TRANSACTIONS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 284, Number 2, August 1984

ON THE ARITHMETIC OF PROJECTIVE COORDINATE SYSTEMS

BY
CHRISTIAN HERRMANN!

ABSTRACT. A complete list of subdirectly irreducible modular (Arguesian)
lattices generated by a frame of order n > 4 (n > 3) is given. Also, it is shown
that a modular lattice variety containing the rational projective geometries
cannot be both finitely based and generated by its finite dimensional members.

1. Introduction. Frames were introduced by von Neumann [31] as the abstract
lattice theoretic counterpart of coordinate systems in projective geometry. His
construction of a coordinate ring R = Ry for a complemented modular lattice L
with a frame ¢ of order n > 4 extends to modular lattices in general (Artmann
[2], Freese [11]). For n > 3 and lattices which are Arguesian in the sense of
Jonsson [26] the ring construction is a recent achievement of Day and Pickering
[8]. Proceeding towards a coordinatization of L one finds for any subring S of R
join homomorphisms of the submodule lattice L(sS?) into L which come from the
canonical embeddings of S? into R™ if L = L(grR™). For Arguesian lattices this is
contained in (8], in essence.

For a completely primary and uniserial S these maps extend to a join homo-
morphism of L(sS™) into L. The proof uses the representation of automorphisms
of ¢S™ in Aut(L) for free L—an idea developed by Huhn [23] and Freese [11].
With the dual meet homomorphism and the method of “bounded homomorphisms”
(McKenzie [30] and Wille [32]) one has a new approach to the coordinatization the-
orems for primary lattices—cf. Jénsson and Monk [26].

On the other hand with S = Z,«, the residue class ring of integers modulo ¥,
one derives that the subgroup lattice L(Z;‘,c) is the only modular (Arguesian if

n = 3) subdirectly irreducible lattice generated by a frame of characteristic p*, p
prime. The case k = 1 has been solved by Freese [11] for n > 4 and by Day [7] for
n = 3. This is a basis for our main result. Let Z,~ denote the quasicyclic (Priifer)
p-group and @, the rationals with denominator relatively prime to p.

THEOREM 1.1. The following is a complete list of subdirectly wrreducible mod-
ular (Arguesian) lattices generated by a frame of order n > 4 (n > 3):

(i) the (n — 1)-dimensional rational projective geometry L(oQ™),
(ii) the subgroup lattices L(Z;‘k), p prime, k < 0o,
(iii) the lattices Lc(Zp=) of closed subgroups of Zpw, p prime,
(iv) the duals of (iii), the lattices L(q,Qp)-
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760 CHRISTIAN HERRMANN

This has been shown in Herrmann and Huhn [20] for lattices in the variety
generated by all lattices of normal subgroups of groups. The generating frame can
be chosen canonically in each instance. An immediate consequence is the following

COROLLARY 1.2. The word problem for finitely presented modular (Arguesian)
lattices generated by a frame of order n > 4 (n > 3) s solvable.

In particular, a lattice relation involving the frame and integers of the coordinate
ring, only, is valid in general if and only if it is valid in all L(Z"%). That frame
generated lattices play an important role in all word and classification problems for
finitely generated modular lattices is shown in the following example which follows
from the main result in Herrmann-Kindermann-Wille [21].

COROLLARY 1.3. D3, M3, and the lattices from Theorem 1.1 with n = 3 are
ezactly the subdirectly irreducible Arguesian lattices generated by elements a, b < c,
d<e.

Also, each of the lattices in Theorem 1.1 is generated by four elements [17].
Unfortunately, there are subdirectly irreducible subgroup lattices of abelian groups
which are generated by four elements but not by a frame—one of the reasons that
the word problem for the free modular lattices on four generators is unsolvable [18].
As far as Arguesian lattices are concerned the key for a solution might be a suitable
concept of “skew frames”. Since notational problems would duplicate, at least, we
avoid a discussion of such in this paper.

Frames and coordinate rings are also inherent in unsolvability results on mod-
ular lattices, only to mention Hutchinson’s [24] and Freese’s [12] results on word
problems in five generators and Freese’s result that the variety of modular lattices
is not generated by its finite members [10]. The latter can be strengthened a little
bit. Let M, My, Myq, and My denote the lattice varieties generated by all, all
finite, and all finite dimensional modular lattices and all subspace lattices of vector
spaces over @, respectively.

THEOREM 1.4. A modular lattice variety containing My cannot be both finitely
based and generated by its finite dimensional members.

COROLLARY 1.5. Neither My nor Myq are finitely based and My G Msq & M.

COROLLARY 1.6. The variety of Arguesian lattices is not generated by its finite
dimensional members.

The last corollary answers a question raised by Bjarni Jonsson. For the first
observe that My C M; by Herrmann and Huhn [19] and that M; & Mj4 by Freese
(10].

As basic references we use Birkhoff [3], Crawley-Dilworth [4], Maeda (28], and
von Neumann [31], for abelian group theory Fuchs [15]. A good introduction to
frames and coordinatization is provided by forthcoming lecture notes of Alan Day
(5].

I am highly indebted to Alan Day for contributing in many ways to this paper.
Also I have to thank Andrds Huhn and Ralph Freese whose seminar notes I used
in rewriting the proof of Theorem 1.4.
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2. Coordinatization by primary rings. Von Neumann [31] introduced a
concept of coordinate system for a modular lattice with 0 and 1: A system ¢ =
(as,¢i5;1 <1 # j <n) of elements of L is a (normalized) n-frame of L if ) a; = 1,
a; Zi;éj a; =0, ¢;5 = ¢4, a5Ci5 = 0, a;+c¢ij = a;t+ay, and ¢, = (a,-—l—ak)(cij +Cjk).
We write z + y for the join and zy for the meet of z and y. The relations imply for
1 # 0 that the a; are the atoms of a Boolean sublattice 2" and that 0, a;, ¢;;, a;,
and a; + a; form a 5-element nondistributive sublattice M3.

Given an (associative) ring with 1 and a free (unital left) R-module g M with
basis e; (1 < ¢ < n) we get an n-frame of the lattice L(rM) of R-submodules
by a; = Re;, ¢;; = R(e; — ¢j). Every n-frame of L(rM) arises in this way, all
are related via automorphisms of g M. If the e; are the canonical basis vectors of
M = R™ we speak of the canonical n-frame.

Clearly, any permutation of indices yields an n-frame again.

LEMMA 2.1. Let T describe a connected graph on {1,...,n} and let the ele-
ments a; (1 <¢ < n) and ¢;; of L with (1,5) € T satisfy the relations of an n-frame
as far as they make sense. Then this system can be extended to an n-frame of L.

PROOF. This is shown by iterated application of the following observation. Let
¢ be an n-frame of the interval [0, u| and a, ¢ such that u(a+c) = a, and ay,, c, a is
a 2-frame of [0,a+c|. Let ant1 =a, Cnnt1 = ¢ Cint1 = (a; +a)(cns +¢) fori <n
and ¢cn41; = Cint1 for ¢ <m. Then (a;,¢;551 <7, § <n+1)is an n + 1-frame of
(0,u + al.

Indeed, we have au = aa, = 0 whence ay,...,a,4; are independent (31, p. 9].
The remaining relations follow with [31, p. 118]. O

An equivalent concept is Huhn’s [22] diamonds. Following Day and Picker-
ing [8] we call (di,...,dn+1) a spanning n-diamond of L if Ei# d; = 1 and
d; }:#j,k d; = 0 for all 7 # k. If ¢ is a 3-frame and 7,7,k all distinct then
(Ckj» @k, a4, ¢45) is a spanning 3-diamond.

As one knows from projective geometry, for a coordinatization one needs n > 4
or Desargues’ law. We use J6énsson’s [26] lattice theoretic version. A triple x =
(0,21, z2) of elements of a lattice is called a triangle and normal if

z9 = (2o + x2)(x1 + z2).
Two triangles x and y are centrally perspective (CP) if
(zo +yo)(z1 +y1) S 22 + 2
and azially perspective (AP) if
(zo + z1)(yo + y1) < (zo + x2)(yo + y2) + (z1 + z2)(y1 + y2)-

A modular lattice is called Arguesian if every CP pair of triangles is AP. This
implication can be stated as a lattice identity determining a self-dual lattice variety
(Jénsson [27]). In an Arguesian lattice one has that AP implies CP for pairs
of normal triangles. Every lattice of submodules is Arguesian. This extends to
congruence lattices of algebraic structures in a congruence modular variety, Freese
and Jénsson [13].
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A general assumption for this paper is that ¢ is an n-frame of the modular lattice
L and either n > 4, or n > 3 and L Arguesian. For 1, 7, k all distinct let

Rij=Rijs={z€L|ajz=0, a; +z = a; +a,},
Tk = (2 + ¢ji)(a; + ax),
z ®ijk y = (ai + a;)[(z + ak)(cik + a5) + 7k,
T Oisk Y = (a: + ay)lak + (cjic + 2)(a; + mijky)],
T ®ijk Y = (@i + a5) (kT + jiky).
THEOREM 2.2. The R;; are associative rings with zero a;, unit c;;, addition

®ijk, difference S5k, and multiplication ®;;x. These operations do not depend on
k. Moreover, R;; is 1somorphic to R;x and Ry; via 75 and 7y, respectively,.

This is von Neumann [31) for n > 4 and Day-Pickering [8] for n = 3. Just note
that von Neumann uses the opposite multiplication. O

Also, observe that for L = L(grR™) the map r — R(e; — re;) is an isomorphism
of R onto R;;. The projective isomorphisms 7;;x [ R;; allow us to speak of the
coordinate ring Ry = R;; with 0,1,®,0,® and write r = r;; € R;; for r in Ry.
Then the multiplication formula reads (r ® s);; = (a; + a;)(rik + skj). Where no
confusion with lattice operations is possible we write r + s, r — s and rs. Recall
from Freese (10, Lemma 2.3], that r is invertible in Ry if and only if r;; € Rj; and
then

(2.1) Ury =1y, © 1 = Ol
(2.2) Tik + Skj = Tik + 7 @ S5, Sik + Tky = S ® Tij + Thj.
DEFINITION. For a sequence r = (r!,... ") in R let
a; = Zaj, r; =Ty = H(a{a; +775), re = H(ai +r;).
i s

In the model L(gR") one has r; = R(3_, ., r’e; —e;) and r > RY r'e;. Equality
holds for uniserial R. Namely, let, e.g., r* € r'R for all ¢, ri = rls’. Then
(r2 + az)(rg + a3) consists of all vectors t w1th t' = zr* = zrls® for 1 # 2 and

t' = yr' = yrls® fori # 3, z,y in R. Since zr! = yr! these are exactly the elements
of RY  rle;.

