the open unit disk, F the unit circle, and

{Bz} an interpolation family on D. Informally, it seems reasonable that for fixed v

in C™, \\v\\z should be a smooth function of z for z away from F. Simple examples

with n = 1 show that this smoothness is not absolute but must depend on the

family {Bz}. The following variation on Schwarz's lemma is one way of making

this precise.

THEOREM 3.1. Suppose {Bz} is an interpolation family in an open set con-

taining DUT.   There is a constant c so that for all v in Cn and all z in D with

\z\ < 1/2

(3.1) | |M|o — IMIal < c|z|   /   \\v\\eie d9.
Jv

PROOF. Pick and fix v in Cn. Let v(z) be a function in Hol(Z?) which is extremal

for v at 0. Thus v(0) = v and

(3-2) N*)H. = IMIo,        ̂ 5,

I IMIo - NUI = I l|w(o)||o - ||v(o)IW = I ||i>(z)|U - IKo)y.
The last equality by (3.2). Let A denote the left-hand side of (3.1). By the triangle

inequality we can continue the previous estimate with A < \\v(0) - v(z)\\z. Now

H(z) = (v(0) - v(z))/z is in Hol(ZJ) and hence log||ZZ(z)||2 and thus also ||ZZ(2)||2

are subharmonic. Thus

A<\\zH(z)\\z = \z\\\H(z)\\z

<\z\ f \\H(eie)\\ei8P2(0)d$/2K,

where Pz{6) is the Poisson kernel for evaluating at z. For z restricted to \z\ < 1/2

the Pz(9) are uniformly bounded by some constant c and hence

A < c\z\ Í \\v{0) - v(eie)\\e,e d0/2n

<c\z\ j(\\v\\eie + \\v(é$)\\ei,,)de¡2ir.

By (3.2), ||-u(eío)||e¿e = ||t>||o and by the mean value inequality for the subharmonic

function \\v\\z this quantity is dominated by /r ||t>||e¿o d6/2ir. Thus, if we increase the

constant in the previous estimate we may drop the second term in the integration.

This proves the theorem.

Variations on this result, such as a conformally invariant version and a limiting

version as z tends to zero, can also be obtained. It is not clear what the best

possible estimates would be in this context. The estimate (3.1) is not sharp in its

form. A sharper (but more awkward) result can be obtained using the fact that

log||ZZ(z)||2 (rather than ||ZZ(z)||2) is subharmonic.

Estimates such as (3.1) can be used as the starting point for studying how various

properties of the Bz vary with z. For example, in the work of Zafran and of Sneiberg

(see [11] and the references there) on how the spectrum of an operator defined on
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a family of spaces varies with the space, a fundamental analytical tool (Lemma 2.4

of [11]) is an estimate very similar to (3.1).

We will use (3.1) to estimate the Banach-Mazur distance between interpolation

spaces. For Banach spaces Bx and B2 define the Banach-Mazur distance between

Bx andD2, d{Bx,B2), by

d(Bx,B2) = loginf{||T|| ||r_1||; T an invertible linear map of Bx to B2).

We let Bn be the set of all n dimensional Banach spaces modulo the equivalence

relation of being isometrically equivalent by a linear map. (Sn, d(-, •)) is a complete

metric space. For more about d(-, •) see [7] and the references there.

THEOREM 3.2. Let {Bz} be an interpolation family on an open set containing

DUT. There is a constant cn which depends only on n so that for all z in D

(3.3) d{B0,Bz)<cn\z\.

PROOF. If all the Bz are Hilbert spaces then d(Bo,Bz) = 0 and the result is

trivial. We will show that the general case can be approximated by this case. The

crucial geometric step is the following result of F. John.

LEMMA.   The metric space {Bn,d) has finite diameter (which depends on n).

Proof. See §16 of [7].
By the Lemma, it suffices to prove (3.3) for sufficiently small z. Again by the

Lemma, there is constant a c (which depends only on n) and a family of Hilbert

space norms Nz(-), z in F, which approximate || ■ ||2 on F in the sense that for all

z in T and all v in C™, v ^ 0

1/c < Nz(-)/\\v\\z < c.

We now modify the family Nz to produce a new family of norms which vary con-

tinuously with z. Using the continuity of ||v||2 as a function of z, we have that

for each z there is an open neighborhood U(z) of z in F such that for all v in Cn,

d/0, and for all w in U(z)

l/2c < Nz(-)/\\v\\w < 2c.

