
TRANSACTIONS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 284, Number 2, August 1984
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A. HAJNAL AND ZS. NAGY

ABSTRACT. The paper deals with game-theoretic versions of the partition

relations a —» (ß)^T and a —> (ß)^ introduced in [2]. The main results are

summarized in the Introduction.

0. Introduction. In their paper [2], Baumgartner, Galvin, McKenzie and

Laver introduced a new game. Let a,ß be ordinals, r a cardinal. The Ramsey

game Z?(a, r, ß) is defined as follows. There are two players, White and Black, who

alternately pick previously unchosen members of [a]T. At limit stages it is of course

White's turn to move. The game ends when the set [a]T is exhausted. White wins

if there is a set A C a, tp A = ß with [A]T C W', where W C [a]T is the set of r

element sets which White chose; otherwise Black wins. We say that White (Black)

wins R(a,T,ß) if White (Black) has a winning strategy.

This game can be considered as a game-theoretic version of the partition relation

a —► (ß)2. The game R(a, < r,ß) is defined similarly, where the choices are made

from [o]<T and to win White must get an A C a with [A]<T C W and tp A = ß.

It is also clear that more general games can be defined, where a,ß are order

types or even more generally ß can be the isomorphism type of certain objects,

say that of complete bipartite graphs. Our main results say something about the

games R(a, r, ß) and R(a, < r, ß) as defined above, but we will use the more general

games in establishing some lemmas. We hope that the symbols used there have a

self-explanatory meaning.

We remark that in [2] the games were defined to last |a| moves. Our present

definition seems to be technically more convenient, and the results of [2] remain

valid.

In [2] it was proved that White wins R(oj, < r + l,u>) for r < ui. However the

proof given there yields the following

THEOREM [2]. Assume k > w, 0 < r < w and k -> (ß)2r-i ■ Then White wins

R(tz,<r,ß).

This shows that for the games R(k, t, ß) we can hope for interesting new results

only if k ■/* (ß)2 holds.

Our main results are the following:

(1) Assume 2K = n+. Then Black wins R(k+, 2, /c+) (see Theorem 1). Our proof

shows that it is consistent with ZFC that 2K > /c+ and Black still wins R(k+, 2, k+)

but we have no other information.

Problem 1. Is it a theorem of ZFC that Black wins Ä(2N°,2,Ni)?
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For 2 < r = r < u we have even less information and we only state the simplest

case of our results. Using a result of R. Laver we can prove

(2) Assume 2H° = Ni and the negation of Chang's conjecture holds, i.e. #2 -/+

[Ni]j<  ¡«j ̂ S true- Then Black wins ZÜ(K2,3,Nt) (see Theorem 2).

Problem 2. Does 2N° = N. A 2Nl = N2 imply that Black wins Z?(N2,3, Ni)?

Problem 3. Is it consistent (with G.C.H.) that Black wins Z2(N3,4, Ni)?

ADDED IN PROOF. The first author and P. Komjath recently proved that it is

consistent with ZFC + G.C.H. that Black wins ZÏ(Nn,n + 1,Ni) for n < w.

This should be compared with the known partition relation

222N° /> («OS.

In §1 we formulate a general set-theoretic principle which implies that Black wins

Z?(Nr, r + 1, Ni ) for r < ui as expected. We conjecture that this principle holds in L

or is at least consistent with ZFC + G.C.H. but we cannot prove it.

In case re is a limit cardinal, we have a result which shows another phenomenon.

(3) Assume re is a singular strong limit cardinal. Then White wins Z2(re, 2, re)

(see Theorem 3).

Note that say N^ —► (N^,)2. is trivially false. On the other hand we cannot

generalize (3) for larger r.

Problem 4. Assume Nw is a strong limit cardinal. Does White win the game

Ä(NW,3,NW)?

Note that, by an old result of Erdös and Rado [5], re -/+ (t)2 holds for all r > u

and for all re. This result has an easy generalization.

(4) For re > t > u Black wins the game R(k, t, t).