PROPOSITION 2.3.
a;+ap+r;=a;+ H (a;‘a;—i—rf;) =a; +ar + Ik
J#uLk
and a; + ag +1ij = a; + ag + ri;. If ¥ =0 then ry = af(ak + rk).
PROOF. By the projective isomorphisms of [0,a}] onto [ak,1] and [ck:, 1] we
have
. e . * 4 k * _*x 7
ai +ag +1; = a; + (ajag + i + ax) H (afaj +1;)
ik
—al+H a; +r’ a,+ak+H aka*a*+r3)
J#k J#i,k
=a; +ag+ H (akajaj + cki + rfj)
J#vk
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Due to (2.2) we may replace cg; + rf] by ck: + rij yielding the last expression as
a; + ax + ri by symmetry. Now, if r* = 0 then
a; +r; =a; + (aja; + a;) H (aja] + 'rf])
J#u,k
= ap(a; +ak +1i) = apai +ax+re). O

In the sequel let S be a unitary subring of R and S(*9) the submodule of 5S™
consisting of all s with s* =0 for k # 1, 5.

LEMMA 2.4. There 15 a join homomorphism o of the semilattice of finitely
generated S-submodules of S(9) into the interval [0,a; +a;] of L such that oSt =
ry for all v in S,

For Arguesian lattices the adjoint meet homomorphism has been considered in §5
of Day-Pickering [8]—even for hyperplanes [0,a}]. For n > 4 the coordinatization
still works for “codimension 2” intervals [0, aja}]. As a substitute for the Arguesian
law we introduce the maps

ajjp = [(z + ar)(efay, + cin) + Thjlan,  print = [(z +7hi)a; + cinlay,
for distinct 4,7,k and r in Ry—cf. Artmann [2].

LEMMA 2.5. of;, 15 an automorphism of [0, a}| mapping s;; onto s ® ri; and
fizing all z with x > aj or x < a}. prin ts a meet endomorphism of 0,a}] with
KrinSik = T ® Sik for k # i, h, prspz > = for x < af and fizpoints x > a;. If r s
invertible prip 1s an automorphism and prinsk; = (8/7)ki-

For the proof consider these maps as products of lattice translation maps. Still,
we have to prove Lemma, 2.4. First

(a5 + ak)[(ak + si5)(a; + tix) + (ak + ui;)(a; + vir)]

= (aj +ak)la; + (ak + 6 uij)(a; +t© Vik)]
for 1, 7,k distinct. This is Lemma 5.1 of [8] for n = 3. For n > 4 let h # 1, ,k and
apply oy, to the left-hand side. It is both a fixpoint and mapped onto the
right-hand side. Also,
(2.4) a; + (ak + Sij)(a]‘ + tik) >a; + (ak +r® si]‘)(a]‘ +7rQ® tik),

which is Theorem 5.3 of [8] for n = 3 and follqws by application of u,;n to the
left-hand side for n > 4. Recall that for s in S(%3) one has

(2.3)

8¢ = (a; + a;)ax + (aj + st;)(a; + sij)]
by Proposition 2.3. Hence (r8)y < 84 by (2.4) and (r ©8)y < ry + 84 by (2.3).
Consequently cU = Y (ry | r € E), E a generating set of the S-module U, defines
a join preserving map. O
From (2.4) and (2.3) we derive
(a; + ak)[tix + (ak +145)(a; + O 7 ® six))]

= (aj + ak)[ai + (ak + rij)(aj +or® Sik)]

< (a]' + ak)[ai + (ak + cij)(aj + esik)}

= (a]‘ + ak)(cij + Sik) = Sjk,



764 CHRISTIAN HERRMANN

whence

(ak + 7i5) (tik + sjk) > (ak +ri5)(a; +t O T ® sik),
and, since both sides are complements of a in [0, ax + 4],
(2.5) (ak + 735) (tik + s5k) = (ak + ri5)(a; + 1O ® sik),
which is Lemma 10.6 in [31, p. 172] for t = 0.

LEMMA 2.6. There is an n-frame ¢* of the dual lattice L* such that a] =

R * X * ok * X * ;
Y24 and ¢j; = cij +ajaj. Moreover, r — 17, = r1; + aja; describes an

1somorphism of the opposite of Ry onto the coordinate ring Ry, of L*.

PROOF. That the a; and cj; give rise to an n-frame of L* is clear by Lemma
2.1. Let, e.g., 7 = 2. By modularity, r12 — r3; is a bijection of R;2 onto R3,
matching the zeros. We express the operations on R3; in terms of L. Using the
isomorphism between [0, a; + a2 + a3) and [a}a3a3, 1] we have

" ©" 85 = ajaj + a3[ciary; +ai(s31¢i3 + a3a3)] = ajaj + (a1 + a2)
x [(c13 + a2)(r12 + a3) + (a2 + a3)((s12 + a3)(c13 + a2) + a1
=aja; +r® (9s)12 = (r© )3,

since by (2.3),
(a2 + a3)((s12 + a3)(c13 + a2) + a1] = (a2 + a3)(c13 + ©512) = Os32.

r* ®" s31 = ajaj + (r3;cis + a3a3)(s3; ¢33 + aja3)

= ai‘a§ + [(T12 + a3)(031 + az) + a1]
X [(812 + a3)(a1 + (612 + 0,3)(613 + (12)) + ag]
aja; + (©raz + a1)[(s12 + az)(a1 + Sl23) + a2
=aja3 + (©r32 + a1)(s13 + a2)
=aja; + (a3 + s @ r12)(s13 + a2)
=aja;+s®riz=(s®r)}

follows using (2.5) four times. O

A key idea in Huhn [23] and Freese [11] was the representation of a linear group
over a prime field in the automorphism group of a modular lattice freely generated
by a frame (of prime characteristic). This works in greater generality. The basis
is the elementary automorphisms of $S™ given by afe; = e; —re;, pgiei = q e,
of;(ex) = pqi(ex) = ex for k # 1, where r and g are in S and g is invertible. The
rings S to be considered are completely primary and uniserial: there is a two-sided
ideal P such that every left or right ideal of S is a power of P. In particular,
Sr = rS for each r and P* = 0 for some m. Of course, L has to be free in some
sense. Call F the free resolution of L over ¢ and S, S a subring of Ry, if F' is the
free lattice in the lattice variety generated by L with generating set gU{r12 | r € S},
the relations defining an n-frame, and all the relations r @ s;2 = t12, r ® 512 = uj2
where 7,s,t,u arein S and r + s =t, rs = u in S. By construction, S is a subring
of the coordinate ring of ¢ in F, too, and we have a canonical homomorphism of F
into L. If this is an isomorphism we say that ¢ is free in L over S.
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THEOREM 2.7. Let ¢ be free in L over a completely primary and umiserial
S C Ry. Then there is a homomorphism ¢ — 14 of the automorphism group of
$S™ into that of L such that (Yr)y = Yg(re) for allr in S™.

PREVIEW OF PROOF. Since S is local, every invertible S-matrix can be trans-
formed into the identity matrix via elementary (Gaussian) transformations. Thus,
every automorphism ¢ of ¢S™ is a product of elementary ones—cf. [29, Theo-
rem 1.10]. In §4 we define for every elementary 3 an automorphism %4 of L and
show that (yr)y = ¢g(rg) for all r in S™. Thus, for arbitrary v one can define
¥y = [ :g, choosing elementary 1; such that ¢ = [[#;. Since the r generate L
by hypothesis, 14 does not depend on the choice of the 4; and 9 +— 4 is a group
homomorphism.

THEOREM 2.8. Let S C Ry be completely primary and uniserial. Then there
i a join homomorphism o of L(sS™) into L such that oSt =ry for all r in S™.

PROOF. Of course, we may assume ¢ is free in L over S. We show that for r, s in
S™ there are ¢, 7 and an automorphism 1 such that ¥r and s are in S(*9), In view
of Lemma 2.4 and Theorem 2.7, and the fact that every submodule of gS™ is the
join of finitely many cyclic ones, this suffices for proving that oU = Y (ry | r € U)
defines a join homomorphism of L(sS™) into L. Indeed, since S is right uniserial
there is an ¢ with 7¢ = r*t* for all k. Then with x = [lksi aﬁ,t, the vector r has
all but the ¢th component zero. Similarly, we get 7 and ¢, fixing xr such that pxs
has kth component zero for k # 7, 7. ¥ = X is the desired automorphism. O

THEOREM 2.9. Let L be subdirectly irreductble and generated by ¢ and the s
(s € S), S C Ry, completely primary and uniserial. Then L and L(sS™) are
isomorphic.

PROOF. S and its opposite T are local, artinian, and uniserial. Let o be given
according to Theorem 2.8. By 2.6 and the dual of 2.8 there is a join homomorphism
7 of L(7T") into L* mapping T(e; — re;) onto rjj4-. Now, S has the double
annihilator property and the bimodule gSgs defines a Morita duality between finitely
generated left and right S-modules—see [1, Exercise 24.10-13]. Identifying right S-
modules with left T-modules one has a dual isomorphism é of L(gS™) onto L(rT™).
Due to the transitive action of the automorphism group on the set of n-frames, we
may assume é maps the dual n-frame ¢'* associated with the canonical frame ¢’ of
L(sS™) onto the canonical n-frame of L(rT™), and 7;14- onto T(e; — re;). Then
~ = 67 is a meet homomorphism of L(sS™) into L mapping ¢'* onto ¢* and ;4
onto r;14-. Hence

va; = WHa;«* =a; and ATy =7 H a;*riige | =g
J#1 1#£1,5
Thus, one has oz < vz on the generating set ¢ U {ry; | r € S} of L(sS™), whence
for all z. Since L and L(gS™) are subdirectly irreducible (see Theorems 6.7 and 6.2
in [26]) and since L is generated by the image of o, either o = ~ is an isomorphism
or op < ~q for every prime quotient p/q in L(gS™)-—cf. Proposition 1 of the
Appendix. The latter is impossible. Namely, choose k minimal with P¥ = 0 and
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with Sr = Pk~1, Then Se; + P*~ e, covers Se; in L(sS™) but (Se; + P*~1ey) =
ay + 712 > a; = vSe; since r13 < a; would imply 112 =a; andr=0. 0O

We say that ¢ has characteristic m if the additive order of 1 in Ry is m. With
S = Z,x we have

COROLLARY 2.10. Let L be subdirectly irreducible and generated by ¢ of char-
acteristic p*, p prime. Then L is isomorphic to L(Z;‘k). O

Also, one easily derives the coordinatization theorem of Jénsson and Monk [26]
for primary lattices in the special case that the unit is a join of independent cycles
of equal length.