Let U(zx),..., U(zk) be a finite cover of F and let ipx,..., <pk be a smooth par-

tition of unity subordinate to that cover. For z in F and v in Cn, let |||v|||2 =

(^2fi(z)NZi(v)2y^'2. Hl • Hl is a family of Hilbert space norms which vary smoothly

with z and which satisfy, for a new constant c, all z in F and all v in C", v ^ 0,

(3-4) l/c<||H||,/|H|,<c.

Let {Cz} be the interpolation family in D which has boundary norms ||| • |||2 for

2 in T. The {Cz} form a flat family; that is, there is an analytic family of linear

maps C™ to Cn such that T0 = I and |||T2t;|||2 = ||M||o for all v in C™ and all z in

D. Let {D2} be the family of Banach spaces obtained by putting on C™ the norms

(3-5) IMId; = ||?>||2.

{D2} is the image of an interpolation family under an analytic family of invertible

linear maps. Hence {D2} is an interpolation family. Also, Dr, = Be,. Finally,

although Bz and Dz are not the same normed vector space they are the same
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element in S„. Hence to prove (3.3) it suffices to estimate d(Dr,,Dz). We do this

by using Theorem 3.1 and the identity map on Cn as a map of Dr, to D2. For z

in T and v in C, (3.5) gives |MIo«/IMIA) = l|2zul|o/IM|o- By (2.1), the estimate
(3.4) for z in F propagates to D, i.e.

l/e<||M||,/H,<c

for all v in C" and all z in D. (Here we use the fact that {Cz} and {Bz} are both

interpolation families.) Combining these last two estimates we obtain

1 III?>1IU < \\v\\dz <   2\\\TM\U
9      II I     I I I —    II     II — I I I     I M

C2     IIHIlO \\V\\D0 \\\v\\\o

The characteristic property of Tz is that |||T2v|||2 = ||H||o. Thus

C-2<|k||Ds/||^||Do<C2

for all v in C" and all z in D. We now apply Theorem 3.1 and conclude that for

small z

\\Hd0 - \\v\\dz\ < c|z| IMIdo

for a new constant c which depends only on n. Thus,

1 - c\z\ < \\v\\dJ\\v\\d0 < 1 + c|z|.

Hence the identity map of Do to D2 satisifes the operator norm estimate

log||r|| HT"1!] < c^|

for a constant c which depends only on the dimension. This finishes the proof.

The following invariant formulation is a direct consequence.

COROLLARY 3.3. Let {Bz} be an interpolation family on D. The map of D to

Bn which sends z to Bz is a Lipschitz map from D with its hyperbolic metric into

Bn with the metric d. The Lipschitz constant can be chosen to depend only on the

dimension n.

There are many open questions related to the previous theorem. We mention

two specific but typical ones. ln is a Hilbert space and Z3 is not. Thus d(l\, 1%) > 0.

The previous theorem insures that if {Bz} is an interpolation family on D with

Do = In and BZo = ln then there is a lower bound on \zo\. The question is: how

small can \zo\ be? If all of the Bz are of the form ln then l/p(z) must be harmonic

and the problem becomes a relatively elementary extremal problem for harmonic

functions. The boundary values of the extremal configuration are l„ = ¿Jj° for z

on T n {Rez > 0} and ln{z) = ln for zonTil {Rez < 0}. We conjecture that this

is the extremal configuration for all possible interpolation families (not just those

ofthefbrmB2 = Z£(i)).

The second problem is to find the approprite analog of the theorem for infinite-

dimensional spaces. Theorem 3.2 fails. The infinite-dimensional family lp^ with

l/p(z) harmonic is an interpolation family and for the choice of p(z) of the previous

paragraph will give Bq = I2, BZo — Z3. However d(l2,l3) is infinite. A particular

question would be to give a lower bound for \zq\ among all interpolation families

with D0 = I2 and BZo = I3. Although we suspect that this question has the same

answer as the previous one, we do not know how to insure in this case that the

lower bound must be positive.
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IV. Liouville's theorem. Liouville's theorem is the statement that a bounded

analytic function defined on the entire complex plane is constant. Many proofs can

be given for the theorem. In this section we show the results that are obtained

when two of those proofs are applied to complex interpolation families of Banach

spaces.