The proof of this will be left to the reader.

To explain our results concerning the games Z?(re, < w, ß) we recall a definition:

Freest, < uj, 0) means that the following statement is true: Whenever F: [re]<w —►

[re]-A, i.e. F is a set mapping of finite type and order at most A, then there is

a set H c /c A tp H = 0 such that H is free for F.   This means that, for each

xe[zz]<w, F(x)nHcx.
Results in [1, 3 and 4] say that if V = L, then for 0 < ux 0 limit and, for

1 < A < w, Free\(K < uj,0) holds iff k —> (0)fu holds, moreover Freex0(«;, < w,wi)

implies that 0# exists.

We will prove

(5) If Freei (re, < u, 0) is false for a cardinal re and a limit ordinal 0, then Black

wins R(k, < oj,0) (see Theorem 4).

This proof uses remarks made by F. Galvin and A. Maté and is included here

with their permission.

On the other hand we prove

(6) If re —> (0)2U holds for a limit ordinal 0, then White wins the game

R(k, < u),0) (see Theorem 6).

This answers a problem asked in [2]. Note that this is a generalization of the

result of [2] as stated earlier but its proof is by no means simple.

We first proved that White wins Z?(re, < w, re) for a measurable cardinal re. Later

P. Komjath [7] found a simple strategy for White in this game. We could use this

strategy (with some modifications and tricks) to establish our result (6) for 0 > uj.
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However for 0 = w, which is probably the most interesting case, we need a

different argument. In §2 we define the concept of a sequoia, which we hope is of

some independent interest and we establish special properties of these objects. The

proof of (6) then falls into two parts.

We will first show that White has a strategy in the game R(k, < uj, 0) to pick all

elements of a suitable sequoia, and after that we show that under the assumption

re —> (0)2 w this sequoia contains all finite subsets of a set B of type 0.

1. The games R(n,r,0) for 2 < r < w.

DEFINITION. Let re, A,t be cardinals.

(i) We will call a mapping F: [re]<w —» [[re]T]-A a r-set mapping of type < lo and

of order < X on re if A n X = 0 for all A E F(X), X E [re]<u>. r-set mappings of

type n are defined similarly. In this case D(F), the domain of F, is [re]n.

(ii) A subset H C re is said to be free for a r-set mapping F on re iff for all

X C H, such that X E D(F) and for all A E F(X), A <f_ H holds.
(hi) Free^(re, < oj,0,t) (Free^(re,n,0,r)) denotes the following statement.

For all r-set mappings F of type < to (of type n) and of order < A there is a free

set H C re with tp H = 0.

It is clear from the definition that 1-set mappings can be canonically identified

to set mappings and that Free^(re, -,0, t) implies Free^(re, -,0,t') for 1 < r < r'.

In this paper we do not intend to study this relation in general. The idea is that

the statement -> Free^(re, -, 0, X) in many cases yields winning strategies for Black.

Before showing that we define another statement.

DEFINITION. Let A > uj. L(k, < u¡, A) (L(re,n, A)) is the following statement.

There is a A set mapping F of type < w (of type n) of order < A on re such that for

all D c re with tp D = A+ (VA E [D}x 3X(X E D(F) AXcDaAe F(X)) holds.

It is again clear from the definition that L(re, -, A) =>- -iFree^(re, -, A+, A), moreover

it is also clear that L(re, -, A) implies 2A = A+ provided re > A+.

LEMMA 0.   2A = A+ implies L(X+, 1, A).

PROOF. Let [A+]A = {Aa: a < X+} be a well-ordering of type A+ of [A+]A. For

a < X+ let F(a) = {Aß:0 < aAa(£ A0}.    D

LEMMA 1. Assume re>A>w>r>l and -iFree^(re,r, A+, A). Then Black

wins R(k,t + 1, A+).

PROOF. For X E [re]r+1 let X = {x0,..., xr), x0 < ■ ■ ■ < xr; and X® = X\{z¿}

for i < r. Let F: [re]r —> [[re]A]-A be a A-set mapping establishing the assumption.

