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TENSOR PRODUCTS FOR THE DESITTER GROUP

BY

ROBERT P. MARTIN

ABSTRACT. The decomposition of the tensor product of a principal series

representation with any other irreducible unitary representation of G is de-

termined for the simply connected double covering, G = Spin(4,1), of the

DeSitter group.

Introduction. Let G = Spin(4,1) be the simply connected double covering of

the DeSitter group, G = KAN an Iwasawa decomposition of G, M the centralizer

of A in K, and P = MAN the associated minimal parabolic subgroup. The finite-

dimensional irreducible representations S of P (nonunitary as well as unitary) and

the analysis of the induced representations Indp S, via the intertwining operators

of Knapp and Stein in [8] and Kunze and Stein in [9], have played key roles in de-

termining the unitary dual, G, of G. In this paper, we show how knowledge of the

decompositions of the induced representations IndP T for the infinite-dimensional

irreducible unitary representations T of P enables us to determine the decomposi-

tion of the tensor product 7r(n, s) ® 7r into irreducibles where 7r(n, s) is a principal

series representation of G and ir E G is arbitrary. Qualitatively, we expect similar

results for semisimple Lie groups in general.

The main results concerning the decomposition of tensor products appear in

§4. In each case, 7r(n, s) ® it decomposes into a direct sum of the form Tc © T¿,

where Tc is a continuous direct sum with respect to Plancherel measure on G of

representations from the principal series of G, and T¿ is a discrete direct sum of

representations from the discrete series of G. The multiplicities of principal and

discrete series representations appearing in this decomposition are all finite and

depend only upon n and the restriction of it to P. The range of the multiplicity

function for this decomposition is finite.

Briefly, the problem of decomposing ir(n, s) ® tc "reduces" to three subproblems:

(1) that of decomposing the restriction to P of each 7r G G, (n)p; (2) that of decom-

posing the tensor product of a finite-dimensional irreducible unitary representation

of P with an infinite-dimensional irreducible unitary representation of P; and (3),

that of decomposing Indp T for each infinite-dimensional irreducible unitary repre-

sentation T in P (the unitary dual of P). Subproblem two follows easily by using

Mackey's tensor product theorem. In light of our knowledge of Plancherel measures

on P and G and the Mackey-Anh reciprocity theorem (see [1]), subproblem three

is essentially equivalent to subproblem one. The main obstacle for determining the

decomposition of 7r(n, s) ® it is subproblem one. If tc is a principal series represen-

tation of G, the decomposition of (ir)p is easily found by using Mackey's subgroup
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theorem and is well known. The problem of decomposing (7r)p for nonprincipal se-

ries representations in G is more difficult and was determined by R. Fabec in [6] by

computing the Fourier transforms of the Kunze-Stein intertwining operators in the

noncompact realization for the nonunitary principal series of G. In each case, (7r)p

decomposes into a finite direct sum of infinite-dimensional representations in P,

each occurring with multiplicity one. Recent results by A. Breda in [3] on Fourier

transforms of intertwining operators are quite encouraging and suggest that these

results will be fruitful in solving subproblem one (and hence for decomposing tensor

products) for semisimple Lie groups in general.

The decomposition of the tensor product of two principal series representations

for the DeSitter group was determined in [13] (the case of two class one principal

series representations also appears in [5]). The basic methodology of the approach

used in [13] originates in the paper of G. Mackey [10] for the group SL(2, C) and

continues in the papers of N. Anh [1] for SL(n, C), F. Williams [21] for complex

semisimple Lie groups, and R. Martin [11] for real-rank one semisimple Lie groups.

These papers decompose the tensor product of two principal series representations,

for the groups G in question, by determining the restriction of representations

in G to the subgroup MA. The idea of focusing ones attention on restricting

representations in G to MAN, and hence being able to decompose 7r(n, s) <g> 7r,

where ic is not necessarily a principal series representation, originates in [12] for the

groups SL(2,Z?), SL(2, C) and SL(2, k), where A: is a locally compact, nondiscrete,

totally disconnected field whose residual characteristic is not two. The paper of L.

Pukánszky [14] determines the decomposition of the tensor product of two principal

or complementary series representations for the group SL(2,Z2). A complete list

of all the possible decompositions of tensor products of representations in G when

G = SL(2, R) appears in the paper of J. Repka [15].

1. The structure of G. In this section we summarize the main results con-

cerning the structure of the DeSitter group and its two-fold covering Spin(4,1) that

we shall use in this paper. Further details may be found in [5, 6 or 17].

Let 0(4,1) denote the group of linear transformations of R5 which preserve the

quadratic form —X0+x2-r-x2-r-x2-r-x2. If J is the diagonal matrix J = [—1,1,1,1,1],

then 0(4,1) may be identified with {g E GL(5,R):lgJg — J}. The connected

component of the identity is the group

G' = SOe(4,1) = {g e 0(4,1): det(g) = 1, g00 > 1}

which is commonly referred to as the DeSitter group. G' is a connected semisimple

real-rank one Lie group with trivial center. We let G = Spin(4,1) denote the

simply-connected double covering of G'. As indicated in [17], we may realize G

as a certain collection of two-by-two matrices over the quaternions. If F denotes

the division ring of quaternions x = xx + x2i + x^j + x±k, where xi,x2,x¡,x\ are

reals, i2 — j2 = k2 = — 1, ij = -ji — k,jk = —kj = i, ki — —ik = j, and we let

x = xx - x2i — xj,j — x±k, and |x| — v/xx1, then G is isomorphic to the group

J Ia   bdY.a,b,c,dEF,äb = cd, |a|2-|c|2 = l,|d|2-|¿>|2 = li.