THEOREM 4.1. Suppose {Bz} is an interpolation family defined on all of C,

then {Bz} is flat.

PROOF. For k - 1,2,... let Dk = {z; \z\ < k}. For given z0 in C and v in Cn

and for large k there is a sequence of functions Fk in Hol(Dfc) which are extremal

functions for v at zr, for the family {Bz} on Dk (i.e. Fk(zr,) = v and ||F(z)||2 = ||w||2o

for z in Dk). By a standard normal family argument there is a subsequence of {Fk}

which converges to a limit F = Fv in Hol(C) which satisfies

(4.1) Fv{z0)=v

and

(4-2) ||F„(*)||, = \\v\\Zo.

Select such an Fv for each v in C". For fi,^2 m C™ and 0:1,0:2 in C consider

H(z) = {axFVl + azFV2 - FaiVl+a2V2)(z).

H is in Hol(C). Using the triangle inequality and (4.2) we see that

\\H(z)\\z<2(\ax\\\vx\\Zo + \a2\\\v2\\Zo).

Thus ||D(z)||2 is a bounded subharmonic function and hence is constant. Evaluating

at zr, and using (4.1) we conclude that H(z) = 0. Thus Tz(v) = Fv(z) is a linear

map of C" which is analytic as a function of z and satisfies \\v\\z = ||T2_1v||o for all

z in C and all v in Cn. This is the required conclusion.

This theorem looks very different from the classical Liouville theorem. However

if we weaken the conclusion slightly then the theorem states that the map which

sends z to D2, regarded as a map from a domain in C into Bn, if entire, must be

constant. A hypothesis of boundedness is implicit because the target set, S„, is a

bounded set (by the Lemma in the previous section).

Liouville's theorem can be regarded as a globalized version of the Schwarz lemma

and can be proved using that lemma. Here is that proof.

THEOREM 4.2. Suppose {Bz} is an interpolation family defined on all of C

and that for each v in Cn, \\v\\z is bounded.  Then \\v\\z is constant.

PROOF. Let zc, be picked and fixed and for fixed positive e let {C72} be the

interpolation family defined by ||v||c, = IMU/c- We apply Theorem 3.1 to the

family Cz on the unit disk. Evaluating (3.1) for z = ezr, yields

I IMIo - IMLI < c\zo\£ / \\v\\eto/£d6/2ir.

By hypothesis the integral on the right is bounded by a bound independent of e.

Thus we may take the limit as s goes to zero. This gives the desired conclusion.

In contrast to these two results, the classical proofs of Liouville's theorem using

the Cauchy estimate for the derivatives (either the first derivative at all points or

all derivatives at one point) do not seem to generalize directly to this context.
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V. The identity theorem. Suppose {D2} and {C2} are two interpolation

families with a common domain of definition D. An identity theorem is a result

which says that if

(5.1) D2 = Cz

for all z in a small subset of D then (5.1) holds for all z in D. In the case when the

spaces are one-dimensional, (5.1) is equivalent to a statement of equality at z of two

harmonic functions. Thus it should not be expected that equality on, say, a segment

in D will insure equality throughout D. Here is an observation about harmonic

functions which suggests a correct general result. If two harmonic functions on the

unit disk agree on the circle centered at the origin with radius one-half; then, by

the maximum principle, the functions agree on the disk bounded by the circle. The

identity theorem for harmonic functions now insures that these two functions agree

on the full unit disk. Both of these steps, the maximum principle and the identity

theorem for functions which agree on open sets, are valid for interpolation families.

THEOREM 5.1. Let {Bz} and {Cz) be two interpolation families with domain

of definition D. Let F be a smooth simple closed curve in D such that Dx, the

region bounded by F, is contained in D. If

(5.2) \\v\\Bm = \\v\\c.    for all v in C"

holds for all z in F, then (5.2) holds for all z in D.