For each Y E [re]r let F(Y) = {Fu(Y):v < X) be an enumeration of F(Y)

possibly with repetitions.

Finally let <p:n —» [re]r+1 be a coding function satisfying the following require-

ments:

(7) (i) <p(a) n <p(0) = 0 for a ¿ 0 < re,
(Ü) U{^(a):a < K) = K'

(iii) ûCf| <p{ot) A ip(a) C a + u> for a < re.

Black's strategy will be the following. Assume 7 < re. When Black makes his

(hers) 7th move, he (she) looks at White's ath move, W(a), where a is the unique

ordinal for which 7 is the ith element of <p(a) for some i < r.
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He now considers the smallest v < X for which he did not choose earlier a set

of form {x} U W(a)(%\ x E Fl/(W(a)^). If such a v exists, he chooses a set of

the above form, otherwise he chooses the first element of [re]r+uat his disposal in

a well-ordering of type re of [re]r+1.

Assume now that a game was played and Black played according to his strategy.

Let D E [re]A   . By the assumption on F, there are Y E [D]r and v < X such that

FV(Y) C D   and   FV(Y) f\Y = %.

In case White chose less than A, r + 1 element sets containing Y during the game,

we clearly have D (¿W. Assume {au:u < A} are the first A ordinals in increasing

order for which White has picked an r + 1 element subset containing Y. For some

»„, Y = W(av)^\

By (7), £>(a„)(l") < av + uj. Until this move White has chosen less than A sets of

the form {i}UF with x E F„(Y) so when playing this move Black either chooses

a set {x} U Y with x E FU(Y) or he must have done so in some earlier move.    D

LEMMA 2 (LAVER). Assume X > u, 2A = X+ and X++ ■/* [A+]2+ A, i.e. the

X-Chang conjecture fails. Then L(A++,2, A) is true.

PROOF. Let /: [A++]2 -* X+ establish the assumption, i.e.

(8) VZ> G [A++]A+ V/x < A+ 3X E [D[2 f(X) > p.

It is obvious that / can be chosen so that it satisfies

(9) V/3,7 < a f({a,0}) ¿ f({a, 7}) for a < A++.

By the assumption 2A = A+, for each X < a < X++ we can write

[a]x = {AZ:u<X+).

Let 0 < a < A++. For a < X let F ({a, 0}) = 0 and for a > X let

F({a, 0}) = {A¿: 7 < a A p < /({a, 0}) A /({a, 7}) < /({«, 0})}-

Then \F({a,0})\ < A, because of (9).

Let D C A++\A, tpD = A+ and A E [D}x. Choose a 0 E D with A c 0. Then
A = A& for some v < X+. In case there is an a E D\0 with f({a, 0}) > u, we

have A E F({a,0}). Hence we may assume that f({a, 0}) < v for all a E D\0.

By (8), there are a' < a, a',a E D\0 such that /({a, a'}) > v. But, then

/({a, 0}) < /({a, a'}), hence A E F({a, a'}).    D

THEOREM l.   Assume 2A = A+ for some X>w. Then Black wins R(X+,2, A+).

PROOF. By Lemmas 0 and 1.

THEOREM 2. Assume 2A = A+ for some X > uj and X++ ~h [A+]2+ A holds.

Then Black wins ZÍ(A++,3, A+).

PROOF. By Lemmas 1 and 2.

For a cardinal A > ui let A+Q be the oth successor of A. (A+0 = A, A+1 = A+).
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LEMMA 3.   Assume X > u, 1 < r < u>. Then

Free*x(X+r,r,X+,X)*>Freel(X+r,<uj,X+,X).

This can be shown with a standard argument used e.g. for proving

We omit the proof. Lemma 3 is just stated to explain our interest in the following

Problem 5.  Is Vre > w ->Free^(re, < lü,uix,ui) consistent with G.C.H.?  Does it

follow from V = L?

