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ON THE ARITHMETIC OF PROJECTIVE COORDINATE SYSTEMS

BY

CHRISTIAN HERRMANN1

ABSTRACT. A complete list of subdirectly irreducible modular (Arguesian)

lattices generated by a frame of order n > 4 (n > 3) is given. Also, it is shown

that a modular lattice variety containing the rational projective geometries

cannot be both finitely based and generated by its finite dimensional members.

1. Introduction. Frames were introduced by von Neumann [31] as the abstract

lattice theoretic counterpart of coordinate systems in projective geometry. His

construction of a coordinate ring R = R^ for a complemented modular lattice L

with a frame 0 of order n > 4 extends to modular lattices in general (Artmann

[2], Freese [11]). For n > 3 and lattices which are Arguesian in the sense of

Jónsson [26] the ring construction is a recent achievement of Day and Pickering

[8]. Proceeding towards a coordinatization of L one finds for any subring S of R

join homomorphisms of the submodule lattice L(sS2) into L which come from the

canonical embeddings of S2 into Rn if L = L(nRn). For Arguesian lattices this is

contained in [8], in essence.

For a completely primary and uniserial S these maps extend to a join homo-

morphism of L(sSn) into L. The proof uses the representation of automorphisms

of sSn in Aut(L) for free L—an idea developed by Huhn [23] and Freese [11].

With the dual meet homomorphism and the method of "bounded homomorphisms"

(McKenzie [30] and Wille [32]) one has a new approach to the coordinatization the-

orems for primary lattices—cf. Jónsson and Monk [26].

On the other hand with S = Zpk, the residue class ring of integers modulo pk,

one derives that the subgroup lattice L(Z\) is the only modular (Arguesian if

n = 3) subdirectly irreducible lattice generated by a frame of characteristic pk, p

prime. The case k = 1 has been solved by Freese [11] for n > 4 and by Day [7] for

n = 3. This is a basis for our main result. Let Zpo° denote the quasicyclic (Prüfer)

p-group and Qp the rationals with denominator relatively prime to p.

THEOREM 1.1. The following is a complete list of subdirectly irreducible mod-

ular (Arguesian) lattices generated by a frame of order n > 4 (n > 3):

(i) the (n — I)-dimensional rational projective geometry L(QQn),

(ii) the subgroup lattices L(Z_\), p prime, k < oo,

(iii) the lattices Lc(Zpoo) of closed subgroups of Zp0o, p prime,

(iv) the duals o/(iii), the lattices L(çpQp).
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760 CHRISTIAN HERRMANN

This has been shown in Herrmann and Huhn [20] for lattices in the variety

generated by all lattices of normal subgroups of groups. The generating frame can

be chosen canonically in each instance. An immediate consequence is the following

COROLLARY 1.2. The word problem for finitely presented modular (Arguesian)

lattices generated by a frame of order n > 4 (n > 3) is solvable.

In particular, a lattice relation involving the frame and integers of the coordinate

ring, only, is valid in general if and only if it is valid in all L(Z\). That frame

generated lattices play an important role in all word and classification problems for

finitely generated modular lattices is shown in the following example which follows

from the main result in Herrmann-Kindermann-Wille [21].

COROLLARY 1.3. D2, M3, and the lattices from Theorem 1.1 with n = 3 are

exactly the subdirectly irreducible Arguesian lattices generated by elements a, b < c,

d<e.

Also, each of the lattices in Theorem 1.1 is generated by four elements [17].

Unfortunately, there are subdirectly irreducible subgroup lattices of abelian groups

which are generated by four elements but not by a frame—one of the reasons that

the word problem for the free modular lattices on four generators is unsolvable [18].

As far as Arguesian lattices are concerned the key for a solution might be a suitable

concept of "skew frames". Since notational problems would duplicate, at least, we

avoid a discussion of such in this paper.

Frames and coordinate rings are also inherent in unsolvability results on mod-

ular lattices, only to mention Hutchinson's [24] and Freese's [12] results on word

problems in five generators and Freese's result that the variety of modular lattices

is not generated by its finite members [10]. The latter can be strengthened a little

bit. Let M, Mf, M/d, and Mo denote the lattice varieties generated by all, all

finite, and all finite dimensional modular lattices and all subspace lattices of vector

spaces over Q, respectively.

THEOREM 1.4. A modular lattice variety containing Mr, cannot be both finitely

based and generated by its finite dimensional members.

COROLLARY 1.5.   Neither Mf nor Mfd are finitely based and Mf § Mfa ^ M.

COROLLARY 1.6. The variety of Arguesian lattices is not generated by its finite

dimensional members.

The last corollary answers a question raised by Bjarni Jónsson. For the first

observe that Mo Ç Mf by Herrmann and Huhn [19] and that Mf ^ Mfa by Freese

[10].
As basic references we use Birkhoff [3], Crawley-Dilworth [4], Maeda [28], and

von Neumann [31], for abelian group theory Fuchs [15]. A good introduction to

frames and coordinatization is provided by forthcoming lecture notes of Alan Day

[5].
I am highly indebted to Alan Day for contributing in many ways to this paper.

Also I have to thank András Huhn and Ralph Freese whose seminar notes I used

in rewriting the proof of Theorem 1.4.
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2. Coordinatization by primary rings. Von Neumann [31] introduced a

concept of coordinate system for a modular lattice with 0 and 1: A system <p =

(a¿, Cij\ 1 < i t¿ j < n) of elements of L is a (normalized) n-frame of L if J2 ai — 1,

a3 J2i¿j ai = Oi cij = cjn aicij — Oi ai+ctj = Oi+ßi, and Cik - (ai+ak)(cij+Cjk)-

We write x + y for the join and xy for the meet of x and y. The relations imply for

1/0 that the a¿ are the atoms of a Boolean sublattice 2™ and that 0, a¿, c¿j, a.,,

and ai + aj form a 5-element nondistributive sublattice M3.

Given an (associative) ring with 1 and a free (unital left) Z2-module rM with

basis e¿ (1 < i < n) we get an n-frame of the lattice L(rM) of Z?-submodules

by ai = Rcí, cXJ = Z?(e, — ey). Every n-frame of L(rM) arises in this way, all

are related via automorphisms of rM. If the e¿ are the canonical basis vectors of

M — Rn we speak of the canonical n-frame.

Clearly, any permutation of indices yields an n-frame again.

LEMMA 2.1. Let F describe a connected graph on {l,...,n} and let the ele-

ments at (1 < i < n) and Cij of L with (i,j) € F satisfy the relations of an n-frame

as far as they make sense. Then this system can be extended to an n-frame of L.

PROOF. This is shown by iterated application of the following observation. Let

<p be an n-frame of the interval [0, u] and a, c such that u(a + c) = an and a„, c, a is

a 2-frame of [0,a + c]. Let an+i = a, cnn-ri — ci Cin+i = (a¿ + a)(cm + c) for ¿ < n

and cn+ii — Cin+i for i < n. Then (a¿,c¿j; 1 < i, j < n + 1) is an n + 1-frame of

[0,u + o].

Indeed, we have au = aan = 0 whence oi,... ,an+\ are independent [31, p. 9].

The remaining relations follow with [31, p. 118].    Ü

An equivalent concept is Huhn's [22] diamonds. Following Day and Picker-

ing [8] we call (d\,... ,dn+i) a spanning n-diamond of L if J2ijtj d{ = 1 and

dj J2i^ij k di — 0 for all j / k. If 0 is a 3-frame and i,j, k all distinct then
(ckj,ak,ai,Cij) is a spanning 3-diamond.

As one knows from projective geometry, for a coordinatization one needs n > 4

or Desargues' law. We use Jónsson's [26] lattice theoretic version. A triple x =

(xo, xx, x2) of elements of a lattice is called a triangle and normal if

Z2 = (x0 + x2)(xx +x2).

Two triangles x and y are centrally perspective (CP) if

(zo + 2/o)(zi +Vi) <x2 + y2

and axially perspective (AP) if

(x0 + xi)(yQ + I/I) < (x0 + x2)(y0 + 2/2) + (xi + x2)(yi + y2).

A modular lattice is called Arguesian if every CP pair of triangles is AP. This

implication can be stated as a lattice identity determining a self-dual lattice variety

(Jónsson [27]). In an Arguesian lattice one has that AP implies CP for pairs

of normal triangles. Every lattice of submodules is Arguesian. This extends to

congruence lattices of algebraic structures in a congruence modular variety, Freese

and Jónsson [13].
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A general assumption for this paper is that <j> is an n-frame of the modular lattice

L and either n > 4, or n > 3 and L Arguesian. For i, j, k all distinct let

Rij = Rijrf, = {x G L | ajX — 0, aj + x = ai + aj},

■KijkX = (x + Cjfc)(a¿ + a*,),

x ®ijk y=(ai+ aj)[{x + ak)(cik + a3) + Trjiky],

X eZJk y = {ai+ aj)[ak + {cjk + x)(a3 + nijky)],

x ®ijk y = (ai + aj)(Trzjkx + iTjiky)-

THEOREM 2.2. The Rij are associative rings with zero a^, unit Cij, addition

@ijk> difference Qijk, and multiplication ®¿jfc. These operations do not depend on

k. Moreover, Rij is isomorphic to Rlk and Rkj via ^ijk and iTjik, respectively,.

This is von Neumann [31] for n > 4 and Day-Pickering [8] for n = 3. Just note

that von Neumann uses the opposite multiplication.    D

Also, observe that for L = L(rRu) the map r k-► Z2(e¿ — rej) is an isomorphism

of R onto Rij. The projective isomorphisms -Kijk \ Rij allow us to speak of the

coordinate ring R$ = Rij with 0,1,9,0, ® and write r = r¿¿ G Ri3 for r in R^.

Then the multiplication formula reads (r ® s)ij = (a¿ + aj)(rlk + skj). Where no

confusion with lattice operations is possible we write r + s, r — s and rs. Recall

from Freese [10, Lemma 2.3], that r is invertible in R^, if and only if r^ G Rji and

then

(2.1) l/m = rji,      e Uj = ein

(2.2) rlk + skj =rlk + r®stJ,        sik + rkj = s ®rt] +rkj.