PROOF. Interpolation families are determined by their boundary values; that

is, (5.2) holds on F = dDx and hence (5.2) holds on all Dx. (This follows from the

maximum principle (2.1).) Now pick w in D \ Dx. We must show that (5.2) holds

for z = w. Let F2 be a simple closed curve inside D so that D2, the region bounded

by T2, contains w and satisfies Dx C D2 C D. Select v in Cn. Let F in Hol(D2)

be the extremal function for v at w with respect to the interpolation family {D2}

and the domain D2. Pick zr, in Dx. Let F(zo) = i>o- Let vo be the vector Cn with

lleulle-   = 1 and

(5-3) v0-v0 = ||vo||cv

Let G be the function in Hol(D2) which is the extremal function for ir, at zq with

respect to the interpolation family {C*} and the domain Dz. We now consider

the scalar holomorphic function f(z) = G(z) ■ F(z). For any z in Dx, \f(z)\ <

\\G(z)\\c.\\F(z)\\Ck. On Du Bz = Cz so ||F(z)||c, = \\F(z)\\Bz. By the extremal

properties of F and G, \\F(z)\\Bm = \\v\\Bw and \\G(z)\\C; = 1. Thus \f(z)\ < \\v\\Bw.

At zQ,

|/(2o)| = \VQ ■ V\ = \\vq\\cmo  = \\v0\\b.0 = \\v\\bw-

Thus, by the maximum principle for holomorphic functions, / is constant on D.

Hence \G(w) ■ v\ = \G(w) ■ F(w)\, \f(w)\ = \f(z0)\ = \\v\\Bw. G{w) is in C*w with

l|G(w)l|c¿, = L Thus we have ||u||c„, > IMIb«,- By symmetry equality must hold

and the proof is complete.

Using this theorem we see that if two interpolation families have overlapping

domain of definition and if they agree on the boundary of the overlap then they

define a single interpolation family. More precisely, for i = 1,2 let D¿ be simply

connected domains in the plane with smooth boundary curves T¿ = 3D i. Let

D = Dx n D2 and let -7 = 3D.   y consists of two parts, 7 = 71 U 72, where

7¿ = 7nr¿, ¿ = 1,2.
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THEOREM 5.2. For i — 1,2 suppose {D*}2Got is an interpolation family with

boundary values {D2}2ep,- Suppose Bz — B2 for z in 71 U 72. Then D2 = B2 in

D and {Cz} defined by Cz = B\ for z in Di is an interpolation family on Dx Li D2

with boundary values B\ on r¿ \ 7,.

The special case of this theorem in which Cz is constant on the four sets 71,

Fi \ 71,72^2 \ 72 yields (after a conformai map) the finite-dimensional case of

the four-space reiteration theorem for complex interpolation recently proved by T.

Wolff [10]. Thus we have a new perspective on his result. He obtains his result for

infinite-dimensional spaces. It is not clear if Theorem 5.2 extends to that context.

VI. The reflection principle. In this section we present several versions of

the reflection principle for interpolation families.

Let D be the open unit disk and let D+,I,D~ be the subsets of D on which

the imaginary part of z is respectively positive, zero, and negative. We recall a

version of the classical reflection principle for harmonic functions. Suppose h is a

real-valued function on D+ U I which is continuous on D+ U I, harmonic on D+

and zero on I. Extend h by reflection to all of D; that is set h(z) = —h(z) for z in

D~. The reflection principle states that this h is in fact harmonic on D.

Using this result for harmonic functions we can obtain results for complex inter-

polation families. Here is the most straightforward example. Suppose {Bz} is an

interpolation family on D+ which consists entirely of ln spaces. That is there is a

function p(z), 1 < p(z) < 00, on D+ such that D2 = ln z' for z in D+.

THEOREM 6.1. Suppose p(z) extends continuously to D+ UZ with p(z) = 2 for

all z in I. For z in D~ set p(z) — p'(z) (where l/p{z) + f/p'{z) = 1). Then {Bz},

defined by Bz = In     for all z in D, is an interpolation family on D.

PROOF.  {ln    } is an interpolation family in D+. Thus p(z) satisfies

(6.1) 0 < 1/pf» < 1.

l/p(z) is harmonic on D+ and l/p[z) has limit 1/2 on I. The reflection principle

for harmonic functions can be applied to l/p(z) — 1/2. The extension allows us to

extend p(z) to all of D so that p(z) = p'(z) for all z, (6.1) is satisfied and f/p(z) is

harmonic. Thus {Bz} = {ln    } is an interpolation family on all of D.

The only feature of the spaces ln used in the proof is that {Z„ } is an in-

terpolation family on D exactly if l/p(z) is harmonic and satisfies (6.1). Such a

situation is rather general. For i = 0,1 let A¿ be an n-dimensional Banach space.

