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DIFFERENCE EQUATIONS, ISOPERIMETRIC
INEQUALITY AND TRANSIENCE OF

CERTAIN RANDOM WALKS

BY

JOZEF DODZIUK1

ABSTRACT. The difference Laplacian on a square lattice in Rn has been stud-

ied by many authors. In this paper an analogous difference operator is studied

for an arbitrary graph. It is shown that many properties of the Laplacian in

the continuous setting (e.g. the maximum principle, the Harnack inequality,

and Cheeger's bound for the lowest eigenvalue) hold for this difference oper-

ator. The difference Laplacian governs the random walk on a graph, just as

the Laplace operator governs the Brownian motion. As an application of the

theory of the difference Laplacian, it is shown that the random walk on a class

of graphs is transient.

The random walks we consider are defined as follows. Let K be a connected

graph (i.e. a one dimensional simplicial complex). For a vertex x E K, let m(x)

denote the number of edges emanating from x. The probability that a particle

moves from x to another vertex y E K is l/m(x) if x and y are connected by an

edge and it is zero otherwise. As observed by Courant, Friedrichs and Lewy [CFL]

for the case of a square lattice in the plane this random walk is intimately related

to the difference analog of the Laplacian

(0.1) A/(x) = £ f(y) - m(x)/(x),

where y ~ x means that x and y are connected by an edge. The operator A

defined by (0.1) and its relation to random walks have been studied extensively in

the case of a lattice in Rn (cf. e.g. [CFL, Du]). Replacing a lattice by a more

general graph corresponds to considering curved manifolds instead of flat ones in

the continuous setting. Our results are motivated by [Do], where transience of the

Brownian motion on certain manifolds was proved.

In the first section of this paper we show that many familiar facts (the Harnack

inequality, the maximum principle, Green's formula, positivity of the first eigenfunc-

tion) hold for the discrete Laplacian on an arbitrary graph. In the second section

we restrict our attention to graphs which, in a sense, correspond to manifolds of

bounded curvature satisfying certain isoperimetric inequality (cf. (2.1) and (2.2)).

We show that for such graphs there exists a positive function / defined on vertices

for which A/ < 0. Such functions are called superregular in [KSK] (we prefer to

call them superharmonic) and their existence implies that the random walk under

consideration is transient (cf. [KSK, Chapter 6, §1]), i.e. a particle starting from
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a vertex x escapes to infinity with probability one for every vertex x E K. The

proofs here are motivated by the proofs of corresponding facts in the smooth case.

In order to carry out this analogy we prove a counterpart of Cheeger's inequality

[C] for the discrete Laplacian. Finally in §3 we exhibit many graphs which satisfy

the geometric conditions required in §2.

1. The difference Laplacian. In this section K is an arbitrary graph, i.e. a

connected simplicial complex of one dimension. We denote by C°(K) the space of

all real valued 0-cochains, i.e. functions on vertices of K. Similarly, Cl (K) is the

space of all functions <p defined on oriented edges of K and satisfying

<p{[x,y[) = -<p{[y,x]),

where [x,y] denotes an oriented (directed) edge beginning at x and ending at y.

For every edge of K we fix, once and for all, a direction. Nothing will depend on

this choice, but it is convenient to make in order to write certain formulae below

in an unambiguous way. In what follows an edge will be understood to be an edge

with the chosen direction.

Assume now that K is finite. For fi,f2 E C°(K) and ip\,'p2 E Cl(K) we define

inner products as follows:

(1.1) (/l,/2) = £/l(x)/2(x),       (pi,P2) = 5>l(ff)-¥>2(*),
x a

where x ranges over all vertices of K, and a runs over the set of all edges of K.

The coboundary operator

(1.2) df([x,y[) = f(y)-f(x)

maps C°(K) into Cl(K). We define for / E C°(K),

(1.3) Af = -a"df,

where d* is the adjoint of d with respect to the inner products (1.1). A simple

calculation using (1.1)—(1.3) yields

LEMMA 1.4.   For every f E C°(K)

A/(x) = £/(y)-m(x)/(x),

where x ~ y indicates that x and y are connected by an edge and m(x) is the number

of edges emanating from x.

REMARK. If K is not finite we define A by the formula above.

DEFINITION 1.5. A cochain / E C°(K) is called superharmonic at a vertex x

if A/(x) < 0, i.e. if the value f(x) is greater than or equal to the arithmetic mean

of the values at neighboring vertices.

The following is an obvious analog of the maximum (minimum) principle.

LEMMA 1.6. Suppose f E C°(K) is superharmonic at x E K. If for every

neighboring vertex y ~ xf(y) > f(x), then f(y) = f(x) for y ~ x.