3. Reduction of frames. In this section we introduce some basic manipula-
tions with frames. Again, let L be a modular lattice with n-frame ¢ and coordinate
ring Ry. For any integer 7, we have a corresponding element in Ry and we may use
the notation r;; € R;;4.

LEMMA 3.1. Let k be fized and ux < ag. Define u; = a;(ux + cki) for i # k
andu =Y u;. Then
bu = (uag,ucy;1<i#j<n) and ¢ =(u+a;,u+tcij;1<i#j<n)
are n-frames of the interval sublattices [0,u| and [u, 1] of L. For every integer r one
has
(3.1) UTi5 = Tijdys U+ Tij = TijelU,

This stems from §1 in Freese [10]. O We say that ¢,, arises from ¢ by reduction
with ug. This construction is compatible with the projective isomorphisms m;; as
the following shows.

LEMMA 3.2. u and the a; generate a distributive sublattice. If ux < vr < ag
then u < v, (¢p)u = Pu, (¢%)” = @Y, and (¢%), = (¢)*. Moreover,
(8:2)  wai =wu; = ai(u+qij) = ai(u; +qi;) for ¢=£1,
(3.3)  rj(uta;) =ury for integer T,
(34)  (z+cjn)(ai+an) = (z+ucsn)(ua; +uap) for z < ula; + ay).
PROOF. u) (a; |1 € I) = > (ui | © € I) easily follows from the independence
of the a;. The next claim is obvious. By (2.1) and (2.2) one has for 7,5 # k
a;(u; + qij) = a;(uk + ¢k + qi5) = a;i(wk + cik + qjx)
= ai(uk + ¢k + ((Li + ak:)(l;jk:) = u,;,
a;(uk + gik) = ai(uk + i + qry) = w,
and
ak(u; + qry) = arlaj(uk + qij) + qr;) = ar(uk + qij) = ux.
Since a;(u + g;5) = u; + a;(u; + g;5), this settles (3.2).
Now,
q,'j(u + aj) = qij(ui + a]-) <u; + aj(ui + qi]—) < up +uy
and, by induction,
r® qij(u+ a;) = ((rij + an)(cin + a5) + qzr)(u + aj + ar)(a; + ay)
= ((uri; + an)(ucin + 35) + g;n)(u + aj)(a; + a;) =7 D gijp,-
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Finally,
(z +cjn)(as + an) = (z + cjnla; + cjnla; +u; + an)))(a; + ar)
= (z +ucjn)(u; +up). O

Two kinds of reductions are of particular interest. For r in R let 7 and the
reduced frame ¢, arise from a;r;2 and 7 arise from a;(az + r21). In the model
L(grR™) we have 7 = {s | sr =0} and 7 = R"r.

LEMMA 3.3. Letr,s be in R. Then

(3.5) Tijg, = Qip, = Ta; = a;1ij = (Fa;)g,, and 7 <78,
(3.6) s®ry <a;+T7a;, SF<TF, (Fa;)ysF =Ta, + 57,
(3.7) Sw‘(?7 + ai) < §ra; + Faj,
(3.8) Fa; = (a; + rij)a; = (a; + Ory5)a; = —ray,
(3.9 F<3 if a;¥ = a;5 for some 1,
(3.10) 84 <7 if s’ € Rr for all j.
PROOF
ai7s = ai(Tik + Skj) 2 airik = agT
and

s ®rij < (a; +aj)(ai + ak +1ij) = a; + ra;.
The remaining claims of (3.5) and (3.6) follow with (3.1) and (3.4). Next,
sij(ai +7) < (siy + 1r5x)(a;s + Faj) = (sij + 7jk)a; + fa; = Sra; + 7a;.

(3.8) is a consequence of Lemma 2.4; (3.9) follows from (3.4). (3.10) follows with
(3.6), Lemma 3.2, and the independence of the a¢;. O

(3.1) implies

COROLLARY 3.4. Ifr # 0 is an integer than ¢, and ¢" have characteristic
dwiding r. O

LEMMA 3.5. Let L be generated by ¢ and the si2 (s € S), S a subring of Re.
If S has a proper central idempotent, then L has a proper direct decomposition.

This is taken from Day [6]. We just give a proof for the case that L is generated
by ¢. Let e be an idempotent, us = az€, and v = azl —e. Then us + vy >
az(ci2 + a1) = a2 by Lemma 2.4. Also, by definition of addition,

a1 +16e12 = (a1 + a2)[(ci12 + a3)(c13 + a2) + Oesz + a4

= (a1 + a2) (c23 + a1 + Oesy) .

Since e;2 < e13 + e32 by idempotency, it follows that
ugvg < az(a; + e13 + e32) (a; + ©laz + e32)

= ag (632 + 9123((11 +e13 + 632))

= a3 (e32 + Olaszess) = azesy = 0;
cf. [14]. Hence u and v decompose the frame and are complementary central
elements of L—cf. [20,2.2]. O

We conclude this section with more details about the expressions s,, where
s € S™, S a subring of Ry.
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LEMMA 3.6. Ifn > 4 and the a15 (s i S, s # 0) generate a distributive
sublattice of L, then

8¢ = (ai + a; +8;) H (ak + 8k).
k#1,5
PROOF. In view of the projective isomorphisms m;; we may assume ¢ = 1

without loss of generality. Observe that a;0 = a;. Now, by symmetry and
Proposition 2.3 it suffices to show X = [], (a1 + ar +81) < a1 +8;. Since

— * 0k J
ak +81 = [[; ;. (aia; + s];) we have

X <ay+(ag +81)(ar +ag +8;1)(a1 +ayq +81)

=a1+H(a}a;+s{j) a; + H (a’{a;+s{j) a; + H (ajaj +s
2<y 1<5#3 1<5#4

=a;+ (a2 +81) |a; H(aja; + s{j) + a3 +8;
3<y

X [a1 H (aia] +s7;) +as +81
2<5#4

<aj + (a2 +81) Hals’u+a’{a§+sf2 H als“ +ajal + 5%,
_3<j 2<7#4

4 : )
=a; + (az +8;) |aja} + 53, + Hals{j H a18}; +aja; + si,
3<) 2<5#4

. * % 2 7 7 2
=a1 + (a2 +81) |aja; +si; + Halslj H a1y, + @172
3<j 2<5#4

] 2 ] 2
<a;+ H(a”{a; +81;) |aias + sty + H aisy; +aisy,
2<;5 2<;5

=a;+s8;. O
This short proof is due to Alan Day.

LEMMA 3.7. If S C Ry is right uniserial then the Sa; (s € S) form a chain in
L.

PROOF. Consider the dual lattice L* with frame ¢*. By Lemma 2.6 its coordi-
nate ring is R°P. Hence, S°P C R°P and Lemma 2.4 establishes an order preserving
map S°Pr* — r3,a3 + a} of the lattice of left ideals of S°P into L*. In particular,
the r3,a5 + a] = ri2a; + a} (r € S) form a chain and so do the rjpa; = fa;. O

LEMMA 3.8. Ifn =3, L Arguesian, and s* invertible in Ry, then sy = ty =
(a; +8:)(aj +8;), where k #1 # j # k and th = (—1/s%)s"



ARITHMETIC OF PROJECTIVE COORDINATE SYSTEMS 769

PROOF. By (2.4) we have aj, + 8, = ap + th, whence 84 = t4. Thus we may
consider k = 1, s' = —1, only. Then by (2.5) we get

[a2 + (as + S121) (a1 + 533)] [as + (a2 + Sl31) (a1 + s35)]
= [02 + (a3 + ©l12)(az2 + 3?3)] [03 + (a2 + ©113)(az + 3%2)]
= (a4 833)(az + s2;) =s8;. O

4. Representation of automorphisms. Returning to the proof of Theorem
2.7 we represent the elementary automorphisms a;; and pq; of sS™ given by of;e; =
€ — T€j, fqi€i = q le;, and al’j(ek) = pgi(ex) = ek for k # <. For this section we
assume L is freely generated by ¢ over S C Ry maybe under additional relations
of the form § < with integer s, t.

THEOREM 4.1. For all1 # j and r in S there is an automorphism of,, of
L with fizpoints a; + s and o 48k = (azjs)k for s in S™ and k # 5. Moreover,
094521 = (=8,1+57,0,...,0)4 and 5 1s a fizpoint if s € S with sr € Rs.

PROOF. Let ¢ = 1, 7 = 2. Consider a} = ry2, ¢}y = 7 ® 112, @}, = ak, and
¢ = ciy for k,0 > 1. By Lemma 2.1 these elements give rise to an n-frame ¢’ of
L. Fix k,l > 1. We claim that the coordinate rings Ry and Ry coincide. This
is obvious for the underlying sets, zero, and unit. For n > 4 we use the fact that
addition and multiplication can be defined without the index 1. Now, let n = 3.
The spanning 3-diamonds (z,y, z,t) and (T, 7, z,t), with 2z = a3, t = ¢32, £ = ¢12,
Yy = a1, T = cly, § = af, yield the same coordinate domain D = R3p4 = R324
in the Day-Pickering construction [8]. Moreover, the hypotheses of Lemmas 3.4
and 3.7 in [8] are satisfied, which means both 3-diamonds induce the same ring
structure on D in the Day-Pickering version. In view of Lemmas 3.5 and 3.14 of
(8] this carries over to the von Neumann version. Similarly, for Ro3s and Raze
consider z = ag, t = c32, T = ¢13, Yy = a1, T = ¢y3, and § = a}. Since

ci3 = (ci2 + ca3)(a} +a3) = (r @ Liz + c23)(r12 + a3)
= [(r12 + a3)(c13 + a2) + c23)(r12 + a3) = (r12 + a3)(c13 + a2),
by definition of addition the independence results for the ring structure given in A.
Day [5, Part III] apply.