We conjecture that 3/cFree* (re, < uj,uix,uj) implies that 0# exists. Note that a

yes answer to Problem 5 would imply, by Lemmas 1 and 3, that the following is

consistent with ZFC and G.C.H.:

VI <r <w Black wins Z2(Nr,r + l,Nj.).

We now turn our attention to the case when re is a singular strong limit cardinal.

THEOREM 3. Assume k is a singular strong limit cardinal. Then White wins

the game R(k, 2,k).

PROOF. Let r = cf(re). To prepare his strategy White first chooses a strictly

increasing sequence of cardinals (ku:v < r) such that r < kv < re, re„ is regular

for v < t, and the sequence (2K"/: v < r) is strictly increasing as well. For v < r

write Aj, = (2K")+ Now White fixes pairwise disjoint sets {Aw:u < r} such that

(J{A„: v < r} = re and (A^l = A„ for v < t. White's strategy will come in r stages.

Assume v < r and that we have already defined what he has to do in stages Sfj. for

p < v, in such a way that at each of these stages his strategy requires him to make

A^ moves. Assume further that for each p < v a subset B^ C Aß of type reM has

already been fixed.

Now at the stage S„ White will play a strategy (with some modifications) de-

scribed in [2] to obtain a large subset Bv of A„ with [Bu\2 c W. This strat-

egy comes again in A„ stages S„,a for a < Xu, each stage requiring White to

make 2((^ <1/reM) + |a|) < A„ moves. Assume that a < Xv and the strategy

has already been defined for the stages SViß, 0 < a, and that different elements

Xß,yß E Av; 0 < a have already been fixed. We imagine that a game is being

played according to the rules of R(k,2, ■) and we will denote by W(Z) = {{x,y}:

White chose {x, y} A x E Z}. (This is certainly an abuse of notation since W is not

defined until the game is finished, but at each stage we know that some ordinals

must be in W while some are forced to be left out.) Now at the stage Sw,a White

first fixes an element xa of Av such that xa > Xß, yß for 0 < a, and no pair {xa, p)

has been previously picked either by White or by Black. This can be done since A„

is greater than the number of moves made so far. Then making Ylu<v Kv moves ne

makes sure that W({xa})nBß contains a closed cofinal subset of Bß for each p < v.

This is possible since he can always choose {y,xa} for the smallest element y of

some Bß in question which was previously not chosen. At this point it is used heav-

ily that at limit stages it is always White's turn to move. Note that "closed cofinal"

is meant in the topology of Bß defined by its natural well-ordering. After having

finished with xa, White fixes a new element ya > Xß, 0 < a; ya > yß, 0 < a, and

repeats the above procedure for ya in X^o Kß moves. After this White turns his

attention to the set Av. He now plays at most 2|a| moves the following way. If at a
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nonlimit ordinal p+ 1, Black at his pth move picked a set {xß,xa} or {yß,ya} with

some 0 < a, then White picks {yß, ya} or {xß, xa}, respectively, if that is possible,

and in any other case he picks an {xß, xa} or a {yß, ya) with the smallest possible

0. The stage Su^a is finished if all the {xß,xa}, {yß,ya}, ß < Q, have been chosen

by one of the players. We now still have to tell which set Bv C Av White should

fix. The definition of this set will describe White's strategy but in the meantime it

will almost accomplish the proof of the fact that the strategy indeed works. After

having finished the stage Sv White defines a set mapping F on Xv as follows. For

q < A„, F(a) = {ß < a:{xß,xa} A {yß,ya} were both picked by Black}. By the

strategy described above |F(o)| < 2(^ <jyreM) < re„. Now re+ < 2K" < A„, hence

there is a subset C E [A„]A" Free for F.

For each a E C let Da = W({xa}) n W({ya}). Note that Da n Z?M contains a

closed unbounded subset of Bß for each p < v. Let Bv = (\{Bß:p < v). Since

\È„\ < re„ there is a C' E [C]A" and a subset Dv C Bv such that Dv = B„ D Da

for a E C. Now White defines a 2-partition of length 2 of C' as follows. For

0<a, a,ßeC,
f({a,ß})=0   iff {xa,x0} EW.