The group i/ = {xGF:|x| = l}of unit quaternions is easily seen to be isomorphic

to SU(2) [via the mapping xi +x2i + x^j + X4ik i-> (^j), a — xx+x2i, b — X3 + X4Í
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for example] and if we let

K =

and

AT

:u,v G U \ « SU(2) x SU(2) k Spin(4),

ch(l/2f)    sh(l/2i)\ _

sh(l/2i)    ch(l/2r.) I
at:tER\ kR+,I

x

l + x
nx: x = l/2(x2i + x$j + x^k) > «a R3

then G = KAN is an Iwasawa decomposition of G. If M denotes the centralizer of

A in K, then M = {(£ °) = mu: u G <7} w Spin(3) and P = MAAT is a (minimal

parabolic) subgroup of G which contains ZV as a normal subgroup. One easily

computes that the actions of M and A on N axe given by

munxm~   — mu-nx = nuxu,    atnxa^   = at • nx = ntetx),

i.e., M acts by rotations and A acts by dilations. If M denotes the normalizer of A

in K, then the Weyl group W = M/M has order two and we may take e = (¿ °)

and «; = ( ¿ ^j 1 as representatives of the cosets of W. In addition to the Iwasawa

decomposition of G, one has the KAK decomposition (see [17, p. 366]) and the

Bruhat decomposition G = PeP U PwP (and so there are only two P : P double

cosets in G with only one of positive Haar measure). Setting

= vx:x l/2(x2i + x3j + x4fc)

and using the relations w~1Aw = A, w~1Mw = M, the latter decomposition can

be expressed as G — Pw-1 U PV and so up to a manifold of lower dimension (and

so a set of Haar measure zero) we see that G = PV.

If H:G —>■ G' denotes the homomorphism on p. 366 of [17] and we let K' =
H(K), A' = H (A), N' = H(N), M' = H(M) and V = H(V), then

C/iker(ZZ) = the center of G = Z(G) =

and so we have the following isomorphisms: K/Z(G)

M' « SO(3), A & A' f
m W m SO(4), M/Z(G)

R3. It is easily seen that

:aER

M'=i :uGSO(3)

The Lie algebra § of G (and of G') is described in [4, 5, 6, or 17].



798 R. P. MARTIN

2. The representation theory of G. In this section we describe the repre-

sentation theory of G and its subgroups. We begin by looking at the representation

theories of M, K, A and C = MA. M = Spin(3) ss SU(2) and it is well known

that M = {ak:k = 0,1/2,1,...} where each ak acts on a space Vk of dimension

2fc + 1 (see p. 110 of [19]). For k — 0,1,..., ak is a single-valued representation

of M' R¿ SO(3) while each ak, k = 1/2, 3/2,..., is a double-valued representation

of M'. The group T = {mu:u = e%e, 9 E R} is a torus in M and we shall view

T = {rn: n = 0, ±1/2, ±1,...} where rn(mu) = (el9)2n. One sees easily, using the

isomorphism M m SU(2) and the realization of ak given on p. 110 of [19], that the

restriction of ak to T decomposes as

(ak)T ~ r'k © T~k+1 © • ■ • © rk    for k = 0,1/2,1,....

Since K = Spin(3) x Spin(3) » Spin(4), we have that K = {ak<k' = ak x

ak':k,k' = 0,1/2,1,...} where each ak'k' acts on Vk'k' = Vk x Vk'. It is also

known that the restriction of ak,k  to M decomposes as

fc+fe'

(ok<k')M^    ©    o>

3 = \k-k'\

[19, p. 175]. The representation ak'k is a single- or double-valued representation

of K' according to whether k + k' is integral or not.

The irreducible representations (quasicharacters) of A are given by Xs(at) = elst

for s in C. These are unitary iff s is real and so we shall view A = {Xs: s E R}.

Since the group C = MA is a direct product, C = M x A with Plancherel measure

PC on C being the product of the Plancherel measures on M and A.

The group P is the semidirect product of MA with the closed normal subgroup

N and so we can use the Mackey theory (see [20]) to describe the representation

theory of P. After identifying N with R3, the action of MA on N is via rotation and

dilation on R3. Thus there are just two orbits in N under this action—the zero orbit

{(0,0,0)} and everything else, O. The stability group corresponding to the zero

orbit is MA itself while the stability group corresponding to the point (1,0,0) in O is

the group {(ö °) : u = xi + x2i, \u\ = l}, i.e., our torus T in M. So, corresponding

to the zero orbit we get the finite-dimensional irreducible unitary representations of

P lifted from those of MA, i.e., the representations (ak x Xs)'(man) = ak(m)Xs(a)

for k = 0,1/2,1,... and s in R. These are the representations which, after inducing,

give rise to the principal series of G. If we denote by ßx the representation in N

corresponding to (1,0,0) in the orbit O, we obtain, corresponding to the nonzero

orbit O, the family of infinite-dimensional irreducible unitary representations Tn =

Ind^^r" x ßx) for n = 0, ±1/2, ±1,.... We shall refer to the representations

Tn for n = 0, ±1/2, ±1,... as the generic representations of P. These are the

representations, as we shall see, which, after inducing, provide information about

certain tensor products on G. Thus we may view P as being

P = {(ak x Xs)': k = 0,1/2,... ,s G R} U {Tn: n = 0, ±1/2,...}.

If pp denotes Plancherel measure on P, then the results of [7] show that pp is an

atomic measure whose support is the set of generic representations of P.

We now describe the irreducible unitary representations of G. We follow the

notation of [6] (although we make some minor changes in order to have the notation
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resemble that of [4] more closely). Further details may be found in [4, 5, 17 or

[18].
If av E M and As is a quasicharacter of A, we let (ap x Xs)' denote the represen-

tation of P given by (ap x Xs)'(man) = ap(m)Xs(a) and set 7r(p, s) = lnd$(ap x Xs)'

acting on the Hilbert space H(p, s). Each tc EG occurs as a subrepresentation of

some 7r(p, s) and, roughly speaking, the process of finding G involves determining

which of the representations 7r(p, s) can be "unitarized", determining which are

irreducible, decomposing the reducible ones, and determining the equivalences. In

each of these steps, the intertwining operators of [8 and 9] play a key role.

When s is real, the representation 7r(p, s) is unitary and it is known that 7r(p, s)

is reducible iff s = 0 and p = 1/2,3/2,... (see [8]). For p = 1/2,3/2,..., 7r(p, 0)

splits into the direct sum of two irredicibles which we shall denote by 7r±(p, 1/2).

It is well known that 7r(p, s) is equivalent to 7r(p, — s) and that Tc(p, s) is not equiv-

alent to Tc(q,t) if p t¿ q or |s| ^ |i|. The collection Gp — {n(p, s):s > 0, p =

0,1/2,...} is called the principal series of G. We will write G¿ = {n(p, s) E Gp: s ^

0 if p = 1/2,3/2,...} for the irreducible principal series and Gr — {^(p, l/2):p =

1/2,3/2,...} for the collection of irreducibles arising from the reducible principal

series representations. The representation 7r(p, s) E Gp in our notation corresponds

to the representation W(p, s) in Fabec's classification and to vv,a in Dixmier's

classification with a = (1 + s2)/4. The representations 7r±(p, 1/2) correspond to

the representations w±(p, 0) in Fabec's notation and to either tc\x 2 or tc^x ,2 in

Dixmier's notation (the exact correspondence is not known).