Also for n = 3, associating with ¢ and ¢’ dual 3-frames ¢* and ¢’* as in Lemma
2.6 we have the coordinate rings Ry34+ and Rj3e- coincide. Namely, cf5 = c13 +
az = cjs, Ay = a2 + a3 = aj, a§ = ri2 + a2 = a1 + a2 = a3, ay = r3;, and
¢y =7 @ 13,. Thus, the claim follows from the above by duality and symmetry.

Finally, §4 < t4 for each of the additional relations § < ¢. This is a consequence
of (39) and §23¢,/ = S93a3 < (t32 + a3)a2 = (t32¢/ + a’3)a’2.

Now, in view of Theorem 2.2 (and (2.6)) L is freely generated by ¢ and the sy
(and Sizp ifn = 3), with s € S, k,l > 1, subject to the frame relations, the relations
of the rings Sk (and Sisg-), the relations given by the canonical isomorphisms
between them, and the additional relations. These relations are satisfied by ¢’
and skip = Skier (and Si3g = s’{3¢,) too, as we just showed. Hence there is an
endomorphism « = aj,4 of L mapping ¢ onto ¢’ and fixing the ski4 (and si;, if
n =3) for sin S and k,! > 1. In particular, aa; = r12 and aci2 =7 @ 1;2.

We claim that as + si; is a fixpoint for k£ > 2. For n = 3 this is so, since

813 = (s31¢13 +a3a3)ciy + aja3 = (Os32 +a1) (c12 + a3) + a2 = s31 + az,
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using (2.5) twice. For n > 4 observe that the automorphism oj,,, h # k, of Lemma
2.5 coincides with « on the sublattice generated by a;, ¢12, a2, and the si2 (s € S)
since it does so on the generators. It follows that

asy = (aja} + sk)(riz + ajada) + siy) H (ajar + sij) = (08)g
2<5#k
for k > 2 since
ajajal + (ag + spy)(ri2 + s35) = ajada; + (a2 + sk ) (a1 + 52 © s* @ rea)
= (alaj + si1)(a3a; + s° © 5! @ ria)

by (2.5). In particular, as + sk is a fixpoint. From s12 = (a3 + a2)(c1k + Sk2) one

derives
asiz = (a1 + ag) [(a2 + ck1) (a1 + Orkz) + sk2)

= (a1 +a2)(s®ri2 + ck1) = s P12
by (2.3). Since ¢ U Si2 generates L, it is clear now that o}, is the inverse auto-
morphism. From s;x = (s12 + c2k)(a1 + ax) one gets
asik = (s D riz + cak)(r12 + ax) = (a2 + s1k)(r12 + ax)

by (2.2) and (2.5). It follows that ag + sy is a fixpoint,

as; = (ajal + 525 + 712) H(a’{a,: +55) = (a8),,
k>2
and az + 8 is a fixpoint too.
Obviously, the 3a; = a;(a; + s;;) are fixed under a for sin S, 7 # 1. If sr € Rs
we derive with Lemma 2.4,

a(sa; + 3az) = af(a; + az)(as + s31)) + Saz
= (a1 + a2)[a3 +(a1+s® T32)((12 + 831)] + (a1 + az)(ag + 832)
= 3a; + sas.
Hence, s =Y Sa; is a fixpoint.
Finally, using (2.5) twice one has
a3 + sg1 = (a1 +c32)(a3 + s21) + a3 = az + (a1 + ¢32) (a2 + ©s31)
=a3+ (a2 +6s31) (Or12 + 1 ® s @ 732),
whence
as21 = af(ay + az)(az + s21))
= (a1 + a2) (a3 + (a2 + ©s31) (a1 + 1D s @ r32)]. O
THEOREM 4.2. For alli and invertible ¢ in S C Ry there s an automorphism
Kqis Of L with pgipsSik = q @ Sik, KqeipSk = (Kqi8)k for k # 1. Moreover, if n =3
and L Arguesian then a; +8; ts a fizpoint and pqip8s = (1qi8)s-

PROOF. Let ©+ = 1. As in the proof of Theorem 4.1 consider a new frame ¢’
with a] = a;, ¢}, = qu2, and ¢}, = ¢k for k,I > 1. Indeed, by (2.1) this yields a
frame and, as before, Ry, coincides with Ry for k,! > 1 and the relations § < ¢
are transferred from ¢ to ¢’. Hence, there exists an endomorphism p = fig;4 of L
mapping ¢ onto ¢’ and fixing the sg; for s in S, k,1 > 1.
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For k > 2 and s in S one has

psie = p((c12 + s2k) (a1 + ak)) = (q12 + s2k) (a1 + a3) = ¢ ® s1x

and

us1z = p((s13 + ca2)(a1 +a2)) = (¢ ® s13 + ¢32) (a1 + a2) = ¢ ® s12.
Thus, p1/41¢ is the inverse of . Moreover, by (2.1)

pskr = p((sk + cu)(ar + ak)) = (s + qu)(ar + ak)
= (se +1/qu)(a1 + ax) = s/qk1-

Hence, usx = (us)x for k # 1. Finally, if n = 3 then a; + s; is a fixpoint by (2.4)
and one concludes that us, = (us)y. O

PROOF OF THEOREM 2.7. If n < 4 then by Lemmas 3.5 and 3.6 one has
8¢ = (ai +a; +8;) [[4, j(ax + s) for all s in S™, whence af;,s = (a];8)y and
Kqis8s = (Kqi8)s by Theorems 4.1 and 4.2. Let n = 3 and L Arguesian. One has
8¢ = qtx, choosing k such that s* = —q, t* = —1, and s* = gt* for all i—which is
possible since S is uniserial. Namely, by (3.10) s, < @, and by (2.4) a;+8; < a;+t;.

Thus in view of Lemma 3.8 it suffices to show g(a; +s;) = g(a; +t;) for j # k. By
Theorem 4.1 the transformation a,:it(; (v # 7, k) reduces this to

7(a; + 6g5k) = qla; + &%) = qla; + t5) = qla; + ax),
which is valid, obviously, by (3.8).

Again, consider a = of, only. By Theorrem 4.1 ag = g and, for k # 2,
asy = gatxy = G(at)r = (as)s. Now, assume k = 2 is the only possible choice,
in particglar, t! is not invertible. Since S is local 1+ t!r has an inverse u. Applica-
tion of abs,, to the instance (a3 +u®t};)(a2+r®t3;) = (az+udts;) (a1 +udt?6t3;)
of (2.5) yields

(a3 +u®t31)(r12 + t33) = (a3 + u®t3;) (a1 + u®135)
since .
gy (ri2 +133) = (ag + 1 @ t]3)(a3 +112) +az = ay + 7 @ t];

by Theorem 4.1. It follows that
aty = [as + (az + Ot},) (a1 + u2s)] (r1i2 +t33) = (ut)2

with (2.1) and (2.5). Consequently, asy = g(ut', —1,ut®)2 = (as)y. The p’s have
already been dealt with in Theorem 4.2. O

Finally, we have completed the proofs for the claims of §2. In particular, from
Corollaries 2.10, 3.4 and Lemma 3.5 we get

COROLLARY 4.3. Let L be generated by an n-frame of characteristic m # 0,
e.g. by a reduced frame ¢,,. Then L 1s a subdirect product of lattices L(Z;‘k) with

p* dividing m, p prime, and the image of the generating frame being canonical. O
THEOREM 4.4. Let L be freely generated by an n-frame ¢ subject to all relations

§ <1, s,t >0 integers. Then Z is a subring of Ry and there ts a homomorphism
Y — g of the automorphism group GL(n, Z) of Z™ into that of L such that 1484 =
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(¢8)g for each s in Z™ with s',... s™ relatively prime. Moreover, all § and 3
(s € Z) are fizpoints of V.

PROOF. Of course, R, has characteristic 0 and contains Z since L(qQ™) is a
homomorphic image of L. Again, it suffices to consider the elementary maps pq;
and of;. Here, ¢ = +1 and because of symmetry and the fact that a;; is a power of
al. we have to deal with & = al, only. That § and 5 are fixpoints of u_1; is obvious
by (3.5) and (3.8). Also a5 = 5 by Theorem 4.1 and a(3a;) = a(s;ja;) = 3a; for
1 # 1. Since a(8a;) = a(ai(Saz +6112)) = c12(8a2 + a1) = Sc12 by (3.2) and (3.3),
we get as = § by (3.1).

The case n > 4 is settled by Theorems 4.1 and 4.2 if we can apply Lemma 3.6,
i.e. if the Sa; (s € Z, s # 0) generate a distributive sublattice of L. Indeed, by
(3.5) any finite collection belongs to the interval [0, @a,] of the sublattice generated
by ¢u, u # 0 a common multiple of the associated integers, and this interval is
distributive in view of Corollary 4.3.

Now let us deal with n = 3 and L Arguesian. Theorem 4.2 tells all about
Ugi- Recall that, e.g., (—1,s,t) = (1,—s,—t) = (a3 + s12)(a2 + t13),(0,s,t) =
(a2 + a3)(a1 + (-1,s,t)), and ay + (0,s,t) = a1 + (—1,s,t) by Lemma 3.8 and
Proposition 2.3—we omit the subscript ¢ where no confusion is possible. Now, for
fixedr,sand tin Z let A = ¢;2+(—1,s+1,t), B = a2+(r,0,t), C = ag+(r,s—r,0),
and D = a; + (0,s — r,t). Then (a(r,s,t)), = DBC. On the other hand we show
aB = B whence «(r,s,t), = ABC by Theorem 4.1. Thus, we have to show
ABC = DBC for r,s,t relatively prime. We break the calculation into a series of
steps.