Note that, by the definition of C', f({a,ß}) = 1 implies {ya,yß} £ W. Now, by

the Erdös-Rado theorem (2K")+ -> (re+)2^, there is a subset C" C C', \C"\ = re+

homogeneous for /. To make the computation simpler White only chooses a C" of

type re„ of this kind. Now one of the sets {xa: a E C"}, {ya: a E C"} is such that

all pairs of the set are in W. White will call this set Bv. Note that tpZ?„ = re„.

Considering that r < re0, for each p < r, 0^ = 5^ C[Ç\{DV: p < v < r} contains

a closed unbounded subset of Bß, hence \B' \ = reM.

But then for B = lj{ß^: ß < r}, \B\ = re and [B]2 C W.    O

2. The game R(k, < u,ß). Sequoias. First we deal with the winning strate-

gies of Black.

LEMMA 4.   Assume ->Freei(re, < oo,ß) holds for a limit ordinal ß < re.   Then

there is a family F = {{Xa,Ya}:a < re} of pairs of finite subsets of re, such that
c

Xa t¿ Ya for a < re, {Xa, Ya) n {X1, F7} = 0 for a ^ 7 < re and VA C re (tp A =

ß=>3a < re, Ya C A).

PROOF. Let /: [re]<aJ -* re establish the assumption, i.e. VX E [re]<w f(X) (£

X A VA C re (tp A = ß => 3X E [A[<" f(X) E A).
For X E [re]<aJ let n(X) = \f(X) n X\. Note that \X\ = n implies that n(X) <

n. Let <p be a one-to-one mapping of ui2 into the set of even numbers and such

that <p(n,m) > n. We define a new mapping g: [re]<UJ —> re which also establishes

-iFreei(re, <u>,ß) as follows.

Let Y E [re]'. Let (n,m) = <p~l({l}) if I E R(<p). Let X be the set of first n

elements of Y. If f(X) E Ç](Y\X) and n(X) = m let g(Y) = f(X). Let g(Y) = 0
otherwise.

Let F = {{X, Y}: X E [k}<uj A Y = X U {g(X)} A g(X) ¿ 0}.

Clearly X % Y holds for all {X, Y} E F. Assume D C re, tpD = ß. We may

assume 0 <£ D. There isaZcfl, Z E [D[<" with f(Z) E D. Let / = f(\Z\,n(Z)).

Choose an endextension X of Z with |X| = / and X C D such that f(Z) E f)X\Z.
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This is possible since ß is a limit ordinal. Let Y = XU {g(X)} = XU {f(Z)} C D.

Obviously {X,Y} E F. Finally let {X,Y}, {X',Y'}, X C Y, X' C Y', be two
elements of F. Assume

{X,F}n{X',F'}^0.

Then either X = X' or Y = Y' since the X's have an even number of elements

while the V's have an odd number of elements. X = X' implies Y = Y'. On

the other hand assume Y = Y', \Y\ = I + 1. Since 0 ^ Y, I E R(<p) and for

tp-\{í}) = (n,m), XU {g(X)} = X' U {g(X')} = Y, and for Z,Z', the set

of first n elements of X and X', respectively, we have n(Z) = n(Z') = m and

n(X), n(X') < n. This implies that both f(Z) and f(Z') are the jth elements of

Y for the same j < n + 1. It follows that X = X'.    D

THEOREM 4. Assume ->Freei(re, < ui,0) for a limit ordinal 0. Then Black wins

the game Z2(re, <ui,ß).

PROOF. Consider a system F = {{XQ,FQ}:a < re} satisfying the requirements

of Lemma 4. Black's strategy is the following. Whenever White chooses an element

of {XQ, Ya} for some a < re Black chooses the other element of it.    D

We now start to give the preliminaries needed to obtain winning strategies for

White.