When s is a nonzero real, the representation 7r(p, — is) is not unitary. However,

the results of [6] (see also [8]) show that when p = 0,1,2,..., it is possible to define

a new inner product on the Hilbert space H(p, —is) for certain real values of s in

a "critical interval" 0 < s < cp (for p — 0, cp = 3 while for p = 1,2,..., cp = 1)

for which the action of 7r(p, — is) is unitary. The extension of 7r(p, —is) to the

completion of H(p, —is) with respect to this new inner product is an irreducible

unitary representation of G which we also denote by 7r(p, — is). The collection

of unitary representations Gc = {rc(p, -is):0 <s<3ifp = 0, 0<s< lif

p = 1,2,...} obtained in this fashion are all pairwise inequivalent and constitute

the representations in the complementary series of G. They correspond to the

representations W(p, —is) in the notation of [6] and to the representations vp^„ in

the notation of [4] with a = (1 - s2)/4.

Representations of the form 7r(0, s) for s in R or 7r(0, —is) for 0 < s < 3 are

called class one representations since they contain the trivial representation when

restricted to K (see [4]).

When p — 0 and sm — 2m + 1 for m = 1,2,3,..., the results of [6] show that

ZZ(0, — ism) contains a unique invariant subspace under the action of 7r(0, —ism) and

that it is possible to define a new inner product of this subspace for which the action

of 7t(0, -ism) is unitary. The representation 7r(0, —ism) acting on the completion

of this subspace with respect to this new inner product is an irreducible unitary

representation which we denote by 7rmio, using Dixmier's notation. The collection

Ge = {7rm>o:m = 1,2,...} obtained in this fashion are pairwise inequivalent and

constitute what we shall refer to as the class of endpoint representations of G. The

name and choice of notation for this collection of representations are motivated by

the description of the topology on G which we shall give at the end of this section.
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The endpoint representation 7rmo corresponds to the representation V(m/2) in the

notation of [6].

When p = 1,3/2,2,... and sq = 2q - 1 for 1 or 3/2 < q < p, the results of [6]

show that H(p, -isq) contains two subspaces which are invariant under the action of

7r(p, —isq) and that it is possible to define a new inner product on these subspaces for

which the action of 7r(p, — isq) is unitary. We denote the two unitary representations

obtained by extending the action of 7r(p, — isq) to the completion of each of these

subspaces with respect to this new inner product by 7r±(p, q). The collection of

unitary representations G<¿ = {tt±(p, q):p = 1,3/2,..., 1 or 3/2 < q < p} obtained

in this fashion are all irreducible and pairwise inequivalent and is referred to as

the discrete series of G. The representations in Gd are the only irreducible unitary

representations of G which are square integrable (in fact, they are integrable for

q > 5/2). The representation 7r±(p, q) corresponds to V±(p,p — q) in the notation

of [6] and to either 7rj^g or tt^9 (the exact correspondence is not known) in the

notation of [4].

The above representations are single- or double-valued representations of G'

according to whether p = 0,1,2,... or not.

Thus, we may write G = Gj U Gr U Gc U Gd U Ge U {1} where I is the trivial

representation of G. Plancherel measure pc on G is supported in G¿ U Gr U G<¿ (see

[20, Vol. II]). On G i U Gr it is a continuous measure while pg{k) > 0 for each 7r in

Gd.

The topology on G was determined in [2]. To describe this topology, it is helpful

to have a parametrization of G as a subset or R2. We do this by using Dixmier's

parametrization of G. With this in mind, we identify each representation vVyS

in the continuous series of G (for p = 0, s > -2; p — 1,2,..., s > 0; and

p = 1/2,3/2,...,« > 1/4) with the point (p,s) in R2. These points correspond

to representations in the complementary series for p = 0, -2 < s < 1/4 and p =

1,2,..., 0 < s < 1/4 and to representations in the irreducible principal series for

p = 0,1,2,..., s > 1/4 and p = 1/2,3/2,..., s > 1/4. We identify each pair or
representations 7r±(p, q) in Gr U Gd with a pair of points at (p, —q). We identify

the representation 7rPio in Ge with the point (p, 0) (so that these points occur as

endpoints of the various intervals comprising the complementary series of G, for

p = 1,2,...). We identify the trivial representation, I, with the endpoint of the

class one complementary series, (0, —2).

As described in [2], the topology on G, as identified with the above set, is the

same as that it inherits as a subset of R2 with the following exceptions: the closure

of any subset of S = G¿ U Gc that would ordinarily contain the point (0, -2) must

also contain both (0,-2) and (1,0); the closure of any subset of S that would

ordinarily contain (p, 1/4) for p = 1/2,3/2,... must contain the pair of points at

(p, -1/2); and the closure of any subset of S that would ordinarily contain (p, 0)

for p = 1,2,... must contain the pair of points at (p, —1) in addition to the point

(P,0).
It will also be useful, when describing the results of Theorems 2 and 4, to identify

Gp U Gd with the following fibre space in R3: we identify the principal series

representation n(p,s) in Gp with the point (p, 0, s); we identify the discrete series

representation n~(p,q) with the point (p, — q, 0).



TENSOR PRODUCTS FOR THE DESITTER GROUP 801

3. Restricting to P and inducing from P. In Theorem 1 of this section we

describe the results of R. Fabec in [6] concerning the restrictions of the various ir-

reducible representations in G to the minimal parabolic subgroup P. These results,

combined with the Mackey-Anh reciprocity theorem and previously known results

concerning principal series representations, allow us to describe, in Theorem 2, the

decomposition of IndP T for any T in P. In §4, we will first describe, in Theorem

4, the tensor product n(n, s) ® tc of a principal series representation with tc in G

in terms of representations of the form Indp T for T in P. Theorems 2 and 4 will

then enable us to describe the decomposition of rc(n, s) ® 7r in terms of principal

and discrete series representations of G.

THEOREM 1 [R. FABEC], IfG = Spin(4,1) and tc EG, then the restriction of
it to the minimal parabolic subgroup P decomposes into a discrete direct sum of a

finite number of generic representations of P, each occurring with multiplicity one.

There are four cases to consider:

A. If tc = 7r(m, •) is a principal or complementary series representation of G,

then (tt)p ~ T~m © T~m+1 © ■ ■ • © Tm.