(4.1) aB = B.

PROOF. Let X = (c12 + to3)(as + (r,—r — 1,0)). By Theorem 4.1 one has
aB = a; + X. The inequality X < B is the CP-statement for the normal triangles
ag, tas, (r,—1,t) and (r,—r—1, —1),c;2,az. Since L is Arguesian it suffices to derive
the AP-statement, which is a consequence of Y < a; + (as + ro1)(az + r31), where
Y = (az +a3)(ci2 + (r, —r — 1,—1)). Since a33'Y = r3, the latter is obtained from
as < ay +r3; < ay + (c32 + r21)(az + r31) by the transformation al,.

Consequently a; + X < B. Equality follows since both sides are complements of
az + a3 in [(ag + ag)B, ag + az + r21]. Indeed, Proposition 2.3 yields a2 + a3 + X =
as + a3 + ra1, and by (3.3) one has

(az + a3)B = az + taz(asz + r21(az + a3)) = a2 + ta34, -
By Corollary 4.3, evaluating X over ¢, we have (r,—r — 1,0)4, = ag4,, whence
Xo, > taze, and ag + toze, <az + X.
(4.2) (a; + skj)(ak + Sij) = (61 + a]-) (ak + 8,‘]‘) + Sag.

PROOF. Leti =1, 7 = 2, k = 3. Both sides of the identity are complements of a3
in [3a3,a3+s;2]. Hence by (2.5) it suffices to show aj+s32 > (s©113+c23)(az+s12)-
This is CP for the normal triangles s© 1,3, as, s32 and cz23, S12,a;. We have to prove
AP which is s;3 < Sag + (s32 + s © 113)(a; + c23) and reduces to a; < X with
X = Sap + (s32 + ©l13) (6513 + ¢23) via the transformation aj3. But, by (2.2)
and (3.8),

X =3as + (Os12 + ©113) (0812 + 223) > (a1 + ©s12) a2 + Os12 > a;.
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(43) AC < D + §ty3.
PROOF. This is CP for the normal triangles cy2,(r,s — r,—1),a; and (-1,s +

1,t),a3,(—1,s — r,t) + §t13. AP is implied by X <Y, where

X = (c12+ (r,s —1r,—1))(az + s ® 112)
and

Y =(a; +56r32)(az +sOr12) + 3a; + ag
—since a3 + §t13 = az + Sa; by (3.1). Now, by Theorem 4.1
a™'X = (a1 + (r,s,—1))(a3 + s12) = (a1 + s32)(as + s12),

whence X = (—1,s+ 1,—-1) + 3a; by (4.2). Thus, by (4.2), Lemma 3.1, and (2.1)
Y >06l113+az+ 5a; > X.

(44) (a1 +(0,s+1,t))(az +(-r—2,5+1,0)) <ci2 + ars + 1+ (=1,s —r,t).

PROOF. This is CP for the normal triangles a;,(—r — 2,s + 1,—1),¢;2 and
(-1,s+1,t),a3,(-1,s—r, t)+agsT1—use (3.1). APisaconsequenceof X <Y+2Z,
where X = (-1,s+ 1,-1), Y = (a1 + a2)((-1,s + 1,t) + (-1,s — n,t)), and
Z =(az+sOr2)(ci2+ (-r—2,5+1,-1)). Now, by Theorems 4.1 and (4.2)

a'Z=(az+s0rol)(a;+(-r—2,5—r—1,-1))

=(az+s6r6112)(a1 +s61rS132)
=(-1L,s—r—1,-1)4a3z(s—r-1)".

Therefore, o~ 1% transforms X <Y + Z into

6li3 < (a1 +a2)(tis +(-1,-r—1,t))+(-1,-r—=1,-1) +as(s—r—1)7,

which is an easy consequence of modularity.

(45) (a1 +a2)((-1,s+ 1,t) + (r,—1,1))
< (a1 4+ a2)((=1, -1, -1) + (=r — 2,5+ 1,-1)) + s ® 1;2L.

PROOF. In view of (2.3) this is a consequence of CP for the normal triangles
az,(—1,84+1,t),(-1,s+1,-1)+ s ® 12t and ay, (r, —1,t), (r, —1,—1). Due to the
fact that ap + s @ 112t = ag + ta; by (3.1), and due to (4.2), AP follows from
(-1,—-1,t) + tay < (-1,—1,—1) + ta; + X, where

X = (a3 +s® 112)((—1,8 +1, —1) + a9 + tlg)(a3 + 7'21)((7', -1, —1) +a; + t23).

Now X > Y = a3 (az + ©l13 + t13) (a1 + ©123 + t23) and the transformation o'
maps (—1,-1,—1) + Y onto

© 123 + a3 (c12 + Oliz + t13) (a1 + Olas + t23)
= (a3 + Ola3) (c12 + Blaz + t23) (a1 + Slag + ta3) > tas,
the image of (—1,—1,¢)—use (2.1) and (2.2)!
(4.6) AB< D+ F +as(ts+t)~ for F=(a; +t23)(—1,5+ 1,t).

PROOF. This is the CP-statement for the normal triangles ¢y2, a2, (—1,5—r,t)+
ci2(ts+t)~ and (—1,s+1,t),(r,—1,t),a1+ F. By (4.5) and (4.4) the AP-statement
is a consequence of

(zo+z1)(yo+y1) +5 Ligt < (ag + t13)(a; + taz) + (zo + 22)(y2 + Yo)-
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where o = a1, 21 = a2, 22 = (-1,s + 1,t), yo = (-r — 2,5+ 1,-1), y; =
(-1,-1,-1), and y2 = a3. Now,

(a2 + t13)(a1 + t23) = (—1, —l,t) + 11:0,1 + t~a2
= (y1 + y2)(z1 + 72) + t(a1 + a2)

by (4.2). Hence, it suffices to verify that x and y are axially perspective. But, the
CP-statement for x and y is (a1 +s® 132)(a2 +61;3) < az+sD1;2, a consequence
of (2.5).

(4.7) w(a; + 8;) < Da; + 859, for us's?s® dividing v.

PROOF. Leti=1,8 = (r,s,t). By (3.5) we have a, (512 +uz3a2) < a;—su < .
Application of o® yields sj2(a; +as+u) = s12(a; +uz3az) < ¥ since ¥ is a fixpoint.
Similarly, ¢;3(a; + a2 + @) < 9. Therefore one has

a(ay + (=1,s,t)) < Dfay + (a3 + 9s12)(az + Vt13)]
= O[a1 + (Vaz + Us12)(Vaz + Ut13)] = vag + (—1,,t)4, -
(4.8) F <D+ day; forv=tt(s+1)(s+2)#0.
PROOF. By (4.2) we have
F = (a3 + t13) (a3 +O6l12 + faz) (as + s @ 1;2)
= (a2 + t13) (a3 + (0112 + taz) s ® 112) .
For u = t(s + 2) it follows that
oF = (ag + t13)(as + (a1 + taz)s ® 212) < (a2 + t13)(a3 + da; + taz)
= ti3(az + @ay) + tag = it;3 + tag < 4

by (3.7), (3.8), and (3.5). Consequently, by (4.7), F = Fy, and by Corollary 4.3 it
suffices to verify F' < D + va; in the lattices L(Z;‘k), p* dividing v. But in such,

D+%vay=D+az=a;+az+t13>F.

(4.9) BC < D+7a3+G for G = (ag + t13)(r,s — r,—1).

PROOF. This is CP for the normal triangles aq, (r, s—r, —1), (=1, s—7,t)+G and
(r,—1,t),a3,a1 +7a3. Now, (az+t13)(a1+7as+ta3) > Faz by (3.1). Hence, in view
of (4.2), AP for these triangles is a consequence of AP for (r,s —r,—1),a2,(—1,5—
r,t) and a1, (—1,—-1,—-1),a3. But, here CP is (a; +56732)(az+61;3) < az+sOr12,
which follows from (2.5).

(4.10) G<D+uaz foru=rt—1.
PROOF. By Theorem 4.1 we have
as(ra1t13) = ai(r,0,u) = ay(ag + r21(faz + a1)) < diay,
whence G < (az + @(a; + a3))(a1 + s © r3z) < . It follows that
G <ta;+usOr3y < Dy, +taz < D + uas.

(4.11) a(r,s,t) < (r,s —r,t) implies a(—r,—s,t) < (=1, —s,t).
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PROOF. One has apu_13 = p-13@, since by Theorems 4.1 and 4.2 this is the
case on a generating subset of ¢. Therefore, one gets with Lemma 3.8

a(_ra —S,t) = aﬂ-—-lS(ras,t) = u—13a(,rv Sat) < /14—13(Ta s§—, t) = (—T,T - S,t).

(4.12) afr,—s,t) < (r,—s —r,t) implies o '(rs,t) < (r,s+7t).
PROOF. Due to Theorem 4.1 and (4.1) the first inequality is
(12 + (-1,1=s,t))B(ag + (r,—s — 1,0)) < (r,—s — r,t)
and the second is
(eliz+(-1,s—1,t)) Blaz + (r,s + r,0)) < (r,s + 1, t).
The automorphism y_;2 from Theorem 4.2 transforms one into the other.
(4.13) afe(8p) < (af;8)s

for e = +1 and relatively prime s!,s2, s3 with (a) s’ odd, (b) s* even, or (c) s’
mod 4.

PROOF. Because of symmetry and (4.12) it suffices to consider z = 1, j = 2,
and e = 1. Let s = (r,s,t). By Theorem 4.1 and (4.1) one has a(r, s,t) = ABC and
(r,s —r,t) = DBC. For t = 0,1 the claim follows immediately from Proposition
2.3 and Theorem 4.1. If r = 0 then B < a; + a3 and AB < D is a consequence of
(2.3). Thus, one may assume t # 0,£1, r # 0, and s > 0—in view of (4.11). (4.3),
(4.5), (4.9), and (4.10) jointly imply ABC < D + X, where

X = (D + F + Gaz)(D + 3a3)(tag + Fas)

with ¢ = (s+ 1)t # 0 and u = rt — 1 # 0. It suffices to show X < D. Recall that
F < D + day with v = gt(s +2) # 0 by (4.7). In particular, for r = s it follows
that D+ X < D +a2(D + a3) < D + az(a; + ag) = D. Thus, assume s — r # 0.
Then with (3.5) and (4.7) one derives X < X,  for a suitable w # 0—observe that
X = (D + F + gaz2)(@ag + 7a3) if s = 0! Hence in view of Corollary 4.3 it suffices
to check X < D in the lattices L(ng).