DEFINITION. Let re be any cardinal. For X, Y c re we write X < Y iff Va E

X, V/? E Y, a < ß.
(i) A subset S C [re]<w is said to be a sequoia (on re) if it has the following two

properties:

(a) S is hereditary, i.e. aCbES=>aES.

(b) S possesses the following exchange property: For a,b E [k]<m, b < {ß} <

{a} <a, a U {a} U {0} E S imply that

a U {a} U b E S <£> o U {ß} U b E S.

REMARKS. So = 0, Sx = [re]<w are sequoias on re. Let (re, <') be a tree on re, such

that -<'c-<. Let S2 = {a E [re]<w:a is fully ordered by -<'}. Then S2 is a sequoia

on re. On the other hand let 5 be a sequoia. Put a <' ß ■&■ {a, ß} E S A a < 0.

Then (re, -<') is a tree. Let B be a branch of this tree. For a < 0, a, 0 E B

define a <2B 0 & 37, 0 < 7 E B, {a, /?, 7} E S. Then, by the exchange property,

a <2B ß o- V7, 0 < 7 < B, {a,0,7} E S, and again by the exchange property

(B, <2B) is a tree. Obviously this procedure can be continued, and a sequoia is a

giant collection of trees amalgamated by the exchange property.

(ii) For a sequoia S and for a E S let Sa = {b E S: b < a A a U b E S}.

(iii) For a sequoia S and o E S let a~ = o\{mina} if a ^ 0. 0~ = 0. We define

Twin(5, a) - {0: {/?} < a A a' U {ß} E S A Sa = Sa-U{0}}.

Note that Twin(5,0) = 0, and Twin(5, a) < a for all a E S.

(iv) We say that a G S is normal in S if |Twin(5, a)\ < 1 and Twin(S, a) = 0

provided |J Sa ^ 0 and (J Sa does not have a maximal element and S is a normal

sequoia if all elements a of it are normal in S.

Note that in the example S2, the set {a} is normal in S2 iff there is at most one

other 0 < a with ó = 0, and none if the height of a is a limit ordinal. Hence S2

is a normal sequoia iff (re, <') is a normal binary tree.  It is also easy to see that
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a normal sequoia is an amalgamation of normal binary trees as indicated in the

remark made after definition (i).

Finally for the construction we need two more definitions:

(v) We will denote by <* the natural well-ordering (of type re) of [re]<w.

For a E [re]n let a = (ao,...,an-X), ao > ••• > an-\, a <* b ^ a is an

endsection of b V bj > aj for the minimal j with bj ^ aj.

Finally we say that

(vi) S is an almost normal sequoia provided for all a E S, a is either normal in

S or V6 E S, a <* b implies that a is an endsection of b, i.e. Be < a with c U a = b.

We now need a sequence of lemmas about the properties of sequoias. In these

lemmas S always denotes a sequoia.

S. LEMMA 1.   For aE S, Sa is a sequoia.

PROOF, (a) Assume b C c E Sa- Then cUa E S, c < a, bUa E S, and so

bESa.

(b) Assume b U {a, 0} E Sa, c < {0} ■< {a} < b. Then a U b U {a, 0} E S and
the exchange property for S implies the exchange property for Sa.    G

S. LEMMA 2. Assume 0 ^ b E Sa. Then b is normal in Sa iff bL) a is normal

in S.

PROOF, b < a by the assumption. Note that (Sa)b = Saub and thus (Jí^a)* has

a maximal element if (J Saub has one. Finally

Twin(5a,6) = {0:{0} < bA(Sa)b-u{0} = (Sa)b}

= {0: {0}<bA S{aub)-U{0} = 5aUb} = Twin(5, a U b).    D

S. LEMMA 3. Assume S is almost normal. Then it has at most one element a

which is not normal in S.