DEFINITION. For a sequence r = (r1,..., rn) in R% let

a*=j2aJ'   ^=r*<*=~[[(aiaj+ri])i  *>=n^*+r^'

In the model L(RRn) one has r¿ = Zü(V ,x rJej - e¿) and r > Rj^r1^. Equality

holds for uniserial R. Namely, let, e.g., r1 G r1R for all i, rl — rlsl. Then

(r-2 + a2)(r3 + a3) consists of all vectors t with tl = xr% = xrV for i ^ 2 and

tl = yrl = yrlsl for i ^ 3, x, y in R. Since xrl — yr1 these are exactly the elements

ofÄ^r^i.

PROPOSITION  2.3.

ai + ak + rt = al +  ] J (a*a* + rjj) = a% +ak + rk

j¥=i,k

and at + ak + r%3 — ai + ak + rkj- lfrk = 0 then r^ = al(ak + rk).

PROOF. By the projective isomorphisms of [0,a£] onto [ak, 1] and [cki, 1] we

have

al + ak + rl = al + (« + rkk + ak)  J] (a*a* + r£.)

=a» + n (°*-aJ-+•i-)=a*+ak + n (°*<°¿+r^)

= a* + Ofc +  ] [ (a*ka*a* + ckl + r£).
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Due to (2.2) we may replace cki + r¿ ■ by cki + rk- yielding the last expression as

<Zj + ak + rk by symmetry. Now, if rk = 0 then

al+rl = al + (a*a*k + a¿) ] J (a*a* + r>zj)

= a*k(al + ak + rt) = a*k(al+ak + rk).    D

In the sequel let S be a unitary subring of R and S^' the submodule of sSn

consisting of all s with sk = 0 for k ^ i,j.

LEMMA 2.4. There is a join homomorphism o of the semilattice of finitely

generated S -submodules of S1^) into the interval [0,a¿ + üj] of L such that aSr =

r-0 for all r in S^,3\

For Arguesian lattices the adjoint meet homomorphism has been considered in §5

of Day-Pickering [8]—even for hyperplanes [0, a*]. For n > 4 the coordinatization

still works for "codimension 2" intervals [0, a*a*]. As a substitute for the Arguesian

law we introduce the maps

aijhx = \{x + ah){a*a*h + cih) + rh]\a*h,        prihx = [(x + rhi)a* + cih]a*h

for distinct i, j, k and r in R^—cf. Artmann [2].

LEMMA 2.5. ar-h is an automorphism of[0,a*h] mapping Sij onto s®rij and

fixing all x with x > aj or x < a*. p,rih is a meet endomorphism of [0,a*h] with

ItrihSik = r ® Sik for k t¿ i, h, PrihX > x for x < a* and fixpoints x > a¿. If r is

invertible prih is an automorphism and ¡J,rihSki = (s/r)ki.

For the proof consider these maps as products of lattice translation maps. Still,

we have to prove Lemma 2.4. First

(     , {aj + ak)[(ak + sIJ)(oJ + tlk) + (ak + ulj)(aJ + vlk)\

= (aj + ak)[ai + (ak + sQ u¿j)(a> + t © vik)\

for i,j, k distinct. This is Lemma 5.1 of [8] for n = 3. For n > 4 let h ^ i,j, k and

apply cx~kvha~-t¡l to the left-hand side. It is both a fixpoint and mapped onto the

right-hand side. Also,

(2.4) ai + (ak + slj)(aj + tlk) > o¿ + (ak + r ® slj)(aJ + r ® tlk),

which is Theorem 5.3 of [8] for n = 3 and follows by application of pT%h to the

left-hand side for n > 4. Recall that for s in S(*'■?') one has

s0 = (a, + a3)[ak + (aj + sîfci)(oî + sJkj)}

by Proposition 2.3. Hence (rs)^ < s¿ by (2.4) and (r 0 s)^ < r^, + a^, by (2.3).

Consequently oil = Y1{T4> I r € E), E a generating set of the S-module U, defines

a join preserving map.    D

From (2.4) and (2.3) we derive

(aj + ak)[tik + (ak + r13)(aj + t 0 r ® slk)}

= [aj + afc)[di + (ak + r^)^ + 0r (g) slk)}

< (aj + ak)[a% + (ak + ci3)(aj + esik)\

= (aj + ak)(ctJ +slk) = Sjk,
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whence

{ak + Tij)(Uk + Sjk) > (ak + n3)(aj + 10 r (g> sik),

and, since both sides are complements of ak in [0, ak + r^],

(2.5) (ofc + rij)(tik + Sjk) = (ak + rij)(aj + tGr®sik),

which is Lemma 10.6 in [31, p. 172] for t = 0.

LEMMA 2.6. There is an n-frame <p* of the dual lattice L* such that a* =

Ylj¿iaj and c*Xj = cXj + a\a*. Moreover, r >-> r*x — rXj + a\a* describes an

isomorphism of the opposite of R$ onto the coordinate ring R^ of L*.

PROOF. That the a* and c* give rise to an n-frame of L* is clear by Lemma

2.1. Let, e.g., j = 2. By modularity, ri2 >-» r2x is a bijection of Zfo onto R2X

matching the zeros. We express the operations on R2*x in terms of L. Using the

isomorphism between [0, ax + a2 + a3] and [aia^aß, 1] we have

r* 0* s2X = a\a*2 + al[c*X3r2X + a*x(s2Xc*X3 + a2a*3)} = a*xa2 + (ax + a2)

x [(ci3 + 02)(»"12 + «3) + {a2 + a3)((«i2 + a3)(ci3 + a2) + ax)}

= ax'a2'+r®(es)X2 = (res)*2X,

since by (2.3),

(a2 + a3)[(si2 + o3)(ci3 + a2) + ax] = (a2 + a3)(cx3 + QsX2) = 0s32.

r* ®* »2i = a\a2 + (r2xc*x3 + 02a3)(s2ic23 + aîa3)

= a\a2 + [(rX2 + a3)(c3X + a2) + ax]

X [(si2 + a3)(ai + (cx2 + a3)(cX3 + a2)) + a2]

= ala? + (07-32 + ax)[(s12 + a3)(ax + ©I23) + a2]

= a*xa2 + (er32 + ax)(sx3 + a2)

= axa2 + (a3 + s® ri2)(si3 + a2)

= a\a2 + s®rX2 = (s® r)2X

follows using (2.5) four times.    D

A key idea in Huhn [23] and Freese [11] was the representation of a linear group

over a prime field in the automorphism group of a modular lattice freely generated

by a frame (of prime characteristic). This works in greater generality. The basis

is the elementary automorphisms of sSn given by cx\,e¿ = e¿ — rej, pqiei = q_1e,-,

alj{ek) — l¿qi{ek) — ek for k ^ i, where r and q are in S and q is invertible. The

rings 5 to be considered are completely primary and uniserial: there is a two-sided

ideal P such that every left or right ideal of S is a power of P. In particular,

Sr — rS for each r and Z3" — 0 for some m. Of course, L has to be free in some

sense. Call F the free resolution of L over <p and S, S a subring of R¿, if F is the

free lattice in the lattice variety generated by L with generating set (¡>ll{rX2 | r G S},

the relations defining an n-frame, and all the relations r © S12 = Í12, t ® sx2 = uX2

where r, s, t, u are in S and r + s — t, rs — u in S. By construction, S is a subring

of the coordinate ring of <p in F, too, and we have a canonical homomorphism of F

into L. If this is an isomorphism we say that tp is free in L over S.
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THEOREM 2.7. Let (j) be free in L over a completely primary and uniserial

S Ç R^. Then there is a homomorphism ip »—> yj<t> °f the automorphism group of

sSn into that of L such that (V"")<£ = Vty(r<¿) for a" r în Sn-

PREVIEW OF PROOF. Since 5 is local, every invertible S-matrix can be trans-

formed into the identity matrix via elementary (Gaussian) transformations. Thus,

every automorphism ip of gS" is a product of elementary ones—cf. [29, Theo-

rem 1.10]. In §4 we define for every elementary ip an automorphism tp^ of L and

show that (2/>r)<*> = Vty(r</>) ror a^ r in S™. Thus, for arbitrary tp one can define

Vv> = Il V^4>) choosing elementary ipi such that ip = T\il>i. Since the r generate L

by hypothesis, V^ does not depend on the choice of the ipi and ip i—» i¡>^ is a group

homomorphism.

THEOREM 2.8. Let S Ç Zü<¿, be completely primary and uniserial. Then there

is a join homomorphism a of L(sSn) into L such that oSr = r^ for all r in Sn.

PROOF. Of course, we may assume <p is free in L over S. We show that for r, a in

5" there are i,j and an automorphism ip such that ipr and rps are in S^,3\ In view

of Lemma 2.4 and Theorem 2.7, and the fact that every submodule of sSn is the

join of finitely many cyclic ones, this suffices for proving that oU = 5Z(r0 I r £ U)

defines a join homomorphism of L(sSn) into L. Indeed, since S is right uniserial

there is an i with rk — rltk for all k. Then with \ = üfe^0^) tne vector r has

all but the ¿th component zero. Similarly, we get j and <p, fixing xr such that tp\s

has fcth component zero for k ^ i,j. rp = <p\ is the desired automorphism.    D

THEOREM 2.9. Let L be subdirectly irreducible and generated by <j> and the sx2

(s G S), S Ç R^, completely primary and uniserial. Then L and L(sSn) are

isomorphic.

PROOF. S and its opposite T are local, artinian, and uniserial. Let a be given

according to Theorem 2.8. By 2.6 and the dual of 2.8 there is a join homomorphism

r of L(rTn) into L* mapping T(ei - re3) onto rjX^. Now, S has the double

annihilator property and the bimodule g S s defines a Morita duality between finitely

generated left and right S-modules—see [1, Exercise 24.10-13]. Identifying right S-

modules with left T-modules one has a dual isomorphism S of L(sSn) onto L(rTn).