The proof is trivial.
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LEMMA 1.7 (HARNACK INEQUALITY). Suppose f eC°(K) is superharmonic

at x and y, where x ~ y, and / > 0. Then

¿/i*) ^ /(») z ™(*)/»-

PROOF. 0 > A/(x) = £M /(*) - m(x)/(x). Hence m(x)/(x) > £,„x /(*) >

f(y) because / > 0. By symmetry m(y)f(y) > /(x).

To state the analog of Green's formula we recall the notion of a relative cochain.

For a subcomplex L C K, C°(K, L) consists of those cochains / E C°(K) for which

f(x) = 0 whenever x E L. We define the Laplacian AKLf by the formula (0.1) if

x <£ L and AKfLf(x) - 0 for x G L. Since C7°(Zi,L) C C7°(Zi) the inner product

and the coboundary are defined for cochains in C°(K, L).

LEMMA 1.8.   Let f,gEC°(K,L).  Then

(AK,Lf,g) = -(df,dg) = (f,AKvLg).

PROOF. This can be calculated directly or derived by observing that

(AK,Lf,g) = (Af,g) = -(df,df)

since at the vertices x, where Ak-,l/(x) ^ A/(x), g(x) = 0.

Thus the operator -Ak,l on C°(K,L) is selfadjoint and nonnegative. The

following lemma is an analog of some familiar facts in the smooth case.

Lemma 1.9.
(a) the smallest eigenvalue X of -Ak,l is given by A = min((df,df)/(f,f)),

where the minimum is taken over f E C°(K,L)\{0}. Moreover, if (df,df)/(f,f) =

X, then AK,Lf + A/ = 0.
(b) Assume that the pair (K, L) is connected in the sense that every two vertices

x,y £ L can be joined by a chain of edges [x,yx], [yi,y2],..., [yn-i,yn], [yn,y] so

that yi $l L for i = 1,2,3,...,n. Then the multiplicity of X is one and we can

choose a positive eigencochain of — Ak,l belonging to X.

PROOF, (a) follows trivially from Lemma 1.8. Note that (/,/) = (|/|,|/|).

However, for / G C°(K, L),

(df,df)=    £  (f(x)-f(y))2

(1.10) ~+?
>    £  (\f(*)\-\f(v)\)2 = W\,d\f\)-

o=[x,y]

Thus (a) implies that if / G C°(K, L) belongs to A so does g = \f\. Hence g > 0 and

satisfies Ag = -Xg < 0. By Lemma 1.6 and by connectedness g(x) > 0 whenever

x ^ L. Suppose / takes both positive and negative values in K. By connectedness,

there exists an edge [x, y] such that f(x) ■ f(y) < 0. In this case the inequality in

(1.10) is strict, which contradicts Lemma 1.9(a). It follows that / cannot change

sign. Now suppose that A is not a simple eigenvalue. Let fx, f2 be two linearly

independent eigenfunctions of —Ak^l belonging to A. Choose a vertex x ^ L and

consider a linear map A: R2 —► R given by A(a, b) = afx(x) + bf2(x). This mapping

has a nontrivial kernel, i.e. there exists a nonzero eigenfunction belonging to A which

vanishes at x. We saw above that this is impossible. Thus A is a simple eigenvalue.
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COROLLARY 1.11. Suppose Lx C L2 C K. Let A¿, i = 1,2, be the smallest

eigenvalue of-A^L,-  Then Xx < X2.

PROOF. This follows immediately from the characterization of the smallest

eigenvalue in Lemma 1.9(a).

2. The analog of Cheeger's inequality and positive superharmonic

functions. In this section M denotes an infinite, connected graph. The formalism

of §1 can be applied to every finite subcomplex K of M. If K is such a graph, we

define dK, the boundary of K, to consist of those vertices x of K for which at least

one of the edges meeting at x is not in K, and of all edges of K spanned by such

vertices.

We make two geometric assumptions on M. The first one corresponds to bound-

edness of the curvature in the Riemannian setting. Namely, we assume that there

exists an integer m > 0 such that

(2.1) m(x)<m

for all vertices x G M.

The second assumption plays the role of an isoperimetric inequality (cf. [Do,

§2]). We require that there exists a constant a > 0 so that

(2.2) aV(K) < V(dK)

for all finite graphs K Ç M. Here V(L) stands for the number of vertices of L.

Theorem 2.3 is an analog of Cheeger's inequality [C]:

THEOREM 2.3. Suppose (2.1) and (2.2) are satisfied. If K is a finite subcom-

plex of M such that (K,dK) is connected (cf. Lemma 1.9(b)), then the smallest

eigenvalue X of —Ak,ôk satisfies X > a2/2m.