For a, 0 < a < 1, let Aa = [Ar,,Ax]a be the complex interpolation spaces (in

the sense of A. P. Calderón) obtained by interpolating between Ao and A\ (see

[1] for definition and details). The spaces Aa = ln'a, 0 < a < 1, are an exam-

ple. A family of Banach spaces {Bz} for z in a domain E with all Bz among

the Aa; i.e. {D2}2Se = {AQ(2)}2e£, will be a complex interpolation family in

our sense exactly if a(z), 0 < a(z) < 1, is a harmonic function in E. (This is

outlined in [4] and proved in [5].) Thus an analog of Theorem 6.1 holds for such

a family; if {Bz} = {AQ(2j} is an interpolation family on D+ with a(z) having

limiting value 1/2 on I then the family can be extended by reflection (i.e. so that

a(z) — 1/2 = — (a(z) — 1/2)) to be an interpolation family on all of D.
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Many details of the proof remain valid when the function l/p(z) (or a(z)) has a

limiting value other than one-half on I. If {Bz} = {ln } is an interpolation family

on D+ and l/p(z) has limit C for z in Z then l/p(z) can be extended to all of D

as a harmonic function by requiring l/p[z) — C = —(l/p(z) — C) for all z in D. If

C ^ 1/2 then this extended function need not satisfy (6.1). This problem can be

avoided by putting further restrictions on {D2} or by restricting attention to the

subset of D on which (6.1) holds. A more interesting possibility, one that is not yet

fully explored, is to try to give interpolation theoretic significance to these ideas

when (6.1) (and more generally 0 < a(z) < 1) is violated. Some possibilities in this

direction are indicated by Theorem 6.4.

The previous result is a direct application of the scalar reflection principle. We

now give a more general reflection principle which is more intimately connected

with the interpolation theory.

For any Banach space B, we denote by B+ the Banach space with the norm

\\(wx,... ,wn)\\B+ = \\(wx,..., w„)||ß., where D* is the dual of D under the bilinear

pairing described in §2.

THEOREM 6.2. Suppose {Bz} is a family of Banach spaces which is continuous

on D and an interpolation family on D+. Suppose Bz = I2 for z in I. If {Bz} is

extended to all of D by reflection by setting Bz = B^ for z in D then the resulting

family {Bz}z¡--¡j is an interpolation family on all of D.

PROOF. Let {C2} be the interpolation family on D with boundary values Cz =

Bz for z in (3D) n D+ and Cz = B± for z in (3D) n D". For v in C", v =

(t>i,... ,vn), let v = (vi,..., vn). We will show that for v in Cn and z in D,

(6-2) IMIc, = Nc+.
z

Pick and fix zc, in D and v in Cn. Set T = {F G Hol(D); F(z0) = v}, £ =

{G G Hol(D);C7(2o) = ü}. Note that the pairing of F in 7 with G in Q given by

G(z) — F(z) establishes a bijection between 7 and Ç. For F and G related in this

way,

inf{||F(aO||,;*€ 3D} = M{\\F(z)\\cr;z e D} = inf{||F(z)||c+ ;z G 3D}

= inf{\\FtSJ\\Ci-,zG 3D} = inf{||G(z)||c;;2 in 3D}.

Thus the infimum over 7 which defines the intermediate norm for CZo and the

infimum over G which defines the norm at C~   are equal; liullc    = \\v\\c ■ This is
^ 2o -1 !   II     ll'-'zo "      "     s0

equivalent to (6.2).

It follows from (6.2) that for z in Z (i.e. z = z)

(6.3) Cz = I2.

To see this select v in C™ with ||f ||/2 = 1. Pick x in I.

l = |vü| < ||«||c,Nlc; = l|v||o, = |M|C+ = ||t>||c.-

Thus ||u||j2 < \\v\\c\ for all v. Passing to dual norms yields ||u||c < \\v\\i2- When

this is combined with (6.2) we obtain \\v\\c, < \\v\\p = \\v\\p which is the second

of the two inequalities required for (6.3).
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Now that (6.3) is established we know that {Cz} = {Bz} on 3D+. Interpolation

families are determined by their boundary values, thus {C2} = {Bz} for z in D+.

The {Cz} satisfy (6.2) and by construction the {D2} satisfy the analogous condition.