Due to the transitive action of the automorphism group on the set of n-frames, we

may assume 6 maps the dual n-frame </>'* associated with the canonical frame <p' of

L(sSn) onto the canonical n-frame of L(rTn), and rjX^- onto T(ei — re3). Then

7 — 6t is a meet homomorphism of L(sSn) into L mapping cp'* onto <p* and rjX^-

onto rjX<j)-. Hence

iai=^ n a7=a% and iriiv=i n a'iriH- = rij<t>-

Thus, one has ax < ^x on the generating set <p U {rXj | r G S} of L(sSn), whence

for all x. Since L and L(sSn) are subdirectly irreducible (see Theorems 6.7 and 6.2

in [26]) and since L is generated by the image of a, either o — 7 is an isomorphism

or ap < ~jq for every prime quotient p/q in L(sSn)—cf. Proposition 1 of the

Appendix. The latter is impossible. Namely, choose k minimal with Pk = 0 and r
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with Sr = Pk~l. Then Se1 + Pk-1e2 covers Sei in L(sSn) but o(Sel+Pk~le2) =

ax + rX2 > ax = -)Sex since ri2 < ax would imply rx2 = ax and r — 0.    D

We say that <¡> has characteristic m if the additive order of 1 in R¿ is m. With

5 = Zpk we have

COROLLARY 2.10. Let L be subdirectly irreducible and generated by <h of char-

acteristic pk, p prime.  Then L is isomorphic to L(Znk).    D

Also, one easily derives the coordinatization theorem of Jónsson and Monk [26]

for primary lattices in the special case that the unit is a join of independent cycles

of equal length.

3. Reduction of frames. In this section we introduce some basic manipula-

tions with frames. Again, let L be a modular lattice with n-frame 4> and coordinate

ring Rij,. For any integer r, we have a corresponding element in R¿ and we may use

the notation r2J G Rij,/,.

LEMMA 3.1. Let k be fixed and uk < ak. Define Ui = Oi(uk + cki) for i ^ k
and u = J2 Ui.  Then

4>u = (uai,ucij\ 1 < i ^ j < n)    and   (f>u = (u + a¿, u + cl3; 1 < i j= j < n)

are n-frames of the interval sublattices [0,u] and [u, 1] of L. For every integer r one

has

(o.lj urij = rij§u,        u -r rij = rij^u,

This stems from §1 in Freese [10]. D We say that cpu arises from <j> by reduction

with uk. This construction is compatible with the projective isomorphisms itij as

the following shows.

LEMMA 3.2. u and the ai generate a distributive sublattice. If uk < vk < ak

then u < v, (<pv)u — 4>u, (4>u)v — <$>v, and (4*u)v = ((pv)u- Moreover,

(3.2) uai = Ui= at(u + qtj) = ai(u3 + qij)    for q = ±1,

(3.3) rij(u + aj) = uri3    for integer r,

(3.4) (x + Cjh)(ai + an) = (x + ucjh)(uai + uah)    for x < u{at + a,).

PROOF. n^(ot | i G Z) = ^2(uí \ i G Z) easily follows from the independence

of the a¿. The next claim is obvious. By (2.1) and (2.2) one has for i,j ^ k

ai(u3 + ql3) = at(uk + c]k + q%3) = a,fuk + ctk + qlk)

= at(uk + clk + (a,, + ak)q,k) = u,,,

at(uk + qlk) -= a%{uk + cik + qkj) = '«,;,

and

ak(Uj + qkj) = ak(aj(uk + qkj) + qkj) = ak(uk + qkj) = uk.

Since a%(u + qtJ) — ut + ai(uj + qtj), this settles (3.2).

Now,

qij(u + aj) = Qij(ui +a3) <ut+ a.j(ui + ql3) < ur + u3

and, by induction,

r © qij(u + aj) = ((rl3 + ah)(clh + a3) + q3h)(u + a3 + ah)(at + a3)

= ((urij + ah)(ucih + aj) + qjh){u + a3)(a% + a3) = r © qlJ4,li.
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Finally,

(x + Cjh)(ai + ah) = (x + Cjh(ai + Cjh(ai + Uj + ah)))(ai + ah)

= (x-VUCjh)(Ui + Uh).      D

Two kinds of reductions are of particular interest. For r in R let f and the

reduced frame <f>r arise from axrx2 and r arise from ai(ci2 + f2i). In the model

L(RRn) we have f = {s | sr = 0} and f = Rnr.

LEMMA 3.3.   Letr,s be in R.  Then

(3.5) rlj4>r = al4>r = fai = a¿r¿j = (fai)^,    and   f <fs,

(3.6) s ®r¿j < a¿ + fOj-,    sf <f,     (ra^^sr — fal + sf,

(3.7) Sij(f + ai) < irai + raj,

(3.8) raj = (o¿ + rX3)aj = (a, + QrtJ)a3 = ^roj,

(3.9) f < 3   ¿/ a¿f = üíS for some i,

(3.10) s0 < f   ¿/ s^' G Rr for all j.

Proof.

and

afs = ai(rik + skl) > Ojrife = ajf

s ® r¿j < (a¿ + a3)(ai + ak + rkj) = a¿ + ra3.

The remaining claims of (3.5) and (3.6) follow with (3.1) and (3.4). Next,

sij(al + f) < (sij + r3k)(al + raj) = (si3 + rjk)al + fa3 = sral + raj.

(3.8) is a consequence of Lemma 2.4; (3.9) follows from (3.4).  (3.10) follows with

(3.6), Lemma 3.2, and the independence of the a¿.    D

(3.1) implies

COROLLARY 3.4. If r -£ 0 is an integer than <pr and cpT have characteristic

dividing r.    D

LEMMA 3.5. Let L be generated by cp and the sX2 (s E S), S a subring of R$.

If S has a proper central idempotent, then L has a proper direct decomposition.

This is taken from Day [6]. We just give a proof for the case that L is generated

by (p. Let e be an idempotent, u2 = a2e~, and v2 = a2\ — e. Then u2 + v2 >

a2(c\2 + oi) = a2 by Lemma 2.4. Also, by definition of addition,

a\ + 1 © ei2 = (ai + a2)[(cx2 + a3)(cX3 + a2) + ©e32 + ax]

= (ai + a2) (c23 + ax+ ©e32).

Since ei2 < ei3 + e32 by idempotency, it follows that

u2v2 < o2(oi + ei3 + e32) (ax + 0l23 + e32)

= a2 (e32 + 0l23(ai + ei3 + e32))

= a2 (e32 + ©l23e32) = a2e32 = 0;

cf.    [14].   Hence u and v decompose the frame and are complementary central

elements of L—cf. [20, 2.2].    D

We conclude this section with more details about the expressions s<¿,, where

a G Sn, 5 a subring of R$.
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LEMMA 3.6. Z/n > 4 and the axs (s in S, s ^ 0) generate a distributive

sublattice of L, then

s¿ = (o, + a3 + Sj) ] J (ofc + 8fc).
kjti.j

PROOF. In view of the projective isomorphisms 7Ti¿ we may assume 2 = 1

without loss of generality. Observe that aiO = ax. Now, by symmetry and

Proposition 2.3 it suffices to show X = ni</c(ai + afc + si) < ax + si. Since

ak + 8i = rii<^fc(aîaj + sij) we have

X < ax + (a2 + 8i)(oi + a3 + sx)(ax + 04+81'

a1 + l[(ala;+s3x.
2<J

ax+      I  {a*xa*j + síj)
i<?¥3

ax +       [  (a*xa* + s-

1<J#4

= ax + (a2 + 81) ax Yl{a*xa* + s3lj) + a3 + ax
3<3

ax       [   (a\a* + sJxj) + a4 + sx

2<j¥4

< ax + (a2 + Si)

= ax + {a2 + si)

= ax + (a2 + si)

} a\s\3 +a\a2 + s

3<J

aisJXj + a\a2 + s2v¿

a\a*2 + s\2 + Yl ais3Xj a1sJXj + a\a*2 + s
2
12

3<i ,2<j'5¿4

aî«2+si2+n ai5ij 1 n aish+aisi2
3<j \2<3í¿4

<ai +J](aîa*+s^)
2<i

a\a"2 + s\2 + Y[ axs3xj + axs\2

2<?

= ax + 81.    D

This short proof is due to Alan Day.

LEMMA 3.7. If S Ç R$ is right uniserial then the sax (s G S) form a chain in
L.

PROOF. Consider the dual lattice L* with frame (p*. By Lemma 2.6 its coordi-

nate ring is Rop. Hence, £>op Ç Rop and Lemma 2.4 establishes an order preserving

map Sopr* i-> r2xa2 + a\ of the lattice of left ideals of Sop into L*. In particular,

the r2la2 + a*x — rx2a\ + a*x (r G S) form a chain and so do the r^ai = fax.    D

LEMMA 3.8. If n — 3, L Arguesian, and sk invertible in R$, then s^, = tk =

(ot + 8^(0^ + s3), where k ^ i ^ j ^ k and th = (-l/sk)sh.
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PROOF. By (2.4) we have ah + s/j = a/, +1/,, whence s^ = t¿. Thus we may

consider k = 1, s1 = — 1, only. Then by (2.5) we get

[a2 + (o3 + ©l2i)(ai + 40] [fl3 + {a2 + Gl3i)(ai + s232)}

= [a2 + (03 + eli2)(a2 + 8Î3)] [*3 + (a2 + eii3)(a3 + s?2)]

= (a2 + 5i3)(a3 + s?2) = 81.    D

4. Representation of automorphisms. Returning to the proof of Theorem

2.7 we represent the elementary automorphisms a£ • and pqi of sSn given by Q¿,e¿ =

e¿ — rej, i¿qtet — q~xei, and ay(efc) = pqi(ek) = efc for k ^ i. For this section we

assume L is freely generated by <p over S Ç_ R$ maybe under additional relations

of the form s < t with integer s,t.

THEOREM 4.1. For all i ^ j and r in S there is an automorphism a£-. of

L with fixpoints a3 + Sfc and aTi3^ak = (ar-s)k for s in Sn and k 7^ j. Moreover,

Qi20s2i = (_s> 1 + sr, 0,..., O)^ and s is a fixpoint if s E S with sr E Rs.

PROOF. Let i = 1, j = 2. Consider o', = ri2, c'12 = r © li2, a'k = Ofe, and

c'fc; = cki for k, I > 1. By Lemma 2.1 these elements give rise to an n-frame cp' of

L. Fix k, I > 1. We claim that the coordinate rings Rkl¿ and Rkip coincide. This

is obvious for the underlying sets, zero, and unit. For n > 4 we use the fact that

addition and multiplication can be defined without the index 1. Now, let n = 3.