Before proving this theorem we will show that it implies that M carries a non-

constant positive superharmonic function (cochain).

THEOREM 2.4. Suppose M satisfies (2.1) and (2.2). There exists a positive

function f E C°(M) and a real number X > 0 so that A/ + A/ = 0. In particular

f is positive, superharmonic and nonconstant. Consequently, the random walk on

M is transient.

PROOF. Fix a vertex xo G M. Define Kn to be the complex consisting of those

vertices of M which can be joined to xo by a path consisting of at most n edges,

together with all edges spanned by these vertices. Clearly (Kn,dKn) is connected

for n = 1,2,..., and every finite subcomplex of M is contained in Kn for sufficiently

large n. Let A„ be the smallest eigenvalue of A¡(n,dKn, and let /„ G C°(Kn,dKn)

be the corresponding eigencochain normalized so that

(2.5) /„(xo) = 1.

By Corollary 1.11 and Theorem 2.3

a2
Xn > Xn+1 > —,

i.e. A = limn^oo A„ > 0.  The functions /„ satisfy A/„ = —Xnfn < 0 at interior

vertices of Kn, i.e. are superharmonic.   By the Harnack inequality the sequence
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{fn{x))n°=x is bounded at every vertex x of M (strictly speaking /„(x) is defined

only for sufficiently large n). Using the diagonal process we can find a subsequence

(fnk)kLi such that limfc^oo fnk(x) = f(x) exists for all x E M. We see that

A/ + Xf = 0. Moreover, by (2.5), f(x0) = 1. Hence / > 0, A/ < 0 and / is

not constant, since A/(xo) = -A/(xo) = -A < 0. By the maximum principle or

by repeated application of the Harnack inequality / is strictly positive everywhere.

The transience of the random walk on M is a consequence of Proposition 6.3,

Chapter 6 of [KSK].

PROOF OF THEOREM 2.3 Let / G C°(K,dK) be the eigencochain of -AK,dK

belonging to the smallest eigenvalue A. By Lemma (1.9)(a)

(2-6) X = (df,df)/(f,f).

Consider the expression A = Yla=\x y] l/2(x) ~~ P{y)\ where the summation is

extended over all edges a of K. Clearly

¿=£i/i>)+/(y)H/(*)-/(v)i

< (£ \f{x) + f{y)\2)1/2 ■ (£ |/(x) - f{y)\2)l/2

<V2(^(f2(x) + f2(y)))^2-(cf,df)x^.

In J2{f2{x) + f2{y)) every vertex contributes as many times as the number of edges

emanating from it. Hence, by (2.1),

(2.7) A<V2m-(f,f)1/2-(df,dfy/2.

On the other hand we can estimate A from below in terms of (/, /) as follows. Let

0 = ßo < ßx < ß2, < ■ ■ ■ < /3/v be the sequence of all values of /. Note that,

since A/ = -Xf < 0, every interior vertex x of K has a neighbor y such that

f(y) < f(x). Define Ll, i = 0,1,..., N, as follows. A vertex x of K is in Lx if

f{x) > ßi- An edge belongs to L¿ if both endpoints are in Lt. Now

t=l  f(x)=ßt   y~x,f(y)<ßi

If f(x) = ßi and f(y) = ßi-k for some k E {1,2,... ,i}, then, on the one hand,

P{x) - f2{y) = ß2 - ßU = {ß2 - ßU) + {ßU - ßU) + ■■■ + ißU+x - ßU)
and, on the other hand, x G <9L¿ n ¿9L¿_i n • ■ • CI dLi+X-k- It follows that

^EE {ß2-ßix) = Y.v^dLM-^y

Applying (2.2) we obtain

A>a¿^P?-Íi).
i=\

"Summation by parts" yields now

A > a j V(LN)ß2N + ¿ ßf(V(Li) - V(Li+1)) \ .
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A vertex x G Li\Li+x if and only if f(x) = ßi. Therefore A > a(f,f). This
inequality combined with (2.7) yields

,{df,df)^ a2

(/,/)   -2m

which proves the theorem.

REMARK. The proof above is patterned after the proof of Cheeger's inequality

in [C]. The expression A plays the role of |d(/2)| and the estimate (2.7) is analogous

to

M(/2)|<2/|d/|<2(|/|2)1/2.(|d/|2)l/2.

Finally, the inequality aV(L) < V(dL) enters into the proof in the way the analo-

gous isomperimetric inequality enters into Cheeger's proof.

3. An isoperimetric inequality. Suppose S is a simply connected Rieman-

nian surface of curvature bounded from above by a negative constant. It is well

known that for every open, relatively compact subset D of S with smooth boundary

(3.1) aA(D) < L(dD),

where a is a constant independent of D, A stands for area and L denotes length.