B. If tc = Tcm,o is an endpoint representation of G, then (rc)p — T°.

C. If tc = Tc+(m,q) is a discrete or reducible principal series representation of G

from the positive side, then (tc)p ~ T« © Tq+1 © • • • © Tm.

D. If tc — Tc~(m,q) is a discrete or reducible principal series representation of G

from the negative side, then (ir)P ~ T~m © T"m+1 © • ■ • © T~q.

Note. 1. The restriction of a principal or complementary series representation

7r(m, s) to P is independent of the parameter s.

2. For a fixed m, the restriction to P of a representation of the type tt* (m, •) is a

subrepresentation of the restriction to P of any of the principal or complementary

series representations 7r(m, •).

3. The results on restricting irreducibles in G to P are compatible with the

description of the topology on G given in §2. Using Dixmier's notation, we see for

m = 1/2,3/2,... that the restrictions to P of the continuous series representations

i/m>s, namely, T~m © • • • © T~xl2 © T1/2 © • • • © Tm, "approach" the sum of the

restrictions to P of the two representations 7r+(m, 1/2) and 7r~(m, 1/2), as s ap-

proaches 0. For m — 1,2,..., we see that the restrictions to P of the continuous

series representations vm,s, viz., T~m © • • ■ © T"1 © T° © T1 © • ■ ■ © Tm, approach

the sum of the restrictions to P of the three representations 7r+(m, 1), 7r~(m, 1)

and TCmfi, as s approaches 0. The results of [4] show that a similar statement can

be made concerning the restrictions of irreducibles in G to the subgroup K. One

can think of this as "continuity of restriction", although, for the case of the minimal

parabolic subgroup P, this is actually a stronger result since the closure of a generic

representation in P will also contain finite-dimensional representations in P.

4. The representations Tc^(m,m) for m = 1/2,1,... are also irreducible when

restricted to P (it is not hard to give alternate proofs of the irreducibility of these

representations when restricted to P either by using the infinitesimal methods in

[4] or the global realizations of these representations given in [17]) and, together

with T°, the restrictions of these representations to P completely exhaust the set

of generic representations of P. It may be of interest to note that these results

suggest yet another way to realize the discrete series of G. For example, starting
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with the representations Tm,...,Tq of P, there is a unique Zi-action on S =

Tm © • • - © Tq which is compatible with the P = MAN-action on 5 and which

makes S an irreducible unitary representation of G (which must be 7r+ (m, q) in light

of its restriction to P). Similarly, starting with the representations T~m,... ,T~~q

of P, one should be able to obtain 7r~(m,<7). If, in addition, one did this for

complementary series and endpoint representations, one would be able to obtain G

directly from P.

5. One can find further results on restricting irreducibles to minimal parabolic

subgroups for SL(2,Zi), SL(2,C) and SL(2,fc) in [12]. The paper [16] contains

results on restricting holomorphic discrete series representations for semisimple Lie

groups in general to a minimal parabolic. In all of the above cases, the restrictions

to P of the irreducibles in question decompose into a discrete direct sum of a finite

number of generic representations of P with multiplicity one.

THEOREM 2. (i) If (on x Xs)', n = 0,1/2,1,..., s E R, is an irreducible finite-

dimensional unitary representation of P, then

IndG(rjn X Xs)' ~ I ^ ^    unless n = -1/2'3/2> • ' 'and s = °'

p[ '  " |7T+(n, l/2)ffi7T(n, 1/2)    otherwise.

(ii) IfTn is a generic representation of P for n — 0, ±1/2, ±1,..., then Indp Tn

~ Tc © Td, where Tc is a continuous direct sum with respect to Plancherel measure

on G of representations rc(k,s) from the principal series of G with k > |n|, k — n

an integer, and if n > 1, Td is a discrete direct sum of representations rc+(k,s)

from the discrete series of G with 1 or 3/2 < s < n < k, k — n an integer, while

ifn< —1, Td is a discrete direct sum of representations rc~(k,s) from the discrete

series of G with 1 or 3/2 < s < —n < k, k — n an integer. The multiplicity of each

irreducible representation appearing in Tc © Td is one.

The results in part (i) of this theorem are classic. The results of part (ii) fol-

low directly from Theorem 1 and the Mackey-Anh reciprocity theorem. Note that

Indp Tn will contain only principal series representations in its decomposition for

n = 0,1/2 or —1/2 (i.e., Td = 0). For n > 1/2, Td contains discrete series represen-

tations of G from the positive side only, while for n < —1/2, Td contains discrete

series representations from the negative side only.

If we use the parametrization of Gp U Gd as a subset of R3 given in §2, then

we can use the base of this fibre space to describe the decompositions in part

(ii) of this theorem. For n = 1,3/2,..., the representations appearing in the

decomposition of Indp Tn will have a base space consisting of all lattice points

(k, s) with k — n E Z, s^ 1/2, that also lie within a closed region of the form

(n,n)

n

while, for n = — 1, —3/2,..., the representations appearing in this decomposition

will have a base space consisting of all lattice points (k, s) with k — nEZ, s^ —1/2,
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that also lie within a closed region of the form:

n
->-

(n,-n)

4. Decomposing tensor products. In this section we determine the decom-

position of 7r(n, s) © tc into irreducibles where 7r(n, s) is a principal series represen-

tation of G and 7r G G is arbitrary. We begin by using Mackey's tensor product

theorem to write

Tc(n, s)®tc = lnd$(an X X3)' © IndgTr ~ Ind^{(fJn x A3)' © (tt)p}.

Thus, the problem of decomposing ic(n, s)®tc reduces to finding the decomposition

(7r)p, finding the decomposition of L = (an x Xs)' ® {if)p as a tensor product on

P, and then finding the decomposition of Indp L into irreducibles.

From §3, we know that, for each tc E G, the restriction of 7r to the subgroup

P, (7r)p, decomposes into a finite discrete sum of generic representations of P,

each occurring with multiplicity one. Hence the problem of decomposing L =

(an x Xs)' ® (7t)p can be further reduced to that of knowing how to decompose

the tensor product of a finite-dimensional representation in P with an infinite-

dimensional representation in P. In Theorem 3, we use Mackey's tensor product

theorem to show that the latter tensor product also decomposes into a finite sum

of generic representations of P, each occurring with multiplicity 1. Thus, the rep-

resentation L will decompose into a discrete direct sum of generic representations

of P, each occurring with finite multiplicity. We describe the representations L for

the various cases of 7r G G in Theorem 4. Since 7r(n, s) ® 7r ~ Indp L, the decompo-

sition of Tc(n, s) © 7T into irreducibles can then be determined from a finite number

of applications of Theorems 2 and 4. These results are presented in Theorem 5.