The spanning 3-diamonds (x,y,z,t) and (x,y,z,t), with z = a3, t = c32, x = cx2,

2/ = Oi, x = c'j2, y = a'x, yield the same coordinate domain D = Z?32(¿, = R^^

in the Day-Pickering construction [8]. Moreover, the hypotheses of Lemmas 3.4

and 3.7 in [8] are satisfied, which means both 3-diamonds induce the same ring

structure on D in the Day-Pickering version. In view of Lemmas 3.5 and 3.14 of

[8] this carries over to the von Neumann version. Similarly, for Z?23(¿, and Z?23^'

consider z = a2, t = c32, x = ci3, y = ax, x = c'13, and y = a'x. Since

c'i3 = (cía + c23)(flí + 03) = (r ® !i2 + c23)(ri2 + a3)

= [{ru + a3)(ci3 + a2) + c23)(rl2 + a3) = (rx2 + a3)(ci3 + a2),

by definition of addition the independence results for the ring structure given in A.

Day [5, Part III] apply.

Also for n = 3, associating with <p and <p' dual 3-frames <p* and <p'* as in Lemma

2.6 we have the coordinate rings RX3^- and R134," coincide. Namely, c'13 = ci3 +

02 = cX3, a'x — a2 + a3 = a*x, a3 = rX2 + a2 = a\ + a2 = a3, a2 = r2X, and

c2X — r © 121. Thus, the claim follows from the above by duality and symmetry.

Finally, sp < t^ for each of the additional relations s < t. This is a consequence

of (3.9) and s230- = s23a3 < (t32 + a3)a2 = (t32^ + a'3)a'2.

Now, in view of Theorem 2.2 (and (2.6)) L is freely generated by cp and the ski$

(and s*x3(j) if n = 3), with s G S, k, I > 1, subject to the frame relations, the relations

of the rings Ski$ (and SX3^,-), the relations given by the canonical isomorphisms

between them, and the additional relations. These relations are satisfied by cp'

and sk[j, = Sfe¡0' (and s*i3, = s^,,) too, as we just showed. Hence there is an

endomorphism a — a\2, of L mapping <f> onto cp' and fixing the ski$ (and s*^ if

n = 3) for s in S and k, I > 1. In particular, aax = rx2 and qci2 = r © li2.

We claim that a2 + skx is a fixpoint for k > 2. For n = 3 this is so, since

s13 = (s21c13 + a2a3)c12 + flla3 = (©«32 + <*! ) (ci2 + O3) + a2 = S31 + 02,
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using (2.5) twice. For n > 4 observe that the automorphism ot\2h, h ^ k, of Lemma

2.5 coincides with a on the sublattice generated by ax, cx2, a2, and the sk2 (s E S)

since it does so on the generators. It follows that

ask = (a*lal + s1kl)(r12+a*xa2al + s2k2)   J|  (a3ak + s3kj) = (aa)k

2<3¿k

for fc > 2 since

a*xa2a*k + (a2 + skx)(rx2 + s2k2) = a*xa2a*k + (a2 + slx)(ax + s2 © s1 © rfc2)

= Kofc + 4i)(a2afc + s2 © s1 © rfc2)

by (2.5). In particular, a2 + Sfc is a fixpoint. From s12 = (ax + a2)(cifc + sk2) one

derives
QSi2 = (ai + a2) [(a2 + cfci) (ax + ©rfc2) + sk2]

= (ai + a2)(s © rfc2 + Cfci) = s © r12

by (2.3). Since cp U Si2 generates L, it is clear now that aX2r, is the inverse auto-

morphism. From sxk = (sx2 + c2fc)(oi + ak) one gets

asxk = (s © n2 + c2fc)(ri2 + afc) = (a2 + sifc)(na + ak)

by (2.2) and (2.5). It follows that a2 + sxk is a fixpoint,

osi = (a\a2 + s\2+rx2) W_{a*xa*k + skxk) = (qs)i,

fc>2

and a2 + si is a fixpoint too.

Obviously, the sa¿ = ai(aj + Sj») are fixed under a for s in S, i ^ 1. If sr G Zr!s

we derive with Lemma 2.4,

a(sai + sa2) = q((oi + a2)(a3 + «3i)) + «a2

= (ai + o2)[a3 + (a! + s ig) r32)(a2 + s3i)] + (ai + o2)(a3 + s32)

= soi + sa2.

Hence, s = J2 sai is a fixpoint.

Finally, using (2.5) twice one has

03 + s2i = (ai + c32)(o3 + s2i) + a3=a3 + (ax + c32) (a2 + ©s3i)

= o3 + (a2 + ©s3i) (©r12 + 1 © s © r32),

whence
as21 = a((oi + a2)(a3 + s2J))

= (ai +ö2)[a3 + (a2 + ©S3i)(ai + l©s©r32)].    D

THEOREM 4.2. For all i and invertible q in S Ç R^ there is an automorphism

Hqi<t> of L with pqi^slk = q® sik, pqi$sk = (/vs)fc for k / ¿. Moreover, if n = 3

and L Arguesian then a, + st ¿s a fixpoint and pqi^s^, = (pqis)<¡>-

PROOF. Let ¿ = 1. As in the proof of Theorem 4.1 consider a new frame cp'

with a[ = aj, c'12 = <7i2, and c'kl — cki for k,l > 1. Indeed, by (2.1) this yields a

frame and, as before, Rki$ coincides with Rki$> for fc,/ > 1 and the relations s < t

are transferred from cp to </>'. Hence, there exists an endomorphism /i = pqi$ of L

mapping 0 onto cp' and fixing the sk¡ for s in 5, k, I > 1.
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For k > 2 and s in S one has

AiSifc = p((cX2 + s2k)(ax + cifc)) = (çi2 + s2fc)(ai + a3) = q ® sxk

and

lisn = p((sx3 + c32)(ai + o2)) = (q ® sX3 + c32)(o! + o2) = q ® sx2.

Thus, px/q x¿ is the inverse of p.. Moreover, by (2.1)

liSki = p((ski + ci;)(ai + ak)) = (ski + qu){ai + ak)

= (skl + l/ou)(ai + ak) = s/qkx.

Hence, psk — (ps)k for k ^ 1. Finally, if n = 3 then oi + si is a fixpoint by (2.4)

and one concludes that ps<p = (ps)¿.    D

PROOF OF THEOREM 2.7. If n < 4 then by Lemmas 3.5 and 3.6 one has

s,¿ = (o¿ + aj + Si) Y[k¿i¿{ak + Sfc) for all s in Sn, whence o^s = (a^s)^ and

pqi</>S4> = (p,qis)fi by Theorems 4.1 and 4.2. Let n = 3 and L Arguesian. One has

8<#. = <?tfc, choosing k such that sk = —q, tk = —1, and sl = qt% for all i—which is

possible since 5 is uniserial. Namely, by (3.10) s$ < q, and by (2.4) o¿ + s¿ < a¿ + t¿.

Thus in view of Lemma 3.8 it suffices to show q(aj + Sj) = q(a3 + tj) for j ^ k. By

Theorem 4.1 the transformation akh (i ^ j, k) reduces this to

q(a3 + eq3k) = q{a3 + skk) = q(a3 + tkk) = q(a3 + afc),

which is valid, obviously, by (3.8).

Again, consider a = a\2 only. By Theorrem 4.1 aq = q and, for k ^ 2,

as^, = qatk — q(at)k = (as)^. Now, assume k = 2 is the only possible choice,

in particular, t1 is not invertible. Since S is local 1 + ixr has an inverse u. Applica-

tion of a23(p to the instance (a3+u®t2X)(a2+r®tl3) = (o3+u©í21)(ai+u©í3Qí23)

of (2.5) yields

(a3 + U® ¿2l)(r12 + Í33) = (û3 + u ® i2i)(ai +u® i23)

since

Q230(ri2 + i23) = (a2 +r®t3x3)(a3 +rX2) + a2 =a2+r®t3X3

by Theorem 4.1. It follows that

ot2 = [03 + (a2 + ©Í31) (ai + U23)] {ri2 + 43) = (ut)2

with (2.1) and (2.5). Consequently, as$ = q(utl,—l,ut3)2 — (as)^. The /¿'s have

already been dealt with in Theorem 4.2.    D

Finally, we have completed the proofs for the claims of §2. In particular, from

Corollaries 2.10, 3.4 and Lemma 3.5 we get

COROLLARY 4.3. Let L be generated by an n-frame of characteristic m/0,

e.g. by a reduced frame cpm. Then L is a subdirect product of lattices L(Z\) with

pk dividing m, p prime, and the image of the generating frame being canonical.    G

THEOREM 4.4. Let L be freely generated by an n-frame cp subject to all relations

s <t, s, t > 0 integers. Then Z is a subring of R$ and there is a homomorphism

■0 l~> ip<t> of the automorphism group GL(n, Z) of Zn into that of L such that i¡}^,s^ =
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(ips)^, for each s in Zn with sx,...,sn relatively prime.   Moreover, all s and s

(s E Z) are fixpoints of ip$.

PROOF. Of course, Z?0 has characteristic 0 and contains Z since L(qQ") is a

homomorphic image of L. Again, it suffices to consider the elementary maps pqi

and a\j. Here, q = ±1 and because of symmetry and the fact that o£ ■ is a power of

a\j we have to deal with a = a\2 only. That s and s are fixpoints of p-n is obvious

by (3.5) and (3.8). Also as = s by Theorem 4.1 and q(sOj) = a(sijüi) = sai for

i ^ 1. Since a(sax) = a(ax(sa2 + 0li2)) = cx2(sa2 +ax) = scX2 by (3.2) and (3.3),

we get as = s by (3.1).

The case n > 4 is settled by Theorems 4.1 and 4.2 if we can apply Lemma 3.6,

i.e. if the sai (s G Z, s ^ 0) generate a distributive sublattice of L. Indeed, by

(3.5) any finite collection belongs to the interval [0, üax] of the sublattice generated

by cpu, u t¿ 0 a common multiple of the associated integers, and this interval is

distributive in view of Corollary 4.3.

Now let us deal with n = 3 and L Arguesian. Theorem 4.2 tells all about

\iqi. Recall that, e.g., (-1,8, t) = (l,-s,-i) = (a3 + si2)(o2 + íi3), (0,s,i) =

(a2 + ei3)(ai + (-l,s,i)), and ax + (0, s,t) = ax + (-l,s, i) by Lemma 3.8 and

Proposition 2.3—we omit the subscript cp where no confusion is possible. Now, for

fixed r,s and t in Z let A = ci2 + (-l, s+l,i), B = a2 + (r, 0, t), C = a3 + (r, s — r, 0),

and D = ax + (0, s — r, t). Then (a{r, s, t))^ = DBC. On the other hand we show

aB = B whence a(r, s, t)$ — ABC by Theorem 4.1. Thus, we have to show

ABC = DBC for r, s, t relatively prime. We break the calculation into a series of

steps.