PROOF. Assume indirectly that a,b E S and a,b are not normal in S. W.l.o.g.

we may assume a <* b. Then S being almost normal, o is an endsection of 6,

i.e. there is a c < a with b = a U c and c ^ 0. Now, by S. Lemma 2, c is not

normal in Sa. Using again that a is not normal in S, we can choose a {a} < a

with a E Twin(5,a). Then 5a-u{Q} = Sa. Hence c is not normal in <Sa-u{a} and

then, by S. Lemma 2, a" U {a} U c is not normal in 5. Now a~ U {a} U c <* a and

o~ U {a} U c (¡t a. This contradicts the fact that S is almost normal.

S. LEMMA 4. Assume S is almost normal and a E S is not normal in S. Then

max a = max|J5. As a corollary of this if\JS has no maximal element, then S is

normal.

PROOF. Assume max a < 0 for some 0 E \JS. Then a <* {0} and a (t {0},
hence S is not almost normal.

S. LEMMA 5. Let r¡tbe a limit ordinal. Let {S^.Ç, < n} be a sequence of

almost normal sequoias satisfying the following condition. For all £ < n there is an

d£ E Sç+i such that

f?í = {fc€Sí+i:6<*o€}.

Then S = \J{S^: £ < n} is an almost normal sequoia.

PROOF, (a) S is hereditary: Let a C b E S. Then b E S¿ for some £ < n, aE S^

and a E S.
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(b) S has the exchange property: Assume {0} ■< {a} < a, aö {a} U {0} E S.

Then for some £ < n, all {a} U {0} E S$, hence o U {a} U {0} <* a$. Now, for

any b -< {0}, a U {a} U 6,

a U {/?} U 6 <* a U {a} U {/?} <* as

holds. It now follows that

a U {a} U 6 G 5 O a U {a} U b E Sç

<*a\j{0}obES¡:-&ao{0}obES.

Finally, we have to see that 5 is almost normal. Let 0 ^ a E S. We distinguish

two cases.

(i) 3£ < n (a <* a$ A a is not an endsection of a^).

(ii) 3£o < rj, V£o < £ < V {a is an endsection of a^).

In case (i), S^+i being almost normal, a is normal in S^+x. Again, by (i)

V6 -< a(a U b <* a¿). Hence Sa = {b -< a: a U b E S A a U b <* a^} = (S^)a C

(S^+i)0 C Sa, and as a corollary of this Sa = (S^+X)a. Similarly, for each 0 <

mino, Sa-U{ß} = {Sc+\)a-[j{ß}. (To see this we have to use the fact that if a <* a¿

and a is not an endsection of o^ then the same holds for a~ U {/?}.) We now have

that Twin(S,a) = Twin(Sç+i,a) and so the normality of a in S^+i implies the

normality of a in S.

In case (ii) let b E S, a <* b be arbitrary. For some £, £o < £ < r/, b <* a^. a

is an endsection of a%, by (ii), hence the inequalities a <* b <* a^ imply that a is

an endsection of b as well.    D

S. LEMMA 6. Assume S is almost normal, a E S is not normal in S, 0 E

Twin(S, a). Then the following statements are true:

(i) V6gS (b<* al){0}).
(ii)  S U {a U {ß}} is an almost normal sequoia.

PROOF, (i) Let 6 G S. Since a <* a U {ß} we may assume a <* b. Because a is

not normal in 5, then there exists a c ^ 0 with a U c = b, c -< a. This implies that

c E Sa = Sa-y{ßy. Hence c -< {0} and as a consequence ofit6 = aUc<*aU {0}.

(ii) (a) SU{aU{/3}} is hereditary: To prove this it is sufficient to see that for all

b C a U {ß} with \a U {ß}\b\ = 1, b E S holds. Assume b £ S for some of these b.

For such 6, a U {/3} = i> U {a} for some ordinal a, and let a be the minimal ordinal

for which b E S fails. Then a ^ 0 since a E S and a ^ min a since a" U {/?} G 5.

Then a U {/3} can be written in the form aU{0} = a' U {a} U {a'} U a" U {/?}

where {0} -< a" -< {a'} -< {a} -< a'. Then a' U {a} U {a'} C a E S, and

a' U {a} U a" U {0} G 5 because of the minimality of a. Then b E S since S

possesses the exchange property.