Since the results are difficult to describe in closed form, we present tables which

are useful to generate the multiplicities described in Theorem 5 for a given tensor

product.

THEOREM 3. If (an x Xs)' is a finite-dimensional irreducible unitary represen-

tation of P and Tk is an infinite-dimensional irreducible unitary representation of

P, then
(an x A3)' ® Tk ~ Tk~n © Tk'n+1 © • • • © Tk+n.

PROOF. We again use Mackey's tensor product theorem to write

Tk ® (an x A8)' = Ind^N(rfe x ßx) ® Indp>n x Xs)'

~lnd!rN{(Tkxßx)®((on)TxI)}

~ Ind^{rfc 81 (r"n © • • • © rn) x ßx}

^ rpk—n /r, rpk—n+1 /t\    . , ¿t\ rpk+n

This theorem, in combination with the results of §3 on inducing from P and

restricting to P, will enable us to determine the decomposition of Tc(n, s) ® 7T. We

first describe this decomposition in terms of a discrete direct sum of representations

of the form Indp T where T is a generic representation in P.
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THEOREM 4. Let G = Spin(4,1). The tensor product of the principal series

representation Tc(n, s) with the representation tc E G is unitarily equivalent to the

representation Indp L where L is a discrete direct sum of a finite number of generic

representations of P occurring with finite multiplicities. The indices of the represen-

tations T3 appearing in L will have the form —(m+n),—(m+n) + l,...,m+n when

tc = Tc(m, ■) is a principal or complementary series representation, —n, — n+1,... ,n

when tc is an endpoint representation, and the form q-n,q-n+l,...,m + n when

tc = tc+ (m, q). The range of the multiplicités of the representations appearing in

L will always be symmetric, begin with one, increase by ones up to some value,

remain constant for a segment, and then decrease from this constant value by ones

back down to one.  There are five cases to consider:

1. If tc — Tc(m, •) is a principal series representation with m> n, then L is

2tt. Ttx — n, 2t7

¿0jT-(™+»)+O-i)e(2n+l)    Yl   0Tn-m+^ffi¿0jT(m+n)-^-1).
j=0 j=n—m i=0

2. If tc = ic(m, ■) is a complementary series representation, then L is the same

as the L obtained as in part 1 for the tensor product of the two principal series

representations rc(n, s) and Tc(m, 0).

3. Z/7T = 7TTOio is an endpoint representation, then Tc(n, s)®7r = 7r(n, s)®7r(0,0) =

7r(0,0) ®Tc(n, s) so that, as described in part 1, L is

i-n+l a, ... cd T"-l >Tn.

4. If tc — Tc+(m,q) is a discrete or reducible principal series representation from

the "positive side", then

(i) if q + n < m - n, then L is

In m—q—2n In

^0JT('-")+^-1)©(2n+l)     ]T     0r«+^'©^0jTm+"-u-1>;
i=o j=o j=o

(ii) while if q + n > m — n, then L is

m — q q+2n—m m — q

£0jT(9-n) + (¿-l)e(m_9+1)       J2      0Tm-"+^©^0jTm+n-^-1).

¿=0 j=0 j=0

5. Z/7T = Tc~(m,q) is a discrete or reducible principal series representation from

the "negative side ", then L is equivalent to the representation obtained by changing

each T% to T~l in the L of part 4 using 7r+(m, q).

PROOF. Case 1. If 7T = 7r(m, ■) is a principal series representation, then (7t)p ~

T-m e T-m+i © ... © Tm and hence

2m

(an x A3)' ® (rr)p ~ £ ©{>" X A3)' ® T-m+J}

3=0

2m   In

^ y* y^ C¡\ j-m-n+i+j

j=0i=0
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from Theorem 3. If n = 0, we have

tt(0, s) ® re ~ Ind^(T-m © T"m+1 © • • • © Tm).

If n > 0, the indices of the representations Tk appearing in this double summation

form a lattice in the plane of the following type:

2n+l

m-n m+n

-m-n n-m  <   0   <   m-n

Since the multiplicity of a representation T appearing in the above double

summation will be the number of lattice points on and within this parallelogram

that also lie on the vertical line x — k, we see that the multiplicities will begin with

1 for T~m-n, increase by l's up to the value 2n + 1 for Tn~m, will be 2n + 1 until

Tm~n, and will then decrease by l's until we get to the multiplicity 1 for Tm+n.

Case 2. If 7r = 7r(m, •) is a complementary series representation, then the restric-

tion of tc to P is unitarily equivalent to the restriction to P of the principal series

representation 7r(m, 0). Thus, the tensor product ir(n,s) ® 7r will be equivalent to

the tensor product of the two principal series representations ir(n,s) and 7r(m,0).

Case 3. If 7r is an endpoint representation, then the restriction to P of tc is

equivalent to the restriction to P of the class one principal series representation

7r(0,0), viz., T°.

Case 4. If tc = Tc+(m,q), then (tt)p ~ YlfVo" ®T"+J and so

m=q 2n

(an XXs)'® (tc)p ~ 5Z 1Z© Tq~n+t+3.

j=0 i=0

We now argue as in Case 1 by treating two subcases.

(i) If q + n < m - n, then for n = 0 we have 7r(0, s) ® 7r ~ Tq © Tq+1 © • ■ • © Tm

while for n > 0, the indices of the representations Tk appearing in the above double

summation will form a lattice of the type:

m-n m+n

q-n q+n  <  m-n

Since the multiplicities, once again, will be the number of lattice points within the

closed parallelogram that also lie on vertical lines, we see that the multiplicities
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will begin with 1 for Tq ", increase by l's up to the value 2n + 1 for Tq+n, will be

2n+ 1 until Tm~n, and will then decrease by l's until we get the multiplicity 1 for
rrm+n

(ii) For q + n > m - n, our lattice will have the form

m-n m+n

q-n m-n   <   q+n

and so the multiplicities will begin with 1 for Tq n, increase by l's until they reach

m - q + 1 for Tm~n, remain m - q + 1 until Tq+n, and then decrease by l's until

we get to 1 for Tm+n.