(4.1) aB = B.

PROOF. Let X = (cx2 + i23)(<X3 + (r,-r - 1,0)). By Theorem 4.1 one has

aB — a2 + X. The inequality X < B is the CP-statement for the normal triangles

a3i *23i (r, —1, t) and (r, —r— 1, —1), ci2, a2. Since L is Arguesian it suffices to derive

the AP-statement, which is a consequence of Y < ax + (03 + r2i)(ii2 + r3i), where

Y — (a2 +03)(ci2 + (r, —r— 1, —1)). Since a^^Y = r32 the latter is obtained from

a3 < ax + r3i < ax + (c32 + r2i)(a2 + r3i) by the transformation a32.

Consequently a2 + X < B. Equality follows since both sides are complements of

a2 + a3 in [(a2 + o3)S, a2 + a3 + r2i]. Indeed, Proposition 2.3 yields a2+a3 + X =

a2 + a3 + r2i, and by (3.3) one has

(a2 +a3)B = a2 + t23(a3 +r2i(o2 + a3)) = a2 +i23^>r.

By Corollary 4.3, evaluating X over cpr we have (r,-r - l,0)^r = a2$r, whence

^4>r > Í23<K and °2 + ¿230,. <a2+X.

(4.2) (at + sk3)(ak + sl3) = (eUk + a3) (ak + sl3) + sak.

PROOF. Let i = 1, j = 2, k = 3. Both sides of the identity are complements of 03

in [sa3,a3+si2]. Hence by (2.5) it suffices to show ax +s32 > (s©l13+c23)(a3+si2).

This is CP for the normal triangles s©li3,a3, S32 and C23,si2)Oi- We have to prove

AP which is S13 < sa2 + (s32 + s 0 li3)(ûi + C23) and reduces to 01 < X with

X = sa2 + (s32 + ©I13) (©S13 + c23) via the transformation ax3. But, by (2.2)

and (3.8),

X = sa2 + (©si2 + ©li3)(©si2 + o23) > (ax + ©si2)a2 + ©s12 >ax.
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(4.3) AC < D + ëtX3.

PROOF. This is CP for the normal triangles C12, (r, s - r, -1), ax and (-1, s +

l,í),a3, (-í,s - r,t) + sí 13. AP is implied by X < Y, where

X = (ci2 + (r,s- r, -l))(o3 + s © 112)

and

Y = (ax + s © r32)(a3 + s © rx2) + sax + a2

—since 03 + SÍ13 = 03 + sai by (3.1). Now, by Theorem 4.1

a~xX = (ai + (r, s, -l))(a3 + sx2) = (ai+ s32)(a3 + si2),

whence X = (-l,s+ 1,-1) + sai by (4.2). Thus, by (4.2), Lemma 3.1, and (2.1)

Y > ©Ii3 + a2 + sai >X.

(4.4) (01 + (0, s + 1, í))(o3 + (-r - 2, s + 1,0)) < cX2 + axsTl + (-1, s - r, i).

PROOF. This is CP for the normal triangles ax,(-r - 2,s + 1,-1),Ci2 and

(-l,s+l, f),a3, (-l,s—r, t)+a2s + 1—use (3.1). AP is a consequence of X < Y+Z,

where X = (-l,s + 1,-1), Y = (ax + a2)((-l,s + l,t) + (-1,3 - r,t)), and

Z = (a3 + s © ri2)(ci2 + (-r - 2, s + 1, -1)). Now, by Theorems 4.1 and (4.2)

a~lZ = (a3+s©r©l12)(a1 + (-r-2,s-r- 1,-1))

= (a3 + s © r 0 li2)(oi +sere 132)

= (-1,8 - r - 1, -1) + a3(s - r - 1)~.

Therefore, a~x~s transforms X <Y + Z into

0li3 < (ai + o2)(ii3 + (-1, -r - 1,0) + (-1, -r ~ !- -1) + a3(« - r - 1)~,

which is an easy consequence of modularity.

(4.5) (ai + o2)((-l,s + l,i) + (r,-l,f))

< (ai + a2)((-l, -1, -1) + (-r - 2, s + 1, -1)) + s © l12í.

PROOF. In view of (2.3) this is a consequence of CP for the normal triangles

o2, (—l,s+ l,f), (-l,s+ 1, -1) + s© I12Í and ax, (r, —l,t), (r, — 1, -1). Due to the

fact that a2 + s © I12Í — a2 + toi by (3.1), and due to (4.2), AP follows from

(-1,-1,t) +tax < (-1,-1,-1) + toi + X, where

X = (03 + s © li2)((-l,s + 1, -1) + 02 + ii3)(a3 + r2i)((r, -1, -1) + <n + i23)-

Now X > Y — Ü3 (a2 + QI13 + Í13) (ax + ©123 + i23) and the transformation a%x

maps (-1, —1, -1) + Y onto

© I23 + a3 (cn + ÖI13 + Í13) {a 1 + ©123 + Í23)

= (o3 + ©123) (ci2 + ©I23 + ¿23) (01 + ©I23 + Í23) > Í33,

the image of (-1,-1, t)—use (2.1) and (2.2)!

(4.6) AB<D + F + a2(ts + t)~    for F = (01 + i23)(-l,s + l,i).

PROOF. This is the CP-statement for the normal triangles Ci2,a2, (-1, s-r,t) +

ci2(ís+í)~ and (-l,3+l,i),(r,-l,i),ai+F. By (4.5) and (4.4) the AP-statement

is a consequence of

(x0 + xi)(y0 + 2/1) + s© l12i < (a2 +tl3)(al + t23) + (x0 + x2){y2 +}jo).
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where x0 = ax, xx = a2, x2 = (-l,s + l,t), y0 = {-r - 2, s + 1,-1), 2/1 =

(-1, -1, -1), and 2/2 = a3. Now,

{a2 + íi3)(ai + ¿23) = (-1, -1, t) + toi + to2

= {Vi + V2){xi + x2) + t(ax + a2)

by (4.2). Hence, it suffices to verify that x and y are axially perspective. But, the

CP-statement for x and y is (ax + sffil32)(a2 + ©li3) < i3+s©li2, a consequence

of (2.5).

(4.7) ù(ai + Sj) < vat + s^v    for us1s2s3 dividing v.

PROOF. Let¿= 1, s = (r,s,i). By (3.5) wehaveai(©Si2+U23a2) < ai—su < i.

Application of as yields Si2(ai +a3 + ü) = Si2(ai +^2302) < v since v is a fixpoint.

Similarly, ¿13(01 + a2 + Ü) <v. Therefore one has

ü(ax + (-1, s, t)) < v[ax + (03 + vsi2)(a2 + vtX3)}

= v[ax + (va3 + vsx2)(va2 + vtX3)} = vax + (-1,8,*)^.

(4.8) F<D + va2    for u = íí(s + l)(s + 2) ^ 0.

PROOF. By (4.2) we have

F = (a2 + i13) (a3 + ©I12 + ia2) (a3 + s © 112)

= (02 + Í13) (as + (eii2 + ta2) s © I12).

For u = t(s + 2) it follows that

aF = (a2 + f-i3)(a3 + (ax + to2)s © 2i2) < (a2 + íi3)(o3 + üax + to2)

= ¿13(03 + wax) + to2 = -u¿i3 + ta2 < ü

by (3.7), (3.8), and (3.5). Consequently, by (4.7), F = F¿v and by Corollary 4.3 it

suffices to verify F < D + va2 in the lattices L(Z\), pk dividing v. But in such,

D + va2 = D + a2 = 01 + a2 + tx3 > F.

(4.9) BC7 < D + fa3 + G   for G = (a2 + tX3)(r, s - r,-l).

PROOF. This is CP for the normal triangles a2, (r, s-r, -1), ( —l,s —r, f)+Gand

(r,-l,i),03,ai+fa3. Now, (a2+íi3)(ai+fo3 + í23) > fa2 by (3.1). Hence, in view

of (4.2), AP for these triangles is a consequence of AP for (r, s — r, —1), o2, (—1, s —

r,t) and ai, (-1,-1, -l),a3. But, here CP is (ai+s©r32)(a2 + ©li3) < a3 + sQrX2,

which follows from (2.5).

(4.10) G<D + üa3    foTU = rt-l.

PROOF. By Theorem 4.1 we have

<Xi~3{r3ih3) =ai(r,0,u) = ax(a2 + r2X(üa2 + ax)) < üax,

whence G < {a2 + ù(ax + a3))(a\ + s © r32) < ü. It follows that

G < üax + üs © r32 < D$u + ua3 < D + üa3.

(4.11) a(r,s,t)<(r,s-r,t)    implies    a(—r,—s,t)<(—r,r — s,t).
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PROOF. One has a/i_i3 = /¿-i3a, since by Theorems 4.1 and 4.2 this is the

case on a generating subset of cp. Therefore, one gets with Lemma 3.8

a(-r,-s,t) = ap-i3(r,s,t) = p-X3a(r,s,t) < H-13(r,s-r,t) = (-r,r - s,t).

(4.12) a(r,—s,t)<(r,—s — r,t)    implies    a~l(r,s,t) < (r,s + r,t).

PROOF. Due to Theorem 4.1 and (4.1) the first inequality is

(ci2 + (-1,1 - s, t))B(a3 + (r, -s - r, 0)) < (r, -s - r, t)

and the second is

(©li2 + (-1,s - 1, t)) B(a3 + (r,s + r,0)) <(r,s + r, t).

The automorphism p-X2 from Theorem 4.2 transforms one into the other.

(4-13) a?j>M < {a¡jS),p

for e = ±1 and relatively prime s1^2^3 with (a) s3 odd, (b) sfc even, or (c) s3 = 0

mod 4.