Thus Cz = Bz for all z in D. This shows that {Bz} is an interpolation family and

completes the proof.

If the family {Bz} is constant on the upper semicircle {3D)C\D then this result

specializes to a variation of a theorem of S. G. Krein and Yu. I. Petunin on the

construction of scales of Banach spaces connecting a given space A, a Hilbert space

and the dual space of A (Theorem 9.4 of [6]).

COROLLARY 6.3. Suppose {C2} is a continuous family of Banach spaces on D

which is an interpolation family on D. The symmetry condition (6.2) for all v in

C™ and for z in 3D is the necessary and sufficient condition in order that Cz = ln

for all z in I.

PROOF. The previous proof shows that the condition is sufficient. On the other

hand, if Cz = ln for z in I then we may apply the previous theorem and obtain

an interpolation family {D2} which agree with {C2} on D+ and satisfies D2 = Cj

on D~. We can now apply the identity theorem, Theorem 5.1, and conclude that

D2 = Cz for all z in D. These last two equalities yield (6.2) for all v in C™ and all

z in D. By continuity the result extends to the boundary.

Theorem 6.2 depends on a specific choice of inner product in Cn in two ways.

First, the assumption is made that for z in Z, Bz equals I2 rather than some fixed

but arbitrary Hilbert space. Second, the reflection formula, Bz = DÍ, is tied to

the particular choice of bilinear pairing used to establish the duality. These two

aspects of the theorem can be changed if they are changed together. Suppose that

{D2} is an interpolation family on D+ which extends continuously to D and that

there is some fixed Hilbert space B such that Bz — B for all z in Z. We can still

apply Theorem 6.2 but we must make a preliminary "change of variables". Let T

be the linear map of C™ to Cn such that for all v in Cn, ||u||b = ||Ti;||/2. Consider

the family {C2} defined on D    by

(6-4) IMIcHlT-1««*..

T is an isometry of Bz onto C2; symbolically T(BZ) = Cz. For z in Z, Cz =

T(BZ) = T(B) = l\. Also, {C2} is an interpolation family on D+. Thus we can

apply Theorem 6.2 and extend {C2} to an interpolation family on D. We can then

use (6.4) for z in D~ to define D2 for z in D~. The resulting {D2} will be an

interpolation family on all of D and will satisfy

(6.5) T(BZ) = (T(D2)) + .

Thus Bz has been extended to O" using a reflection which is the "ordinary" re-

flection conjugated by the change of variables which reduce the boundary spaces to

I2

Many variations on these ideas are possible. One of the most intriguing is to use

equations such as (6.4) and (6.5) with maps T which are analytic but are not linear.

This can yield results because many of the estimates of complex interpolation theory

are based on holomorphic convexity (which is preserved by holomorphic maps)

rather than geometric convexity (which would only be preserved by linear maps).
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We now give an example of a result which uses these ideas. Possible generalizations

are discussed afterwards.

Theorem 6.2 certainly contains Theorem 6.1 as a special case. In the discussion

after Theorem 6.1 it was noted that the scalar reflection principle could also be used

to obtain results involving reflection of a family of spaces {ln } across a boundary

on which p(z) is constant but not two. We now prove such a result using the ideas

just described rather than the scalar reflection principle.

THEOREM 6.4.   Suppose {Bz} is a continuous family of Banach spaces on D

which is an interpolation family on D+. Suppose that for z in D , Bz = ln and

that p(z) = 4 for all z in I. Then there is an interpolation family defined on a open

neighborhood of D+ U Z which agrees with {Bz} in D+ U Z.

PROOF. For v in Cn, v = (vx,...,vn), let Tv = (vf,...,vn). For z in D define

II • Ik by

(6.6) HU. = IIT-^H^.
(Although T is not one-to-one, the value on the right side of (6.6) does not depend on

the choice of T~1v.) For z in D , ||v|k = IM|,P(z)/2 for z in S = D+D{p(z) > 2}.

In particular Az = I2 for z in Z. We now claim that {Az} is an interpolation family

on S. (This follows from the realization of the Az as ln ■ We wish to give a

more intrinsic proof.) We will show that {^42} satisfies

(6.7) if F is in Hol(S) then log||F(z)|k is subharmonic on S

and

given zo in S, v in Cn there is an analytic C" valued

(6.8) function F defined near zo such that F(zr,) — v and ||F(z)|k

is constant near zo-

It follows from (6.7) and (6.8) that {Az} is an interpolation family on S. ({Az} is

a subinterpolation family by (6.7) and it is an easy consequence of (6.8) that the

dual spaces are a subinterpolation family.)