Now, if pts, then s is invertible in Z,, whence § = 0. Thus, suppose p | 5. If
p | t then pfu and ptr since r,s,t are relatively prime and 4 = 7 = 0 follows. If
ptt and p # 2 then ptv and ¥ = 0. This leaves us to consider the case p = 2,
5 =0 mod4 and t odd. Here, one has ¢ = 0 and it suffices to show F < D. But
F consists of the triplets (z,y, ) of elements in Z,« satisfying z = —ty = —tz and
y = —(s + 1)z. Since ¢ is invertible in Zyx it follows that z = y and (s +2)z =0
for any such. Hence one has F' < Fy,_, and it suffices to verify F' < D for lattices
L(Z3.) with 2™ dividing s + 2. Since 4 | s by hypothesis, one gets m = 1 and
F= Z2(61 + ey + 63) < Zper + Z2(62 + 63) = D, finally.

0

il

(4.14) a1 = azd ofsaders ifef =1
PROOF. This is easily checked on a suitable generating subset of ¢ by means of
Theorem 4.1.

(4.15) o;;4(8¢) < (@f;8)¢ for e =£1 and relatively prime st 8%, 83,

PROOF. By symmetry, (4.11), and (4.13) it suffices to consider ¢ = 1, j = 2,
e =1, t odd, s = 2 mod 4, and the following two cases where s = (r,s,t). Case . r
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is even. Case Il. r is odd. Choose e = —1 in Case I and e such that t+er = 2 mod 4
in Case II. In both cases choose f such that ef = 1. Then by (4.14) and (4.13) one
has

ajg(r, s, t) = a§2fa‘i3a£2a1_§('r, s,t) < a§2faﬁ3a£2(r, s,t+er)
< anga‘§3(r,s —r— ftit+er) < a}_,f(r,s —r— ft,t) < (r,s—r1,t).

Hereby, in Case I we apply (b), (b), (a), (a) and in Case II we apply (a), Case I,
(b), (c) observing s — r — ft = 0 mod 4.

PROOF OF THEOREM 4.4. By (4.15) one derives o554(8¢) < (ai58)p =
aij¢a;j;(aijs) < ay54(8), whence equality. O

The group GL(n, Z) operates on L(oQ™) naturally. In particular, for each k it
operates transitively on the set of subspaces of dimension k.

LEMMA 4.5. There us an order preserving map k of L(QQ™) into L, the lattice
freely generated by an n-frame with § <7 (r,s > 0 integer), such that YexU = kypU
for allU in L(oQ™) and ¢ in GL(n, Z) and, moreover, K’(Eigk Qe;) = Eigk a;.

PROOF. Let nU consist of all 8 in Z™ belonging to U with relatively prime
coefficients. We claim that kU = ) (sy | 8 € nU) exists and is mapped onto
Y i<k @i under 9y if YU = 3., Qe;. Indeed, for each s in 7U we have, by
Theorem 4.4, ¢84 = ty with ¢/ = 0 for 7 > k, whence Y484 < > .., ai by Propo-
sition 2.3. On the other hand ¢ ~le; € 7U for i < k, whence kypU = Yoi<k G0 =
S (¥484 | 8 € wU). Therefore, kU exists. The compatibility with arbitrary o
follows from Theorem 4.4 immediately. O

5. Frames of characteristic 0. In this section let L be generated by an
n-frame ¢. If p is a homomorphism of L onto a lattice freely generated by an
n-frame of characteristic m # 0 then by Corollary 4.3 the restrictions of ¢ to the
sublattices (¢,,) and (¢™) are isomorphisms and their inverses provide the lower
and upper bounds for preimages under . Since frames are projective configurations
for modular lattices (Huhn [22]) we have that lattices generated by n-frames of
finite characteristic m are bounded homomorphic images of free lattices, splitting,
and have a finite projective cover—the lattice freely generated by an n-frame of
characteristic m. Of course, we refer to the variety of modular lattices—Arguesian
for n = 3.

LEMMA 5.1. For each k and prime p there is a subdirect decomposition of L
into lattices L(Z7), | < k, and a lattice L' with image ¢’ of ¢ such that (¢;k) s a
homomorphic image of L( ;‘k).

PROOF BY INDUCTION ON k. In the inductive step k — 1 — k, let m = p*~1.
We may assume L is freely generated by ¢ such that (¢,,) = S is isomorphic to
L(Z}). Let M = (¢,x). Then by (3.5) S is a sublattice of M and there is an
endomorphism of L onto M with oz < z for all z in L. In view of Corollary 4.3 M
is a subdirect product of S and L(Z"). Let m; and 72 be the associated projections,
6 the kernel of m;p. By the above, the 6-classes are bounded by maps ¢ = idg and
v. Let 9 be the congruence generated by the quotients oz/ozyy where z/y is a
prime quotient in S. then 6 N4 = id, —cf. [32] and Proposition A.1.

To see that this yields the subdirect decomposition looked for, we only have to
verify M/y | M = L(Z},). Now, M/6 | M = S and M is a subdirect product of
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two factors only. Hence it suffices to show that ¢ | M is nontrivial. Let z/y be a
prime quotient in S. ¢ and ¢~ are the bound maps for 7; whence oz covers pyyozx
in M. On the other hand oz > yyox > pyyoz, whence yyoxr = pyyoz, providing
a proper quotient in ¢ | M. O

LEMMA 5.2. The following are equivalent for given L:

(i) L has no subdirect factor L(Z;]k), p prime, k < 00.
(i) L satisfies all relations ¥ <5, r,s > 0 integer.
(i) (¢m) C L is a homomorphic image of L(Z2) for all m > 0.

PROOF. (ii) implies (i), obviously. Assume (i) and let m = [] p¥* the prime
factor decomposition of m. Then (q&p;_ci) is a homomorphic image of L(Z" ) and

(d)m) of L(Z7) by Lemma 5.1 and 3.5. Finally, assuming (iii), let m = rs. Then
7 < § holds in (¢.,) and, by (3.5), in L too. O

LEMMA 5.3. If L satisfies7 =0 and 7 =1 for allr > 0 then L is a homomor-
phic tmage of L(QQ").

PROOF. Let L be subdirectly irreducible. By (2.1) all integers are invertible in
R and we can apply Theorem 2.9 to the subring S = Q of Ry. O

Let T denote the direct sum of the groups Zp~ considered as a subgroup of the
unit circle and L.(T") the lattice of closed subgroups of T™. Recall that L.(T™)
is dually isomorphic to L(Z™). In particular, it is generated by its canonical frame
¢

LEMMA 5.4. Let ¢ satisfy 7 <35 for all r,s > 0 and let L be embedded into its
vdeal lattice I(L). Let ug be the ideal generated by all elements a7 (r > 0), and
du the assoctated reduced frame. Then u = Y 7 and the sublattice (¢,) of I(L)
generated by ¢, is a homomorphic image of L.(T™). Moreover, the up, = Y, p*
are independent central elements in the sublattice they generate together with ¢,
and u =73 up.

PROOF. The first claim is obvious. Now the subgroup m of T™ consists of all
elements of order dividing m and is isomorphic to Z. By Lemma 5.2 we have a
homomorphism ¢, of the interval [0, m] of L.(T™) into L mapping the generating
frame ¢/, onto ¢,,. In view of (3.1) and (3.5) o, coincides on ¢, with o, for r
dividing m. Hence, 6 = |J,,, o is a homomorphism of the lattice of finite subgroups
of T™ into L. Finally, since I(L) is upper continuous, S = > (oU | U C S finite)
defines a homomorphism of L.(T™) into I(L) mapping ¢’ onto ¢,, and the properties
of the u, carry over. O

REMARK 5.5. If one dualises 5.4 then (¢, ) turns into the sublattice of the filter
lattice F(L) generated by the upper reduced frame ¢V arising from the filter v,
generated by the a,7 (r > 0). This is so since, in L, a3 4+ Fap = a3 + 3, by Lemma
26. O

LEMMA 5.6. Let L satisfy 7 <3 forallr,s >0. Thenu=Y F<v=][[, 7
are neutral elements in FI(L).

PROOF. We may assume L is generated freely. Then by Lemma 5.4 and Remark
5.5 (¢pu) = L.(T™) and (¢¥) = L(Z™). For r > 0 we have, by (3.1), ua; + ury2 =
u(aj +az) since T is divisible. Similarily, (v+a;)(v+ri2) = v since Z has no divisors
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of zero. By Jénsson [25] it follows that u,v,a;, and ri2 generate a distributive
sublattice. Therefore, ¢% = ¢’ satisfies ajr12¢» = u and a} + r12¢r = a} + a5 and
generates a sublattice isomorphic to L(gQ™) by Lemma 5.3. To simplify notation
let us identify each of these sublattices of L with the isomorphic concrete lattices
such that the generating frames turn into the canonical ones.

Let 0 be the congruence on L.(T") given by zfy if and only if [zy,z + y] has
finite length. L.(T™)/8 is isomorphic to L(oQ™) by Lemma 5.3. Since L.(T™) has
no infinite descending chains we get a join homomorphism o of L(gQ™) into L (T")
such that oz is the smallest preimage of  under the canonical epimorphism and
0¢' = ¢,. Similarily, we have a canonical meet preserving map v of L(oQ™) into
L(Z™) mapping ¢’ onto ¢".

We now apply Proposition A.4 with the map « defined in Lemma 4.5 to the
lattice generated by L, u, and v—which clearly suffices. Actually, we show that
u+ vkT =, ukz = oz, and v + kz = vz for all z in L(QQ").

First, we observe that for ¢ in GL(n, Z) the automorphism 4 of L (properly,
its extension to FI(L)) has fixpoints u and v. Also, ¥4 induces on (¢'), (¢,), and
(¢") the automorphisms which come from the action of 9 on the coordinatizing
modules—which has to be checked for elementary 3 only. Finally, Y40z = o9z
and Y4yz = Yz by construction of ¢ and ~.