PROOF. Because of symmetry and (4.12) it suffices to consider i = 1, j = 2,

and e = 1. Let s = (r, s, t). By Theorem 4.1 and (4.1) one has a(r, s, t) — ABC and

(r, s - r,t) = DBC. For t — 0, ±1 the claim follows immediately from Proposition

2.3 and Theorem 4.1. If r = 0 then B < a2 + 03 and AB < D is a consequence of

(2.3). Thus, one may assume t ^ 0, ±1, r/0, and s > 0—in view of (4.11). (4.3),

(4.5), (4.9), and (4.10) jointly imply ABC <D + X, where

X = (D + F + qa2)(D + sa3)(üa3 + fa3)

with q = (s + l)i 7^ 0 and it = rt - 1 ^ 0. It suffices to show X < D. Recall that

F < D + ¿a2 with u = qt(s + 2) 5¿ 0 by (4.7). In particular, for r = s it follows

that D + X < D + 02(1) + 03) < Z) + 02(^1 + 03) = D. Thus, assume s - r ^ 0.

Then with (3.5) and (4.7) one derives X < X$w for a suitable w ^ 0—observe that

X = (D + F + (702)(ña3 + fa3) if s = 0! Hence in view of Corollary 4.3 it suffices

to check X < D in the lattices L(Z3k).

Now, if pfs, then s is invertible in Zpk, whence s = 0. Thus, suppose p \ s. If

p I í then p-\u and p-fr since r, s,t are relatively prime and ù = f = 0 follows. If

pfi and p t¿ 2 then pfi; and v = 0. This leaves us to consider the case p = 2,

s = 0 mod 4 and í odd. Here, one has q = 0 and it suffices to show F < D. But

Í1 consists of the triplets (x, y, z) of elements in Z2k satisfying z = —ty = -tx and

y = -(s + l)x. Since t is invertible in Z2k it follows that x = y and (s + 2)x = 0

for any such. Hence one has F < F¿s+2 and it suffices to verify F < D for lattices

L(Z2m) with 2m dividing s + 2. Since 4 | s by hypothesis, one gets m = 1 and

F = Z2(ex +e2+ e3) < Z2ex + Z2(e2 + e3) = D, finally.

(4.14) o12 = a32f aex3af32aX3e    if ef = 1.

PROOF. This is easily checked on a suitable generating subset of cp by means of

Theorem 4.1.

(4.15) aelJ(j)(s^) < (ael}s)^    for e = ±1 and relatively prime sx,s2,s3.

PROOF. By symmetry, (4.11), and (4.13) it suffices to consider i — I, j - 2,

e—\,t odd, s = 2 mod4, and the following two cases where 8 = (r, s, i). Case I. r



77G CHRISTIAN HERRMANN

is even. Case IL r is odd. Choose e = — 1 in Case I and e such that t + er = 2 mod 4

in Case II. In both cases choose / such that ef = 1. Then by (4.14) and (4.13) one

has

«i2(r, s, f) = ot32faex3af32a^3(r, s, t) < a32f aex3af32(r, s, t + er)

< a32aeX3(r,s~r- ft,t + er) < a32f(r,s - r - ft,t) < (r,s-r,t).

Hereby, in Case I we apply (b), (b), (a), (a) and in Case II we apply (a), Case I,

(b), (c) observing s — r — ft = 0 mod4.

PROOF   OF   THEOREM   4.4. By  (4.15) one derives al3¿(s¿)   <   (al3s)^,  =

aij<t>ai~j]/>{ai38) ^ aú>(s)i whence equality.    D

The group GL(n, Z) operates on L(çQn) naturally. In particular, for each k it

operates transitively on the set of subspaces of dimension k.

LEMMA 4.5. There is an order preserving map k of L(qQn) into L, the lattice

freely generated by an n-frame with s < f (r, s > 0 integer), such that tp^nU = KipU

for all U in L(çQn) and ip in GL(n, Z) and, moreover, K(J2t<k Qe%) = Yli<k a¿-

PROOF. Let trU consist of all s in Zn belonging to U with relatively prime

coefficients. We claim that kU = J2{s4> I s e 7r^) exists and is mapped onto

Y^i<k ai under ^4, if TpU — J2i<k Qei- lndeed, for each s in itU we have, by

Theorem 4.4, ip^s^, = t«^ with t3 = 0 for j > k, whence tp^s^ < Yli<k a* by Propo-

sition 2.3. On the other hand ip~1ei E nU for i < k, whence ntpU = J^i<k ai =

^(^s^, | s G ttU). Therefore, kU exists. The compatibility with arbitrary ip

follows from Theorem 4.4 immediately.    D

5. Frames of characteristic 0. In this section let L be generated by an

n-frame cp. If ¡p is a homomorphism of L onto a lattice freely generated by an

n-frame of characteristic m/0 then by Corollary 4.3 the restrictions of <p to the

sublattices (cpm) and (cpm) are isomorphisms and their inverses provide the lower

and upper bounds for preimages under ¡p. Since frames are projective configurations

for modular lattices (Huhn [22]) we have that lattices generated by n-frames of

finite characteristic m are bounded homomorphic images of free lattices, splitting,

and have a finite projective cover—the lattice freely generated by an n-frame of

characteristic m. Of course, we refer to the variety of modular lattices—Arguesian

for n = 3.

LEMMA 5.1. For each k and prime p there is a subdirect decomposition of L

into lattices L(Znl), I < k, and a lattice L' with image cp' of cp such that (cp' k) is a

homomorphic image of L(Z\).

PROOF BY INDUCTION ON k. In the inductive step k - 1 ^ k, let m = pk~l.

We may assume L is freely generated by cp such that (cpm) = S is isomorphic to

L(Zrfn). Let M = (cppk). Then by (3.5) S is a sublattice of M and there is an

endomorphism of L onto M with <px < x for all x in L. In view of Corollary 4.3 M

is a subdirect product of S and L(Z\). Let 7Ti and 7r2 be the associated projections,

9 the kernel of irX(p. By the above, the 0-classes are bounded by maps a = ids and

7. Let ip be the congruence generated by the quotients crx/ax^y where x/y is a

prime quotient in 5. then 6f)ip = id¿—cf. [32] and Proposition A.l.

To see that this yields the subdirect decomposition looked for, we only have to

verify M ftp | M = L(Z^k). Now, M/9 \ M = S and M is a subdirect product of
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two factors only. Hence it suffices to show that ip \ M is nontrivial. Let x/y be a

prime quotient in S. o and ip-/ are the bound maps for 7i"i whence ax covers ip^yax

in M. On the other hand rrx > iyox > p^yox, whence ^yox = p^yox, providing

a proper quotient in vj | M.    D

LEMMA 5.2.   The following are equivalent for given L:

(i)  L has no subdirect factor L(Z\), p prime, k < oo.

(ii)  L satisfies all relations f <s, r, s > 0 integer.

(hi)   (cpm) Q L is a homomorphic image of L(Zm) for all m > 0.

PROOF, (ii) implies (i), obviously. Assume (i) and let m = f] pki the prime

factor decomposition of m.  Then {cp t¿) is a homomorphic image of L(Znk.) and

(cpm) of L(Zm) by Lemma 5.1 and 3.5. Finally, assuming (hi), let m = rs. Then

f <s holds in (cpm) and, by (3.5), in L too.    G

LEMMA 5.3. If L satisfies f = 0 and f = 1 for allr > 0 i/ien L ¿s a homomor-

phic image of L(QQn).

PROOF. Let L be subdirectly irreducible. By (2.1) all integers are invertible in

R and we can apply Theorem 2.9 to the subring S = Q of R$.    D

Let T denote the direct sum of the groups Zp<=o considered as a subgroup of the

unit circle and Lc(Tn) the lattice of closed subgroups of Tn. Recall that Lc(Tn)

is dually isomorphic to L(Zn). In particular, it is generated by its canonical frame

cP'.

LEMMA 5.4. Let cp satisfy f < s for all r, s > 0 and let L be embedded into its

ideal lattice I(L). Let u2 be the ideal generated by all elements a2f (r > 0), and

cpu the associated reduced frame. Then u = ^ f and the sublattice (cpu) of I(L)

generated by cpu is a homomorphic image of Lc(Tn). Moreover, the up = ^2k pk

are independent central elements in the sublattice they generate together with cpu

andu = J2P up-

PROOF. The first claim is obvious. Now the subgroup m of Tn consists of all

elements of order dividing m and is isomorphic to Zm. By Lemma 5.2 we have a

homomorphism am of the interval [0, m] of Lc(Tn) into L mapping the generating

frame cp'm onto cpm- In view of (3.1) and (3.5) om coincides on cp'r with ar for r

dividing m. Hence, o — (Jm °~m is a homomorphism of the lattice of finite subgroups

of Tn into L. Finally, since I(L) is upper continuous, <pS = ^(^^ \U Ç S finite)

defines a homomorphism of Lc(Tn) into I(L) mapping cp' onto cpu and the properties

of the up carry over.    □

REMARK 5.5. If one dualises 5.4 then (cpu) turns into the sublattice of the filter

lattice F(L) generated by the upper reduced frame cpv arising from the filter v2

generated by the 02r (r > 0). This is so since, in L, a\ +fa2 = a2 + r21 by Lemma

2.6.    D

LEMMA 5.6. Let L satisfy f <s for all r,s > 0. Then u = ^r f < v = F\T f
are neutral elements in FI(L).

PROOF.  We may assume L is generated freely. Then by Lemma 5.4 and Remark

5.5 (cpu) = Lc(Tn) and (cpv) = L(Zn). For r > 0 we have, by (3.1), ua, + url2 =

u(ax +a2) since T is divisible. Similarily, (v+ax)(v+rx2) = v since Z has no divisors
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of zero. By Jónsson [25] it follows that u,v,ax, and ri2 generate a distributive

sublattice. Therefore, </>" = cp' satisfies a'xrx2^ = u and a'x + rX2$i = a'x + a'2 and

generates a sublattice isomorphic to L(çQn) by Lemma 5.3. To simplify notation

let us identify each of these sublattices of L with the isomorphic concrete lattices

such that the generating frames turn into the canonical ones.

Let 6 be the congruence on Lc(Tn) given by xOy if and only if [xy,x + y] has

finite length. Lc(Tn)/6 is isomorphic to L(QQn) by Lemma 5.3. Since Lc(Tn) has

no infinite descending chains we get a join homomorphism o of L(qQu) into Lc(Tn)

such that ax is the smallest preimage of x under the canonical epimorphism and

ocp' — cpu. Similarily, we have a canonical meet preserving map -7 of L(qQn) into

L(Zn) mapping cp' onto cpv.

We now apply Proposition A.4 with the map k defined in Lemma 4.5 to the

lattice generated by L, u, and v—which clearly suffices. Actually, we show that

u + vkx = x, ukx = ax, and v + /cx = 7X for all x in L(qQu).