Let z0 in S be given and let F be in Ho^S). If F(z) — (fi(z),..., fn{z)) and

/i(z0) ¿ 0 for i = 1,... ,n then locally F(z) = T(G(z)) for an analytic C val-

ued function G(z). Thus, locally log||F(z)||A, = 21og||G(*)||B, and log||F(*)|k

is subharmonic near zq. Suppose now that some coordinate of F(z) vanishes at

zo- We will consider the case /i(zo) has a simple zero at zo and /¿(zo) ^ 0

for i > 1; this case will be seen to be typical. For small positive e, Fe(z) =

(e(z — zr,)~x fi(z), f2(z),..., fn{z)) is analytic near zo and satisfies

(6-9) \\Fe(z)U. = \\F(z)\U

for |z - zo| = s, and for \z — zr,\ < e satisfies

(6.10) \\Fe(z)\\Az>\\F(z)\\A¡.

In particular (6.10) holds at zc,. The previous argument established that

log||F2(z)||,4. is subharmonic near z0. This combined with (6.9) and (6.10) es-

tablishes the submean value inequality for log||F(z)||J4;s for small circles centered

at Zq. This gives (6.7).
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To establish (6.8) we select w in Cn so that Tw — v, {Bz} is an interpolation

family in D+, hence we can find G in Hol(D+) with G(zo) = w and ||G(z)|k

constant. Let F(z) = T(G(z)). F is in Hol(D+), F{z0) = v, and by (6.6), ||F(z)|U,

is constant. Thus (6.8) holds.

{Az} is an interpolation family on 5 and equals I2 on I. Thus we may use the

reflection principle to extend this to an interpolation family {Az} on SUZU{z;zG

S} = R. We now define Bz for z in {z;z G 5} by (6.6); \\w\\B, = \\Tw\\l/\ If

Az = ln then Bz so defined will satisfy Bz — lnr. In particular ||w|k is a Banach

space norm. We must now verify that Bz is an interpolation family. If F(z) is in

Hol(Zt) then log||F(«)||B, = log||T(F(z))||^2. Thus log||F(«)||B, is subharmonic.

This is the analog of (6.7) for the {Bz}. We must now establish the analog of

(6.8). Given w in C" and zo in R let v = Tw. Let G be a holomorphic Cn

valued function defined near zo so that G(zo) = v and ||G(z)||a2 is constant near

zo- It is a property of such extremal functions on interpolation families of Z„

spaces that their coordinate functions either vanish identically or not at all. That

is G(z) = (<7i(z),..., gn{z)) and each t/¿ is either nonvanishing or identically zero.

Thus G(z) = T(H(z)) for some holomorphic Cn valued function H. Furthermore

H(z) can be selected so that ZZ(zo) = w. This H(z) is the function required to

establish the analog of (6.8) and the proof is complete.

Although it is clear that the hypotheses of the theorem are unnecessarily restric-

tive, it is not clear what would be the full natural range of applicability of these

ideas. For example, the number 4 in the hypothesis can certainly be replaced by

any number p with 1 < p < oo. If, however, p — 1 is used then the spaces Az will

be ln spaces for r < 1. In that case the theory of complex interpolation of Banach

spaces as outlined in [4] is not available. However (6.7) and (6.8) would still be

valid and some conclusions could be drawn. This leads to the interesting, but still

relatively unexplored, area of complex interpolation of quasi-Banach spaces. An-

other difficulty in generalizing these ideas is related to the special considerations

that were required when certain vectors (or functions) had one or more coordinates

vanish. These correspond to places where the map T is not locally one-to-one and

hence does not have a local univalent inverse. Geometrically we were using the

fact that the unit spheres of the various ln spaces are locally biholomorphically

equivalent away from the subvariety on which the coordinate functions vanish. On

this subvariety the spheres are not smooth and are not locally biholomorphically

equivalent—thus different arguments are needed. The arguments which were used

were particular to lp spaces but most of the details would go through unchanged if

all the {D2} were Banach lattices.
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