We shall derive a combinatorial analog of (3.1) and use it to exhibit many graphs

satisfying hypotheses of Theorem 2.4.

Let N be an oriented, triangulated, open surface without boundary. For a finite

subcomplex L of N, let V(L), E(L), F(L) denote the number of vertices, edges

and faces, respectively, of L. For such a subcomplex L define 6L to be the graph

consisting of those edges and vertices of L which are on the boundary of a triangle

not in L.

PROPOSITION 3.2. Suppose N is as above and suppose that m(x) > 7 for every

vertex x E N. If N is planar F(L) < 26E(6L) for every finite subcomplex L of N.

REMARK. The condition m(x) > 7 is the combinatorial analog of negative curva-

ture bounded away from zero. Planarity means that every cycle on N disconnects.

Equivalently (cf. [AhS, Chapter III, §4]) N is homeomorphic to a subset of the

plane.

PROOF OF PROPOSITION 3.2. We want to prove the inequality F(L) <

26E(SL). If L has edges or vertices which do not lie on the boundary of a tri-

angle in L, we can remove those edges and vertices and prove the inequality for the

resulting complex. Therefore we assume, with no loss of generality, that if a vertex

on an edge belongs to L, then one of the adjacent triangles does too. Since N is pla-

nar, we can assume that L is contained in the sphere S2. The Euler characteristic

x(L) satisfies

X{L) = V(L)-E(L) + F(L) = 2-n,

where n is the number of components of S2\L. Clearly n < E(6L) and

(3.3) E(6L) > n - 2 = E(L) - F(L) - V(L).

On the other hand, since m(x) > 7 for all vertices x G ZV,

3F(L)>7Vi(L) + V(6L),
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where V¿(L) denotes the number of interior vertices of L.  Since V(L) = Vi(L) +

V(6L), we obtain

(3.4) F(L)>7-V(L)-2V(6L).

Clearly 6L consists of circles (polygons to be exact) possibly touching at some

vertices. It follows that V(8L) < E(6L). Substituting this into (3.4) yields

(3.5) V(L) < Z-F(L) + 6-E(6L).

Moreover, if Ei(L) denotes the number of interior edges of L,

3F(L) = 2EZ(L) + E(6L) < 2E(L).

Together with (3.3) and (3.5) this gives

E(6L) > -F(L) - Z-F(L) - ^E(6L) + \f(L),

i.e. 26E(6L) > F(L).
REMARK. The method of proof of the proposition above is borrowed from [DB]

where an analogous inequality is proved in a somewhat different setting.

COROLLARY 3.6. Let N be a triangulated planar surface with the property that

m > m(x) > 7 at every vertex x of N, for an integer m independent of x. Then

V(dK) > V(K)/78m for every finite graph K contained in N.

PROOF. Given K define L to be the smallest complex containing K and all the

triangles of N all of whose edges are in K. According to the definitions of dK (cf.

beginning of §2) and 6L, the set of vertices of dK coincides with the set of vertices

of 6L. We can break L up into three parts, L = Lr, U L\ U L2, as follows. Lq is the

set of isolated vertices of L (i.e. of vertices x such that all the edges meeting at x

are not in L, hence not in K). Lx consists of all edges of K which are not on the

boundary of any triangle of L, and L2 is the remaining part of L.

Figure 1
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Clearly V(L2) < 3F(L2). By Proposition 3.2 F(L2) < 26E(6L2) so that

(3.7) V(L2) < 7SE(6L2).

Moreover 2E(6L2) < mV(SL2) and, therefore

(3.8) V(L2) < o9mV(6L2).

Obviously dK = L0 U Lx U 6L2 and Lx can have some vertices in common with

6L2. Therefore

(3.9) V(dK) > l-(V(L0) + V(LX) + V(6L2)).

Similarly, since the sets of vertices of K and L are equal,

(3.10) V(K) = V(L) < V(L0) + V(LX) + V(L2).

(3.8), (3.9) and (3.10) yield V(dK) > V(K)/78m, which completes the proof.
REMARK. Triangulations satisfying assumptions of Corollary 3.6 (and, hence,

satisfying (2.1) and (2.2)) occur naturally on planar surfaces which cover compact,

oriented surfaces without boundary of genus g > 1. The simplest example is the

plane (realized as the hyperbolic plane) with a tesselation into regular (in the sense

of hyperbolic geometry) octagons. To manufacture a triangulation we subdivide

every octagon as shown in Figure 2. The resulting triangulation has two classes

of vertices with m(x) equal to 8 and 16 respectively since eight octagons meet at

every vertex of the original tesselation.

0
Figure 2
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