First, we observe that for ip in GL(n, Z) the automorphism ip¿ of L (properly,

its extension to FI(L)) has fixpoints u and v. Also, ip$ induces on (cp'), (cpu), and

(cpv) the automorphisms which come from the action of ip on the coordinatizing

modules—which has to be checked for elementary ip only. Finally, ip^ax = aipx

and ip^x = ~/ipx by construction of a and 7.

Now, for given x choose y = J2t<k a'i and ip sucn that ipy = x. Then ny —

J2i<k ai- By Lemmas 4.5 and 3.2 it follows that

u + vkx = ip^(u + VKy) = ip^y = x,

ukx — 1pj,(uKy) — ip$ I 2_,uai I — °~x

\i<k        J

and

v + kx — ip¿(v + Ky) = tpj, I ^2v + Oi     = yx.    D

\i<k J
PROOF OF THEOREM 1.1. Let L be subdirectly irreducible and generated by

an n-frame cp. If cp has finite characteristic then Corollary 4.3 applies. Otherwise,

it has characteristic 0, and by Lemmas 5.2 and 5.6 we have neutral elements u and

v in FI(L). Since L is subdirectly irreducible there are only three possible cases:

u = 0, v = 1 or u = 1 or v = 0. In the first, Lemma 5.3 applies. Now let u — 1.

Again, by Lemma 5.4 we have up = 1 for one p and uq = 0 for all q ^ p, and the

homomorphism a maps the sublattice Lc(Zp0o) of Lc(Tn) onto L isomorphically.

Similarly, if v — 0 we get the dual of such using Remark 5.5.    D

6. Frame generated subdirect products. By Theorem 1.1 every lattice

L generated by an n-frame cp of finite characteristic m is a subdirect product of

lattices L(Z_\), p prime and pk a divisor of m, and the image of cp is canonical.

If m = Y\ pi i then the pi ' are independent central elements and provide a direct

decomposition of L into factors of prime power characteristic. We have to describe

the latter. For h < I there are two embeddings, aphi and 7Ph¿, of L(Z™h) into

L(Z£i), the first coming from the canonical isomorphism of Z\ onto the subgroup
A-h Z_\, and the second from the canonical homomorphism of Zpl onto Z™h.
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LEMMA 6.1. Let I Ç N be finite and let L Ç Xi6; L(Zn%) be a subdirect

product generated by an n-frame cp. Then L consists of all sequences (xí\ i E I)

with OphiXh < x¡ < iphiXh for all h < I in I.

PROOF. By induction on the cardinality of I. Let j be minimal in I and K =

I — {j}. Let V be the frame generated subdirect product of the L(Z!\), k E K.

Then L is a subdirect product of L(Z™) and V with projections 7r and ip. Let a

and 7 be the two embeddings of L(Znj) into L given by the reduced frames cpp, and

cpP . It suffices to show (x, y) E L for ipax < y < ip^x. Choose w in L with ipw — y

and let v = (w + ax)^x in L. Then ipv = y and 7ru = x since 7rcrx = x = tt7X. D

Call an infinite matrix (xpk) with coefficients xpk E L(Z_\) admissible if apknxpk

< £p/i < IpkhXpk for all k < h. Call an admissible matrix loi» (/iig/i) if for each

p there is a A; with apkhXpk = xph ("IpkhXpk = Xp^) for all h > fc and if there are

only finitely many p for which there is a A; with xpk ^ 0 (xpk ^ 1). Finally, call

(xpk) geometric if there is a system F of (in Zn) independent homogeneous linear

equations with relatively prime integer coefficients such that, for all p and k, xpk is

the solution set of F in Z\.

THEOREM 6.2. The lattice freely generated by an n-frame cp is a subdirect prod-

uct of the lattices L(Z\ ) consisting of all matrices of the form X + YU with X < U,

where X is low, U high, and Y geometric. Here, Y is uniquely determined.

PROOF. By Theorem 1.1 L belongs to the lattice variety generated by all sub-

group lattices of abelian groups, whence it is a subdirect product of L(Z™fc)'s by

[20, 4.1]. To see that every low matrix X belongs to L choose m such that pk

divides m if there is h > k with OpkhXpk ̂  xpn. Then by Lemma 6.1 X belongs

to the sublattice of L generated by cpm- Dually, we get high matrices. Observe

that Y is of the form "low+geometric" if and only if there is an S in Lc(Tn) such

that 2/pfc — S Ci Z\, considering Z\ as a subgroup of T". Here, Y is geometric if

and only if S is complemented. Hence, every geometric matrix belongs to L and

one sees that the meet of matrices of the form "log+geometric" is again of this

form. With the dual observation it becomes clear that the matrices X + YU form

a sublattice which is just L. If X + YU = X' + Y'U' then X + Y and X' + Y' have

the same image in Lc(Tn), whence Y — Y'.    D

COROLLARY 6.3. If L is freely generated by an n-frame cp then its coordinate

ring R$ is the ring of integers.    D

Let apkoo and 7pfcoo denote the canonical embeddings of L(Z\ ) into Lc(Zp0o ) and

L(qpQp), and apooo and 7pooo the canonical homomorphism of these onto L(çQn).

Recall that for fixed p every frame generated subdirect product of infinitely many

L(ZI\)'s has Lc(Zpoo) and L(çpQp) as homomorphic images [20]. Hence, these

lattices and L(qQ") may occur as redundant subdirect factors. Now define the

three types of matrices as above with components ranging through certain of the

lattices in Theorem 1.1 such that a low matrix is 0 in L(qQu) and all L(qpQp).

Then the description given in Theorem 6.2 generalizes to arbitrary frame generated

subdirect products. Moreover, let X consist of those p, p prime or 1, for which

L(qvQp) or its dual is a subdirect factor of L. Let Y consist of all pk > 1, p $. X
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and k maximal, such that L(Z_\) is a subdirect factor of L. Then, denoting by Qx

the ring of all rationals with denominator prime to all p in X, we get

COROLLARY 6.4. The coordinate ring R$ of L generated by cp is Zm x Qx if

Y is finite, m = F\Y and, else, Qxuy ■    Q

THEOREM 6.5. Let L be a lattice of finite length with n-frame cp. Then L is

isomorphic to the direct product of finitely many lattices Li with n-frames cpi each

of which has prime power characteristic or Q as a subring of R$i.

The explicit formulation of this result is due to Ralph Freese, who also gave a

proof independent of Theorem 1.1 and observed that, by the dimension formula for

r in Z2¿,

(6.1) 01^12=0    if and only if   ax + rX2 = ax + a2.

PROOF. By Theorem 1.1 the sublattice L' generated by cp is a subdirect product

of finitely many lattices L(Z_\), p prime, k < oo, and maybe L(qQu). For a fixed

prime p choose k maximal such that L(Z\) is a subdirect factor of L'. Then, cppk

has characteristic pk and p is invertible in the coordinate ring R$_k in L—since it

is so in L'. Also, pk and pk are complements. (For that Freese gives a direct proof

choosing k maximal with pk ^ pk+1.) Of course, it suffices to show (for each p)

that pk and pk are central elements in L.

Assume the contrary. Then by Proposition A.5 there are i and j such that pkai

and pkaj are not central in [0, pkai -\-pka3], and in view of the given perspectivities

we may assume i = j = 1. Let x witness this fact, i.e. with ux = xpkax + xpfcoi,

vx = (x + pkax)(x + pkax), 2/1 = (^i +pkax)vx, and zx = (ux +pkax)vx, we get that

ux < x, 2/1, zx < vx form a sublattice M3 of L. Since L has finite length we may

assume vx covers x, and x covers ui in L.

Now consider the reduced frames cpu, cp™, and cp™. y = u + vpk and cpu arises from

cppk, whence it has characteristic dividing pk by Corollary 3.4. Similarly, z — u+vpk

and cpu arises from cp-k, which implies by (6.1) and (2.1) that p is invertible in R^.

Also, 2/ and z are complements in [u, v}. On the other hand yx + u and zx+u cover

u and are perspective via x + u. Hence cpu and cpu provide 2n independent atoms

of [u,v], all of which are perspective. This means [u, v] is an irreducible (2n — 1)-

dimensional projective geometry and can be coordinatized over a skew field F. In

particular, the intervals [u, y\ and [u, z] can both be coordinatized over F, and cpu

and cpu must have the same characteristic—that of F. This is a contradiction since

p is 0 in R$u and invertible in R¿*..    D

7. Finite basis versus finite generation. The proof of the Theorem 1.4

consists of constructing a family of lattices Lpq, p and q distinct primes, none

of which belongs to the variety generated by finite length modular lattices, but

an ultrapower of which belongs to the lattice variety M0 generated by rational

projective geometries.

To define Lpq let p and q be fixed and n > 4. Let Rp* denote the ring of

p-adic integers, Vp the rank n free module over this ring, and Lx its lattice of

submodules. Factorizing Lx by the smallest lattice congruence which identifies all

elements of finite dual rank (i.e. all submodules of finite index) we obtain an (n— 1)-

dimensional projective geometry over a field F of characteristic 0—the reasoning in
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[20, 4.5] carries over. Since Lx satisfies the ascending chain condition each 0-class

contains an upper bound. This establishes a meet preserving map 7 of L(F¡y) into

Lx matching the canonical frames. Also, observe that the 0-class of 7X consists

of all submodules U of Vp for which the quotient 71/(7 is finite. Therefore, each

0-class is countable and, Lx being uncountable, F must also be uncountable.

Actually, it is not hard to see that F is the field of p-adic numbers and that

the homomorphism of Lx onto Lx/9 is given by U >—► U ®r , F. Just note that

this homomorphism induces a ring homomorphism of Rp- — R\2$—cp the canonical

frame of Lx—with kernel ax and that F is flat as a Zip.-module.

Now let S be the nonmodular lattice L(Qq) with an extra element e added which

is between 0 and 1 and a complement of any other. There is a meet embedding of

S into L(Fp) which is the canonical embedding on the rational projective geometry

and sends e to a point which is on no rational hyperplane. For example, e can be

sent to a one-dimensional subspace spanned by a vector in Fn whose coordinates

are linearly independent over Q. Using the above, one obtains a meet embedding,

also denoted by 7, of 5 into Lx which matches the canonical frames and maps e

onto a rank 1 free submodule of Vp. Thus, the interval [0,7e] is dually isomorphic

to the ordinal w + 1.