Case 5. If tc = Tc-(m, q), then (tt)p ~ YlT=o ®T~m+3 and so

m—q 2n

(an x Xs)' ® (tt)p ~ ^5]0rffl-n+,+i.

j=0 ¿=0

We may now argue as in Case 4 or simply note that a representation Tk appear-

ing in the above double summation will be the same as the multiplicity of the

representation T~k in the double summation of Case 4 with 7r = 7r+(m,<j).

For example, we have: in the decomposition 7r(2, •) ® 7r(3, •) = Indp L, L will

be the discrete direct sum of the representations T-5, T-4,..., T4, T5 occurring

with the multiplicities 1,2,3,4,5,5,5,4,3,2,1, respectively; for the decomposition

of tt(2, -)®tc+(9,4), L will be the direct sum of T2, T3,..., Tw, and T11 with multi-

plicities 1,2,3,4,5,5,4,3,2,1, respectively; for 7r(2, -)®7r_(9,4), L will be the direct

sumofr-u,r-10,...,T-3, andT"2 with multiplicities 1,2,3,4,5,5,4,3,2,1, re-

spectively; for tt(2, -)®tc+(1Í/2, 1/2), L will be the direct sum of T~3'2, T'1/2,...,

T13/2, and T15/2 with multiplicities 1,2,3,4,5,5,4,3,2,1, respectively; for 7r(2, •)

®7T+(4,1), L will be the direct sum of T'1,!^,..., T5, and T6 with multiplicities

1,2,3,4,4,3,2,1, respectively; for 7r(3/2, •) ® 7r(ll/2,7/2), L will be the sum of
T2,T3,T4,T5,T6, and T7 with multiplicities 1,2,3,3,2,1, respectively; the de-

composition of the tensor product of the principal series representation 7r(n, ■)

with 7T+(m,m) will have L equivalent to the sum of Tm~n,Tm~n+1,... ,Tm+n

each occurring with multiplicity one (so that when n = 0, we get L — Tm); and

7r(0, •) ® 7r(m, •) will have L = T~m © • • • ® Tm.

We are now ready to state the main theorem of this paper concerning the decom-

position of 7r(n, ■) ® tc. The multiplicities of the various representations occurring

in this decomposition are difficult to describe in closed form. For a specific decom-

position, they are somewhat easier to generate by using the tables we shall provide

later. The results when 7r is a principal series representation of G were obtained

in [13]. The results when 7r is a complementary series or endpoint representation

can be obtained by replacing tc with an appropriate principal series representation.

The results when 7r is a discrete series representation from the positive side are

described in 6 cases according to how the numbers \q — n\, \m — n\ and q + n are
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ordered in the reals. The results for 7r = 7r (m, q) are phrased in terms of the

results for Tc+(m,q).

THEOREM 5. Let ic(n, •) be a principal series representation of G = Spin(4,1)

and tc E G. Then n(n, ■) ® 7r ~ Tc © Td, where Tc is a continuous direct sum with

respect to Plancherel measure on G of representations from the principal series of

G and Td is a discrete direct sum of representations from the discrete series of G.

The multiplicities of principal and discrete series representations appearing in this

decomposition are all finite, are fixed from some point on (so that the range of the

multiplicity function for this decomposition is finite), and depend only upon n and

the restriction of tc to the minimal parabolic subgroup P. There are ten cases to

consider:

A. If tc = ic(m, •) is another principal series representation of G with m > n,

then only representations rc(k, s) (k > 0 or 1/2) from the principal series of G or

representations 7r±(fc,3) (with 1 or 3/2 < s < k) from the discrete series of G with

k + m + n = 0 (mod 1) will occur in this decomposition; the multiplicity m(k, s) of

Tc(k, s) in Tc will be

(2fc -+- l)(2n + 1) iff) or 1/2 < k < m-n,

(2k + l)(2n + 1) - j(j + 1)    if k = m -4» + j, j = 0,1,2,...,2n,
(2m + l)(2n + l) ifk>m + n;

the multiplicity m+ (k, s) of the discrete series representation Tc+(k,s) inTd equals

the multiplicity m~(k,s) of the discrete series representation ic~(k,s) in Td and

will be

(k-s + l)(2n +1) if 1 or 3/2 < s < k < m - n,

(k - s + l)(2n + 1) - l/2j(j + 1) if k = m - n + j, j = 0,1,2,..., 2n,
1 or 3/2 < s < m — n,

(k- s + l)(2n + 1 - h) if k = m - n + j, j ¡= 0,1,2,... ,2n,
- 1/20' - h)U -h + 1) s = m - n + h, h = 0,1,... ,j,

m±(fc, s) = m^(m + n, s) if 1 or 3/2 <s<m + n<k,

0 if m + n < s <k.

B. If tc = Tc(m, •) is a representation in the complementary series of G, then

ir(n, ■) ®tc ~ 7r(n, ■) ® 7r(m, 0), as in part A.

C. If tc = t\mfi is an endpoint representation of G, then rc(n, •) ® 7r ~ 7r(n, •) ®

7t(0, 0), as in part A.

D. If tc = Tc+(m,q) is a discrete series (q > 1/2) or a reducible principal series

representation (q = 1/2) of G, then only representations rc(k, s) from the principal

series of G (0 or 1/2 < k) or representations 7r±(rC, s) (1 or 3/2 < s < k) from the

discrete series of G with k + m + n = 0 (mod 1) will occur in this decomposition.

1. Ifq>n, Td will contain only discrete series representations from the positive

side;
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(a) Ifq < m — 2n, then 0<q — n<q + n<m — n<m + n and the multiplicity

m(k, s) of the principal series representation rc(k, s) in Tc will be

0 if 0 or 1/2 < k < q - n,

\/2(j + l)(j + 2) if k = q-n + j, j = 0,1,... ,2n,
(n + j + l)(2n + 1) if k — q + n + j, j = 0,1,..., m - q - 2n,

(k-q+l)(2n+l)-l/2j(j+l) if k = m-n + j, j = 0,1,2,...,2n,

(m-g + l)(2n + l) if k>m + n;

while the multiplicity m+(k,s) of the discrete series representation 7r+(fc,s) in Td

will be

0 if I or 3/2 <k<q — norm + n<s<k,

m+(k, s) — m+(k, q — n) if I or 3/2 <s<q-n<k,

m(k,s)-\/2h(h + \) if k> q - n > 3/2 or 1,

s = q — n + h, h = 0,..., 2n,

m(k, s) - (n + h)(2n + 1) if k>q + n + l,

s = q + n + h, /i = 0,1, ...,m — q — 2n,

(j-h + l)(2n + 1) - l/2j(j + 1)    if k = m-n + j, j = 0,l,...,2n,
+ l/2(h-l)h s = m-n + h, h = 0,l,...,j,

m+ (k, s) = m+ (m + n,s) if 1 or 3/2 < s <m + n < k;