Now, for given z choose y = > .., a’ and ® such that ¥y = z. Then ky =

2 i<k @i- By Lemmas 4.5 and 3.2 it follows that

u 4 VKT = Y (u + vKY) = Py = T,

ukT = Po(uky) = Vg Zuai =0z

i<k

and

v+ KT = Pp(v + KY) = Yy Zv+a,~ =~z. O
i<k

PROOF OF THEOREM 1.1. Let L be subdirectly irreducible and generated by
an n-frame ¢. If ¢ has finite characteristic then Corollary 4.3 applies. Otherwise,
it has characteristic 0, and by Lemmas 5.2 and 5.6 we have neutral elements u and
v in FI(L). Since L is subdirectly irreducible there are only three possible cases:
u=0,v=1o0ru=1o0rv=0. In the first, Lemma 5.3 applies. Now let u = 1.
Again, by Lemma 5.4 we have u, = 1 for one p and uq = 0 for all ¢ # p, and the
homomorphism ¢ maps the sublattice L.(Zjw) of L.(T™) onto L isomorphically.
Similarly, if v = 0 we get the dual of such using Remark 5.5. 0O

6. Frame generated subdirect products. By Theorem 1.1 every lattice
L generated by an n-frame ¢ of finite characteristic m is a subdirect product of
lattices L(Z;‘k), p prime and p* a divisor of m, and the image of ¢ is canonical.
Ifm=1]] pfi then the pf" are independent central elements and provide a direct
decomposition of L into factors of prime power characteristic. We have to describe
the latter. For h < [ there are two embeddings, opni and ~yphi, of L(Z;’h) into
L(Z;‘,), the first coming from the canonical isomorphism of Z.;, onto the subgroup

pl‘hZ:,, and the second from the canonical homomorphism of Z; onto Z,.
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LEMMA 6.1. Let I C N be finite and let L C Xeg L(Z;’i) be a subdirect

product generated by an n-frame ¢. Then L consists of all sequences (z; | © € I)
with oprzh < T < Yprixp for allh <1ln 1.

PROOF. By induction on the cardinality of I. Let 7 be minimal in [ and K =
I —{j}. Let L' be the frame generated subdirect product of the L(Z), k € K.
Then L is a subdirect product of L(Z;‘j) and L' with projections 7 and 1. Let o
and ~ be the two embeddings of L(Z;‘j) into L given by the reduced frames ¢,,; and

#? . It suffices to show (z,y) € L for Yoz <y < yz. Choose w in L with Yw =y
and let v = (w+ ox)yz in L. Then v = y and mv = z since roz =z =myz. O

Call an infinite matrix (zpx) with coefficients z,i € L(Z;’k) admissible if opihTpk
< zpn < YpknZpk for all k& < h. Call an admissible matrix low (high) if for each
p there is a k with opkrZpk = Tph (YpkrTpk = Tpr) for all b > k and if there are
only finitely many p for which there is a k with zp, # 0 (z,x # 1). Finally, call
(zpk) geometric if there is a system I of (in Z™) independent homogeneous linear
equations with relatively prime integer coefficients such that, for all p and k, =, is
the solution set of I' in Z;‘k.

THEOREM 6.2. The lattice freely generated by an n-frame ¢ is a subdirect prod-
uct of the lattices L(Z;‘k) consisting of all matrices of the form X+YU with X < U,
where X 1s low, U high, and Y geometric. Here, Y 1s uniquely determined.

PROOF. By Theorem 1.1 L belongs to the lattice variety generated by all sub-
group lattices of abelian groups, whence it is a subdirect product of L( ;‘k)’s by

[20, 4.1]. To see that every low matrix X belongs to L choose m such that p*
divides m if there is h > k with opkpTpk # Tpr. Then by Lemma 6.1 X belongs
to the sublattice of L generated by ¢,,. Dually, we get high matrices. Observe
that Y is of the form “low+geometric” if and only if there is an S in L.(T™) such
that ypx = SN Z]}, considering ZJ, as a subgroup of T™. Here, Y is geometric if
and only if S is complemented. Hence, every geometric matrix belongs to L and
one sees that the meet of matrices of the form “log+geometric” is again of this
form. With the dual observation it becomes clear that the matrices X + YU form
a sublattice which is just L. If X+ YU = X'+ Y'U’ then X +Y and X’ +Y" have
the same image in L.(T™), whence Y = Y’. O

COROLLARY 6.3. If L is freely generated by an n-frame ¢ then its coordinate
ring Ry is the ring of integers. O

Let 0pkoo and Ypkoo denote the canonical embeddings of L(Z ;‘k) into LC(ZI’,‘OO) and
L(q, Q%) and 0,000 and Ypeo0 the canonical homomorphism of these onto L(oQ™).
Recall that for fixed p every frame generated subdirect product of infinitely many
L(Z})’s has Lc(Zg) and L(q,Qp) as homomorphic images [20]. Hence, these
lattices and L(gQ™) may occur as redundant subdirect factors. Now define the
three types of matrices as above with components ranging through certain of the
lattices in Theorem 1.1 such that a low matrix is 0 in L(qQ™) and all L(q,Q5)
Then the description given in Theorem 6.2 generalizes to arbitrary frame generated
subdirect products. Moreover, let X consist of those p, p prime or 1, for which
L(g,Q7) or its dual is a subdirect factor of L. Let Y consist of all pF>1,p¢ X
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and k maximal, such that L(Z" ) is a subdirect factor of L. Then, denoting by @ x
the ring of all rationals with d%nommator prime to all p in X, we get

COROLLARY 6.4: The coordinate ring Ry of L generated by ¢ s Z, X Qx of
Y s finite, m =[] Y and, else, Qxuy. O

THEOREM 6.5. Let L be a lattice of finite length with n-frame ¢. Then L 1s
1somorphic to the direct product of finitely many lattices L; with n-frames ¢; each
of which has prime power characteristic or Q) as a subring of Ry, .

The explicit formulation of this result is due to Ralph Freese, who also gave a
proof independent of Theorem 1.1 and observed that, by the dimension formula for
r in Ry,

(6.1) air12 =0 ifand only if a; + 712 = ay + as.

PROOF. By Theorem 1.1 the sublattice L’ generated by ¢ is a subdirect product
of finitely many lattices L(Z;‘k), p prime, k < oo, and maybe L(gQ™). For a fixed
prime p choose k maximal such that L(Z;’,c) is a subdirect factor of L. Then, ¢
has characteristic p* and p is invertible in the coordinate ring R%k in L—since it

issoin L. Also, p* and p* are complements. (For that Freese gives a direct proof
choosmg k max1mal with p& # p*+1.) Of course, it suffices to show (for each p)
that p* and 7* are central elements in L.

Assume the contrary. Then by Proposition A.5 there are 7 and j such that p¥a;
and p* a; are not central in [0, pra; +p a]] and in view of the given perspectivities
we may assume ¢ = J = 1. Let z witness this fact, i.e. with ul = zp*ay + 27%a;,

= (z+p*a1)(z+P*a1), y1 = (w1 +5%a1)v1, and 21 = (u1 +P*a1)v1, we get that
ul < z, y1,21 < vy form a sublattice M3 of L. Since L has finite length we may
assume v; covers z, and z covers u; in L.

Now consider the reduced frames ¢;;, ¢y, and ¢%. y = u+vp*F and ¢}, arises from
#p+, whence it has characteristic dividing p* by Corollary 3.4. Similarly, z = u+vp*
and ¢} arises from ¢z, which implies by (6.1) and (2.1) that p is invertible in Rgy.
Also, y and z are complements in [u,v]. On the other hand y; + v and 2; +u cover
u and are perspective via z + u. Hence ¢, and ¢} provide 2n independent atoms
of [u,v], all of which are perspective. This means [u,v] is an irreducible (2n — 1)-
dimensional projective geometry and can be coordinatized over a skew field F'. In
particular, the intervals [u,y] and [u, 2] can both be coordinatized over F', and ¢}
and ¢¥ must have the same characteristic—that of F. This is a contradiction since
pis 0in Rgu and invertible in Ryy. DO

7. Finite basis versus finite generation. The proof of the Theorem 1.4
consists of constructing a family of lattices L,q, p and ¢ distinct primes, none
of which belongs to the variety generated by finite length modular lattices, but
an ultrapower of which belongs to the lattice variety My generated by rational
projective geometries.

To define Ly, let p and ¢q be fixed and » > 4. Let R,. denote the ring of
p-adic integers, V, the rank n free module over this ring, and L, its lattice of
submodules. Factorizing L; by the smallest lattice congruence which identifies all
elements of finite dual rank (i.e. all submodules of finite index) we obtain an (n—1)-
dimensional projective geometry over a field F' of characteristic 0—the reasoning in
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[20, 4.5] carries over. Since L; satisfies the ascending chain condition each 6-class
contains an upper bound. This establishes a meet preserving map v of L(Fg) into
L, matching the canonical frames. Also, observe that the #-class of vz consists
of all submodules U of V,, for which the quotient yz/U is finite. Therefore, each
f-class is countable and, L; being uncountable, F' must also be uncountable.

Actually, it is not hard to see that F is the field of p-adic numbers and that
the homomorphism of L; onto L;/6 is given by U — U ® Ry F. Just note that
this homomorphism induces a ring homomorphism of R,. = Ri24—¢ the canonical
frame of L;—with kernel a;, and that F' is flat as a R,--module.

Now let S be the nonmodular lattice L(Qg) with an extra element e added which
is between 0 and 1 and a complement of any other. There is a meet embedding of
S into L(F) which is the canonical embedding on the rational projective geometry
and sends e to a point which is on no rational hyperplane. For example, e can be
sent to a one-dimensional subspace spanned by a vector in F™ whose coordinates
are linearly independent over Q. Using the above, one obtains a meet embedding,
also denoted by ~, of S into L; which matches the canonical frames and maps e
onto a rank 1 free submodule of V,,. Thus, the interval [0, ~e] is dually isomorphic
to the ordinal w + 1.