Let Lq be the dual of L(Vq) and the join preserving map a of the dual S6 of S

into L° be defined dually. Identify S with 5* in such a way that a matches the

canonical frames of L(Qq) Ç S and Lc¡. By construction, [ae, 1] in Lr, is isomorphic

to ui + 1. Now consider the subset

Apq= \J[{^x,0),{l,ix)]
xes

of Lq x Lx which is obviously a sublattice. Observe that [(ae, 0), (1,7e)] =w + lx

(oj + l)6 with complementary central elements (1,0) and (ae, 7e). Let ë and e be

the upper and lower covers of ae and 7e in Lq and Lx, respectively. Obtain Lpq

from Apq by fitting in a new element eo into the interval [(<re,e), (ë, 7e)] = [ei,e2],

which is a complement of both e3 = (ce, 7e) and e4 = (ë, e), therein. This yields a

modular lattice Lpq. Denote by p+ the prime succeeding p.

LEMMA 7.1. Every nontrivial ultraproduct of Lpq+ 's belongs to the lattice va-

riety generated by rational projective geometries.

Let us take care of the App+'s first. There is an axiomatic correspondence be-

tween these lattices and the modules Vp, Vp+ (together with their rings Rp- and

Z?p+.) expressing that App+ is embedded into the direct product of L(VP) and the

dual of L(Vp+).

Now let A be an ultraproduct of the App+ 's over a nonprincipal ultrafilter, V

and R the ultraproducts of the Vp and Rp- over the same filter—which happen

to be the ultraproducts of the Vp+ and Rp+. too. Then, in view of the axiomatic

correspondence, A is embedded into the direct product of L{V) and its dual, L(V)

being the lattice of Z2-submodules of V. But in R every prime is invertible, which

means Q is a subring of R and we may consider V as a Q-module too, and L(Vr)

as a sublatice of L(Vq). Thinking of the dual of L(Vq) as being embedded into the

subspace lattice L(Vq) of the vector space Vq dual to Vq, we have an embedding

of A into a direct product L(WX) x L(W2), Wx and W2 vector spaces over Q.
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Let L be the corresponding ultraproduct of the Lpp+. Then A is a sublattice of

L. Add constants ae, 7e, ë, e, ei (0 < i < 4) to the language denoting the above-

mentioned particular elements in each lattice Lpq. Then the covering relations

between these are valid in L too, and the ei form a sublattice M3. Also, A is just

L with er, removed. Clearly, we can choose the vector spaces Wx and W2 such that

the quotients efae and 7e/e have the same dimension. Having L(WX) x L(W2)

canonically embedded into L(WX ®W2), we have A embedded therein too, and may

now choose for eo any of the common complements of e3 and e\ in the interval

[ei, e2] of L(yV\ © W2) to end up with an embedding of L into the subspace lattice

of a rational projective geometry.

LEMMA 7.2. No lattice Lpq belongs to a lattice variety generated by modular

lattices of finite length.

PROOF. Assume the contrary, i.e. there is a subdirect product M of modular

lattices of finite length having Lpq as a homomorphic image. Now, Lpq has a span-

ning frame which is canonical in both components of Apq and axq/0 is projective

to l/a\ +p via a projectivity passing through the interval [ei,e2]. According to

Huhn [22] one can find a frame cp: ai, cl3 in M which is mapped onto this canonical

frame. By Wille [33] there is a proper quotient in M too, weakly projective into

axq/0 and l/a\ + p now taken in M with respect to cp. Clearly, we may assume

J2 cp = 1 and fl cp = 0. All this carries over to a subdirect factor L of M in which

this proper quotient is separated.

In other words, we have a subdirectly irreducible modular lattice L of finite

length with spanning frame cp:ai, cxj and a proper quotient x/y weakly projective

into both axq/0 and l/a*x + p. By Theorem 6.5 either q or p is invertible in the

coordinate ring. In both cases one of the quotients collapses in view of (2.1), whence

x/y collapses too, a contradiction.

Now if V is a finitely based variety containing Mo we have Lpq in V for suitable p

and q, by Lemma 7.1, and V cannot be generated by its finite-dimensional members

in view of Lemma 7.2. Thus we have proven Theorem 1.4.

Appendix. Subdirect decomposition methods.

PROPOSITION A.l. Let L and M be modular lattices, L of finite length and
M subdirectly irreducible. Let 7 (a) be a meet (join) homomorphism of L into M.

Suppose ax < 7X for all x in a generating set of L, and M is generated by the

union of all intervals [crx,7x], x in L. Then either a — 7 is a homomorphism of L

onto M (and an isomorphism if L is subdirectly irreducible) or ap < 79 holds for

all prime quotients p/q of L.

This is Proposition 7 in Wille [32] for a subdirectly irreducible L and Propo-

sition 1 in [16]. Just observe that ax < 7X. Commonly, one drops the subdirect

irreducibility of M and thinks of M being freely generated under certain rela-

tions, L a particular model and ax < 7X the bounds of the preimage of x under

the canonical epimorphism. Then, a prime quotient of L is associated with the

prime quotient ap + 79/79 of M, the congruence identifying this quotient and its

pseudocomplement. This method also appears in McKenzie [30] and Freese [9].

Also we use subdirect decompositions via neutral elements. The basic method has

been stated in [16, Proposition 2].
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PROPOSITION A. 2. Let M be a modular lattice, u an element of M, S a maybe

nonmodular lattice, and a an order preserving map of S into M such that M is

generated by u and the image of a, x i—► uax preserves joins, and x >—* u + ax

preserves meets.  Then u is neutral in M.

PROPOSITION A.3. Let u < v be elements of a modular lattice M. Let S be

a lattice, a a join homomorphism and 7 a meet homomorphism of S into M such

that u + ox = U7X for all x in a generating subset of S. Assume x 1—> u + ax and

x y—► v/x are homomorphisms of S into M, and M is generated by the union of all

intervals [ax, 7x], x in S. Then M decomposes subdirectly into a factor with u = v

and another one with ax = 7X for all x in S.

PROOF. Clearly, u + ax = v^x for all x in S since this holds on a generating

set. Let ip denote this homomorphism and S' the factor lattice 5/ker ip. Consider

M being embeddded into its filter lattice F(M) and this embedded into its ideal

lattice IF(M). Observe that for a downward directed set I Ç M and for a in

F(M) we have a + \\ X = \~\(a + x | x G X) since F(M) is a lower continuous

lattice and the embedding of F(M) into IF(M) preserves arbitrary meets. For an

upward directed set X Ç M and an a in IF(M), we have a J2 X = Yl{ax \ x E X)

since IF(M) is an upper continuous lattice.

Now define, for X in S', a'X = \[(ax\x G X) and 7'X = £(7x|x E X).

Then a' is a join and 7' a meet homomorphism of S' into IF(M) and one has

u + a'X = u + ax = w/y = V)'X for all X in S' and x,y in X. Thus, tpX = u + a'X

defines an injective homomorphism of S' into IF(M) since ipX = ipY implies

px = py for x in X and y in Y, i.e. X — Y.

Let M' be the sublattice of IF(M) generated by the union of M, the image of

a', and the image of 7'. Define a relation 9 on M' by

a9b o 3 an X in S' with a'X <a,b< 7'X.

We claim 9 is a congruence relation on M' with classes [a'X, 7'X], X in S". Namely,

assume a E [a'X, YX] n [a'Y, 7T]. Put Z = X + Y. Then a'Z <a< YX, whence
ipZ = u + a'Z = v-y'X = tpX. On the other hand ipX < ipZ since X < Z. It follows

that ipX = ipZ and X = Z by the injectivity of ip. Symmetrically, we get Y — Z,

whence X = Y. Thus, 9 is a congruence relation on M. Then, the restriction

9 I M is a congruence on M. By construction, a9b and u < a < b < v jointly imply

u + ax<a<b< wyx for suitable x in 5, whence a = b.

Let t denote the congruence on M generated by v/u. Then r n 9 \ M is the

identical congruence idM on M. Otherwise there would be d > c with crd and c9d\

but crd implies there is a proper subquotient b/a of v/u projective to a subquotient

of d/c (see [4, 10.2 and 10.3], whence a9b, too, a contradiction. This yields the

subdirect decomposition we have looked for.    D

PROPOSITION A. 4. Let M be a modular lattice and u < v elements of M. Then

u and v are neutral in M provided there are a lattice S and an order preserving

map a of S into M having the following properties: o0 = 0; q1 = 1; the maps

x 1—► uax, x 1—> v + qx, IHB + vax = v(u + ox) are a join homomorphism, meet

homomorphism, and homomorphism, respectively; M is generated by u, v and the

image of a.
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PROOF. Applying Proposition A.2 to S and the map x •—► vax we have that u is

neutral in the sublattice it generates together with all vax (x in S). Similarily, v is

neutral in the sublattice generated by v and the u + ax (x in S). Now let S' be the

modular lattice freely generated by the set {u,i;}U5 and a,7 the homomorphisms

of S' into M with au = 7U = u, av = 7U = v, ax — vax, and 7X = u + ax for

x in S. By Proposition A.3 we have a subdirect decomposition of M into a factor

with u = v and a factor with ax = 7X for all x in S'. For the first, Proposition

A.2 yields the neutrality of u = v immediately. In the second we have u = 0 and

v = 1 substituting x = Os and x = lg in erx = 71. Hence, u and t; are neutral in

M too.    D

PROPOSITION A.5. Letax,... ,an,bx,... ,bm be an independent set of elements

in a modular lattice M such that for all i and j the elements ai and bj are central

in the interval [0, ai + bj] of M. Then ^ a¿ and J2 °j are complementary central

elements in the interval [0,]T] ai + ^ bj].

The proof is by induction on n + m. Considering the case n = 2, m — 1, only,

write a = ai, b = a2, c — bx and let d be an arbitrary element of [0,a + b + c]. By

hypothesis we have the relations

d(b + c) = bd + cd   and   a(b + d)+ c(b + d) = (a +c)(b +d).

Consequently,

a + b + cd = a + b + d(b + c) = a + b+(b + d)(b + c) > a + b + c(b + d)

= a + b + (a + c)(b + d) = (a + b + d)(a + b + c)>d

and d(a + b) + dc = d(a + b + dc) — d, showing that d distributes with a + b and c.
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