(b) if q > m — 2n, then 0<q — n<m — n<q + n<m + n and the multiplicity

m(k, s) of the principal series representation ic(k, s) in Tc will be

0 if 0 or l/2< k<q-n,

l/2(j + í)(j + 2) if k = q-n + j, j = 0,1,... ,m - q,

l/2(m -q + l)(m - q + 2j + 2) if k = m-n + j,

j = 0,l,...,q + 2n-m,

l/2(m - q + l)(q - m + 4n + 2j + 2) if k = q + n+j, j = 0,1,2,..., m - q,

-l/2j(j + l)

(m-q+ l)(2n +1) if k>m + n;

while the multiplicity m+(k,s) of the discrete series representation rc+(k,s) in Td

will be

0 if 1 or 3/2 < k < q - n or

m + n < s < k,

m+ (k,s) = m+ (k,q — n) if 1 or 3/2 < s < q — n < k,

m(k,s)-l/2h(h + l) if k > q - n > 3/2 or 1,
s = q - n + h, h = 0,..., m - q,

m(k, s) - l/2(m - q + l)(m - q -2h + 4),   if k > m - n + 1, s = m - n + h,

h = 0,1,... ,q + 2n - m,

(j-h+ l)(m - q + 1) - l/2j(j +1) if k = q + n+j, j = 0,1,... ,m-q,
+ l/2(h - l)h/h s = q + n + h, h = 0,l,...,j,

m+(k, s) = m+(m + n,s) if 1 or 3/2 <s<m + n<k.

2. If q < n, Td will contain discrete series representations from both sides:
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(a) if q < m - 2n, then 0<n-q<n + q<m-n<m + n and the multiplicity

m(k, s) of the principal series representation rc(k, s) in Tc will be

(2k + l)(n - q + 1) if 0 or 1/2 < k < n - q,

(2n - 2q + l)(k + 1) + l/2j(j + 1) if k = n - q + j, j = 0,1,... ,2q,
(2n+l)(n + j'+l) if k = q + n + j,

j = 0,1,..., m - q - 2n,

(2n+l)(m-q-n + j + l)- l/2j(j + 1)    if k = m-n +j, j = 0,1,2,... ,2n,

(2n + l)(m - q + 1) if k > m + n;

while the multiplicity m+(k,s) of the discrete series representation rc+(k,s) in Td

will be

(k-s + l)(n -q+l + l/2(k + s)) if 1 or 3/2 < s < k < q + n,

(2n + l)(k -s + 1) ifq + n<k<m-n, q + n < s < k,

m+(n + q, s) + (2n + l)(k - q-n) if 1 or 3/2 <s<q + n<k<m-n,

(k - s + l)(m + n + l - l/2(k + s)) ifm-n<s<k<m + n,

m+(m- n,s) + rnr(k,m - n + 1) if 1 or 3/2 <s<m-n<k<m + n,

m+ (m + n, s) if 1 or 3/2 < s <m + n < k,

0 if m + n < s < k;

and the multiplicity m~(k,s) of the discrete series representation ir~(k,s) in Td

will be

(k-s + l)(n -q + 1- l/2(k + s)) if 1 or 3/2 < s < k < n - q,

l/2(n -q-s + l)(n -q-s + 2) if 1 or 3/2 < s <n - q < k,

0 if n- q < s < k;

(b) ifq > m - 2n and q>2n-m, then 0<n-q<m-n<q + n<m + n and

the multiplicity m(k, s) of the principal series representation rc(k, s) in Tc will be

(2k + l)(n - q + 1) if 0 or 1/2 <k<n-q,

(2n-29+l)(fc + l) + l/2jü + l) if k = n-q + j, j = 0,1,... ,m + q - 2n,

l/2(m - q + l)(m - q + 2j + 2) if k = m-n + j,

j = 0,l,...,q + 2n-m,

l/2(m-q+l)(q-m + 4n + 2j + 2) if k = q + n + j, j = 0,1,2,..., fn-q,

-l/2j(j+l)

(2n + l)(m -q + 1) if k>m + n;

while the multiplicity m+(k,s) of the discrete series representation 7r+(A;,s) in Td

will be

(k-s + l)(n - q + 1 + l/2(k + s)) if 1 or 3/2 < s < k < m - n,

(m - q + l)(k -s + 1) ifm-n<k<q + n, m-n < s <k,

m+(m -n,s) + (m - q+ l)(k -m + n)    if 1 or 3/2 <s<m-n<k<q + n,

(k - s + l)(m + n + 1 - l/2(fc + s)) ifq + n<s<k<m + n,

m+(q + n,s) + m+(k,q + n + 1) if 1 or 3/2 < s < q + n< k < m + n,

m+(m + n, s) if 1 or 3/2 <s<m + n<k,

0 if m + n < s <k;
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and the multiplicity m  (k, s) of the discrete series representation tc   (k, s) in Td

will be

(k- s + l)(n - q + 1 - l/2(k + s)) if 1 or 3/2 < s < k < n- q,

l/2(n -q-s + l)(n -q-s + 2) if 1 or 3/2 < s < n - q < k,

0 if n - q < s < k;

(c) if m>n and q < 2n — m, then 0 < m — n < n — q < q + n <m + n and the

multiplicity m(k, s) of the principal series representation n(k, s) in Tc will be

(2k + l)(n - q + 1) if 0 or 1/2 < k < m - n,

(2k + l)(n - q + 1) - l/2j(j + 1) if k = m-n + j,
j = 0,1,..., 2n - m - q,

l/2(m - q + l)(4n -m-3q + 2j + 2) if k = n-q + j, j = 0,1,..., 2q,
l/2(m -q+ l)(q -m + 4n + 2j + 2) if k = q + n + j, j = 0,1,2,...,m-q,

-l/2j(j + l)