Let Lo be the dual of L(V,) and the join preserving map o of the dual S¢ of S
into L° be defined dually. Identify S with S® in such a way that ¢ matches the
canonical frames of L(Qg) C S and Lo. By construction, [oe, 1] in Lo is isomorphic
to w + 1. Now consider the subset

APQ = U [(0’:13, O)a (la 71:)]

ze$s

of Lo x Ly which is obviously a sublattice. Observe that [(oe,0),(1,ve)] = w +1 X
(w + 1)® with complementary central elements (1,0) and (ce,~ve). Let € and e be
the upper and lower covers of oe and ~e in Lo and L, respectively. Obtain L,
from A,q by fitting in a new element e, into the interval [(ge, e), (€, ve)] = [e1, €3],
which is a complement of both e3 = (o€, ve) and e4 = (&, ¢), therein. This yields a
modular lattice Lp,. Denote by p* the prime succeeding p.

LEMMA 7.1. Every nontrinal ultraproduct of L,q+ s belongs to the lattice va-
riety generated by rational projective geometries.

Let us take care of the Ap,+’s first. There is an axiomatic correspondence be-
tween these lattices and the modules V,, V,,+ (together with their rings R,. and
R,+.) expressing that A,,+ is embedded into the direct product of L(V}) and the
dual of L(V,+).

Now let A be an ultraproduct of the A,,+’s over a nonprincipal ultrafilter, V'
and R the ultraproducts of the V,, and R,. over the same filter—which happen
to be the ultraproducts of the V,+ and R,+. too. Then, in view of the axiomatic
correspondence, A is embedded into the direct product of L(V') and its dual, L(V)
being the lattice of R-submodules of V. But in R every prime is invertible, which
means Q is a subring of R and we may consider V as a Q-module too, and L(Vg)
as a sublatice of L(Vq). Thinking of the dual of L(Vq) as being embedded into the
subspace lattice L(V3) of the vector space V§ dual to Vq, we have an embedding
of A into a direct product L(W;) x L(W5), W; and W, vector spaces over Q.
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Let L be the corresponding ultraproduct of the L,,+. Then A is a sublattice of
L. Add constants oe, ve, €, ¢, €; (0 < ¢ < 4) to the language denoting the above-
mentioned particular elements in each lattice L,,. Then the covering relations
between these are valid in L too, and the e; form a sublattice M3. Also, A is just
L with eg removed. Clearly, we can choose the vector spaces W; and W5 such that
the quotients €/0e and ~e/e have the same dimension. Having L(W;) x L(W3)
canonically embedded into L(W; &W,), we have A embedded therein too, and may
now choose for eg any of the common complements of e3 and e4 in the interval
[e1, e2] of L(W; @ W) to end up with an embedding of L into the subspace lattice
of a rational projective geometry.

LEMMA 7.2. No lattice Ly, belongs to a lattice variety generated by modular
lattices of finite length.

PROOF. Assume the contrary, i.e. there is a subdirect product M of modular
lattices of finite length having L,, as a homomorphic image. Now, L, has a span-
ning frame which is canonical in both components of A,, and a;¢/0 is projective
to 1/a} + P via a projectivity passing through the interval [e;,ez]. According to
Huhn [22] one can find a frame ¢: a;, ¢;; in M which is mapped onto this canonical
frame. By Wille [33] there is a proper quotient in M too, weakly projective into
a1G/0 and 1/a} + P now taken in M with respect to ¢. Clearly, we may assume
> ¢ =1and [] ¢ = 0. All this carries over to a subdirect factor L of M in which
this proper quotient is separated.

In other words, we have a subdirectly irreducible modular lattice L of finite
length with spanning frame ¢:a;, ¢;; and a proper quotient z/y weakly projective
into both a1G/0 and 1/a} + p. By Theorem 6.5 either ¢ or p is invertible in the
coordinate ring. In both cases one of the quotients collapses in view of (2.1), whence
z/y collapses too, a contradiction.

Now if V' is a finitely based variety containing My we have L,, in V for suitable p
and ¢, by Lemma 7.1, and V' cannot be generated by its finite-dimensional members
in view of Lemma 7.2. Thus we have proven Theorem 1.4.

Appendix. Subdirect decomposition methods.

PROPOSITION A.1. Let L and M be modular lattices, L of finite length and
M subdirectly irreductble. Let v (o) be a meet (join) homomorphism of L into M.
Suppose ox < ~x for all x in a generating set of L, and M is generated by the
unton of all intervals [oz,~z|, x in L. Then either 0 =~ s a homomorphism of L
onto M (and an isomorphism if L 1s subdirectly irreducible) or op < ~q holds for
all prime quotients p/q of L.

This is Proposition 7 in Wille [32] for a subdirectly irreducible L and Propo-
sition 1 in [16]. Just observe that oz < yz. Commonly, one drops the subdirect
irreducibility of M and thinks of M being freely generated under certain rela-
tions, L a particular model and oz < ~z the bounds of the preimage of = under
the canonical epimorphism. Then, a prime quotient of L is associated with the
prime quotient op + vq/vq of M, the congruence identifying this quotient and its
pseudocomplement. This method also appears in McKenzie [30] and Freese [9].
Also we use subdirect decompositions via neutral elements. The basic method has
been stated in (16, Proposition 2].
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PROPOSITION A.2. Let M be a modular lattice, u an element of M, S a maybe
nonmodular lattice, and o an order preserving map of S into M such that M 1s
generated by v and the tmage of o, T — uoax preserves joins, and * — u + ax
preserves meets. Then u is neutral in M.

PROPOSITION A.3. Let u < v be elements of a modular lattice M. Let S be
a lattice, o a join homomorphism and v a meet homomorphism of S into M such
that u + ox = vyx for all T in a generating subset of S. Assume T — u+ oz and
x — vyx are homomorphisms of S into M, and M 1s generated by the union of all
intervals [oz,vz], = in S. Then M decomposes subdirectly into a factor with u = v
and another one with ox =~z for allz in S.

PROOF. Clearly, u + oz = vz for all z in S since this holds on a generating
set. Let ¢ denote this homomorphism and S’ the factor lattice S/ker ¢. Consider
M being embeddded into its filter lattice F(M) and this embedded into its ideal
lattice IF(M). Observe that for a downward directed set X C M and for a in
F(M) we have a+ [[ X = [[(a + z | z € X) since F(M) is a lower continuous
lattice and the embedding of F(M) into IF(M) preserves arbitrary meets. For an
upward directed set X C M and an a in IF(M), we have a ) X = ) (az | z € X)
since IF(M) is an upper continuous lattice.

Now define, for X in S, 6'X = [[(oz|lz € X) and ¥X = ) (yz|z € X).
Then ¢’ is a join and 4’ a meet homomorphism of S’ into IF(M) and one has
ut+o’'X =ut+ox=vyy=vyX forall Xin S’ and z,y in X. Thus, X =u+c’'X
defines an injective homomorphism of S’ into IF(M) since X = ¢Y implies
pr=pyforzin XandyinY,ie X =Y.

Let M’ be the sublattice of IF(M) generated by the union of M, the image of
o', and the image of /. Define a relation 6 on M’ by

afb < Jan X in S’ with 0'X < a,b <~'X.

We claim 6 is a congruence relation on M’ with classes [0/ X, v X], X in §’. Namely,
assume a € [0’ X, ¥ X|N[0'Y,v'Y]. Put Z=X+Y. Then 0’Z < a <+ X, whence
VZ =u+0'Z = vy’ X = 1 X. On the other hand X < ¢Z since X < Z. It follows
that ¥ X = ¢Z and X = Z by the injectivity of . Symmetrically, we get Y = Z,
whence X = Y. Thus, 6 is a congruence relation on M. Then, the restriction
6| M is a congruence on M. By construction, afb and u < a < b < v jointly imply
u+ox < a < b < vyr for suitable z in S, whence a = b.

Let 7 denote the congruence on M generated by v/u. Then 7N 6@ | M is the
identical congruence idys on M. Otherwise there would be d > ¢ with ¢7d and cfd;
but ¢rd implies there is a proper subquotient b/a of v/u projective to a subquotient
of d/c (see [4, 10.2 and 10.3], whence afb, too, a contradiction. This yields the
subdirect decomposition we have looked for. O

PROPOSITION A.4. Let M be a modular lattice and u < v elements of M. Then
u and v are neutral in M provided there are a lattice S and an order preserving
map o of S into M having the following properties: a0 = 0; al = 1; the maps
T — uat, T — v+ ax, T— u+vax = v(u + az) are a join homomorphism, meet
homomorphism, and homomorphism, respectively; M 1s generated by u,v and the
1mage of .
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PROOF. Applying Proposition A.2 to S and the map z — vaz we have that u is
neutral in the sublattice it generates together with all vax (z in S). Similarily, v is
neutral in the sublattice generated by v and the u+ az (z in S). Now let S’ be the
modular lattice freely generated by the set {u,v}U S and o,~ the homomorphisms
of §' into M with ou = yu = u, ov = yv = v, 6 = vaz, and vz = u + azx for
z in S. By Proposition A.3 we have a subdirect decomposition of M into a factor
with u = v and a factor with ox = ~z for all z in S’. For the first, Proposition
A.2 yields the neutrality of v = v immediately. In the second we have u = 0 and
v = 1 substituting £ = 0g and £ = 1g in oz = yz. Hence, u and v are neutral in
M too. O

PROPOSITION A.5. Letay,...,an,b1,...,by be an independent set of elements
i a modular lattice M such that for all © and j the elements a; and b; are central
in the interval [0,a; + bj] of M. Then ) a; and ) b; are complementary central
elements in the interval [0, a; + Y b;].

The proof is by induction on n + m. Considering the case n = 2, m = 1, only,
write a = a1, b = ag, ¢ = by and let d be an arbitrary element of [0,a + b+ c]. By
hypothesis we have the relations

db+c)=bd+cd and a(b+d)+c(b+d)=(a+c)(b+d).
Consequently,
a+btcd=a+b+db+c)=a+b+(b+d)(b+c)>a+b+c(b+d)
=a+b+(a+c)b+d)=(a+b+d)(a+b+c)>d
and d(a + b) + dc = d(a + b + dc) = d, showing that d distributes with a + b and c.
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