(2n + l)(m - q+ 1) if k>m + n;

while the multiplicity m+(k,s) of the discrete series representation Tc+(k,s) in Td

will be

(k-s + l)(n - q + 1 + l/2(k + s)) if 1 or 3/2 < s < k < m - n,

(m — q+ l)(k — s + 1) if m — n < k < q + n, m — n < s < k,

m+(m — n, s) + (m — q + l)(k — m + n)    if 1 or 3/2 < s <m — n < k < q + n,

(k - s + l)(m + n + 1 - l/2(k + s)) ifq + n<s<k<m + n,

m+ (q + n,s) + m+ (k,q + n + l) if 1 or 3/2 <s<q + n<k<m + n,

m+(m + n,s) if 1 or 3/2 <s<m + n<k,

0 if m + n < s < k;

and the multiplicity m~(k,s) of the discrete series representation Tc~(k,s) in Td

will be

(k-s + l)(n -q + 1- l/2(k + s)) if 1 or 3/2 < s < k < n - q,

l/2(n -q-s + l)(n -q-s + 2) if 1 or 3/2 < s <n-q < k,

0 if n - q < s < k;

(d) ifm<n and q < 2n - m, then 0 < n — m <n — q < q + n <m + n and the

multiplicity m(k, s) of the principal series representation rc(k, s) in Tc will be

(2k + l)(m-q+l) if 0 or 1/2 < k <n-m,

(2k + l)(m - q + 1) - l/2j(j + 1) if k = n-m +j, j = 0,l,...,m-q,
l/2(m - q + l)(4n -m-3q + 2j + 2) if k = n - q + j, j = 0,1,..., 2q,

l/2(m - q + l)(q -m + 4n + 2j + 2) if k = q + n + j, j = 0,1,2,...,m - q,

-l/2j(j + l)

(2n + l)(m - q + 1) ifk>m + n;
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while the multiplicity m+(k,s) of the discrete series representation ir+(k,s) in Td

will be

(k-s + l)(m-q+l) if 1 or 3/2 < s< k <n + q,

(k - s + l)(m + n + 1 - l/2(k + s)) ifn + q<s<k<m + n,

m+(q + n,s) + m+(k, q + n + 1) if 1 or 3/2 <s<q + n<k<m + n,

m+(m + n,s) if 1 or 3/2 <s<m + n<k,

0 if m + n < s < k;

and the multiplicity m~(k,s) of the discrete series representation Tc~(k,s) in Td

will be

(k-s + l)(m-q+l) if 1 or 3/2 < s < k<n-m,

(k - s + l)(n - q + 1 - l/2(fc + s)) ifn-m<s<k<n-q,

m~ (n — m,s) + m~ (k, n — m + 1) if 1 or 3/2 <s<n-m<k<n — q,

m~ (n — q,s) if 1 or 3/2 <s<n-q<k,

0 if n - q < s < k.

E. If tc = Tc~(m,q) is a discrete series (q > 1/2) or a reducible principal series

(q = 1/2) representation ofG, then the decomposition ofrc(n, -)®tc is obtained from

part D by using n+(m,q) and interchanging the roles oficJr(k,s) and ic~(k,s).

Note. In cases A, B and C one need not have any discrete series representations

occurring in the decomposition of the above tensor product (i.e., T¿ = 0). In case

A, for example, this will occur for m = n = 0 and n = 0, m= 1/2.

We will not provide a proof of this theorem in this paper. Instead, we will

describe the process used to obtain the various multiplicities appearing in Theorem

5 since this process also provides a rather simple way of generating the multiplicities

for a specific tensor product. The formulas appearing in Theorem 5 were obtained

by treating each case separately and using tables similar to those discussed below.

We will describe this process only for the cases 7r = 7r(m, •) and tc = 7r+(m, q), since

all other cases can be obtained from them.

We begin by drawing three horizontal lines. In the space between the two bottom

lines we place the numbers 0 or 1/2,..., m+n (for 7r = 7r(m, ■) or tc = tc+ (m, q) with

n > q) or q-n,q-n+ 1,.. .,m + n (for 7r = Tc+(m,q) with n < q). These numbers

will represent the fc-index for the representations ic(k, s) or 7r±(fc,s) appearing in

our decomposition. Since all multiplicities for k > m + n (k + m + n = 0 (mod 1))

will be the same as the multiplicity for k = m + n, we place the three dots after

the m + n.

Motivated by the parametrization of Gp U G<¿ as a fibre space described in §2,

we will place the multiplicities of discrete series representations ic±(k, s) (s > 1 or

3/2) appearing in our decomposition above (for rc+(k, s)) and below (for 7r~(fc,s))

these lines using their natural parameters (k, s). Since the multiplicities of principal

series representations rc(k, s) on a given fiber (i.e., for a fixed k) are all the same, we

will place this common multiplicity between the top two lines above the appropriate

value of k, i.e., at (/c,0).

All the multiplicities appearing in these tables can now be generated recursively

from the multiplicities given in Theorem 4. We begin by taking these multiplicities

and placing them in order along the two main diagonals in our table beginning
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at (m + n,m + n) in the top (positive side) of our table. If 7r = Tc+(m,q) with

n < q, these numbers will occupy diagonal entries on the positive side of our

table only except when q — n = 0 or 1/2—in this case, we place the remaining 1

between the horizontal lines (i.e., at either (0,0) or (1/2,0)). For a principal series

representation 7r(m, •) or a representation 7r+(m, q) with n > q, these numbers

will occupy diagonal entries on both sides; for m + n = 0 (modi), we place the

multiplicity of T° between our horizontal lines at (0,0) while for m + n = 1/2

(modi), we place the sum of the multiplicités for T1/2 and T~xl2 between the

horizontal lines at (1/2,0). The remaining multiplicities in our table can now be

determined from these diagonal entries one column at a time proceeding from left

to right. To obtain the multiplicities in a given column in the positive or negative

side one adds the diagonal entry of that side to all the entries in the preceding

column on that side. The principal series multiplicity in a given column is obtained

by adding both diagonal entries to the preceding principal series multiplicity.

For example, the table for 7r(2, •) ® 7r(3, •) would be:

s

5

4

3

2

1

1

2

3

4

5

15     23     29     33     35

Since tables for the tensor product of two principal series representations will be

symmetric, we could also present tables for this case as in [13].
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The table for tt(3, 2, •) ® ir+(ll/2, 7/2) would be:

The table for tt(2, •) ® 7r+(ll/2,1/2) would be:

3/2

1/2  3/2  5/2  7/2  9/2   11/2  13/2  15/2

The table for tc(2, •) ® 7r_(ll/2,1/2) can be obtained from the table for tt(2, •) ®

7T+(ll/2,1/2) by interchanging the roles of + and - in the above table (for example,

by interchanging the plus sign on the left side of the above table with the minus

sign).
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