(b) 5 U {a U {0}} has the exchange property.

Put 5' = S U {a U {/?}}. Using part (i) of S. Lemma 6 it is easy to see that 5'

has the exchange property provided

V6 < {0} a- U b U {ß} E S <*• a U 6 G S.

This is equivalent to S0-u{/3} — Sa fl [ß]<UJ which is true because 0 E Twin(S, a).

(c) We have to prove that 5' is almost normal.

Let b G S'. If a U {0} is not of the form a U {0} = b U c, c -< 6 then S¿ =
Sot Twin(S', b) = Twin(S, 6), hence b remains normal in S'. Assume now aU{0} =
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bUc, c <b. We claim that Vd G S' (b <* d =>• b is an endsection of d). This indeed

follows from the fact that a is the nonnormal element of S.

Note that the proof also shows that the nonnormal element of S' (if any) must

be an endsection of a U {/?}.    Ü

We are now in a position to prove our main theorem concerning Ramsey games

and sequoias.

THEOREM 5. Assume re > w is a cardinal. Then in the game R(n, < u>, ■)

White has a strategy to achieve that its winning set W contains a normal sequoia

S with \\JS\ = k.

PROOF. White's first move is to choose the empty set. We define White's

strategy recursively. We will denote White's and Black's £'th move by o^ and 6j,

respectively. We want to define White's strategy so that the following conditions

should hold in every game played according to this strategy for every £ < re:

(i) a? <* aè for f < £.

(ii) Sç = {aç: ç < £} is an almost normal sequoia.

(iii) In case S^ is normal, a$ = {0$} for 0£ = min(re\((J{a? U bç: Ç < £})).

(iv) In case Sj is almost normal and <*/(£) is the nonnormal element of S£ (/(£) <

£), then a^ = a¡^ U {/?{} for some 0^ E Twin(S^,ay(j)).

Let T$ = Twin(Sj,a/(^)) in case S^ is not normal.

(v) If S^+i is not normal, then |T^+1| > 2. Furthermore, suppose bç is of the

form &£ = b U {a}, where 6^0, {a} < b and a¡^+X) = b U c for some c -< {a} and

that min Tç+X < a. Then we call 6^ a threat and in this case we denote the set

b~ U {a} U c U {0} by d(0) for /? G T^+x and we require that either

(a)d(/?£+i)¿S€+i or

(b) /?i+i > minri+i and for all 0 < 0i+x with /? G Tí+1, d(/3) G Sí+1.
Assume now that 0 < n < re and the strategy has already been defined so that

any game (a^,b^: £ < n) played according to White's strategy satisfies (i)-(iv) for

£ < n and (v) for £ + 1 < rj.

Since any move 6^ of Black prevents White from choosing any superset of 6j we

may assume that Black's moves are minimal, i.e. any proper subset a of ¿>£ is equal

to some ac with C < £.

Now Sv = {oç: £ < r¡} is defined, and, by S. Lemmas 5 and 6, S^ is an almost

normal sequoia. In case Sn is normal (iii) can be trivially satisfied. (If S is a normal

sequoia and a < {0} for all a E S, then S U {{/?}} is an almost normal sequoia.)

We assume now that Sn is not normal and ajtv) is the nonnormal element of it.

By S. Lemma 6 to finish the recursion we only have to show that 0V can be chosen

to satisfy (iv) and (v).

To see this we first prove the following

Claim. For aETv and £ + 1 < n, ß/(^) U {a} ^ b^.

Assume indirectly that aj(n) U {a} = b^. By the minimality of the 6ç's, a/(^) G

S^+i, i.e. f(n) < £. Then a¡(n) <* a^+x G Sn, because of (i), hence by the

choice of aj^y and the almost normality of Sn,affn) is an endsection of a$+x =

ay(£+1) U {/?£+!}. We intend to show now that b$ was a threat. Since f(n) <

£, a/(r,) 7^ a£+i and so a/(^) is an endsection of ay(£+1) as well. Then denoting

af{n) hy b, aft£+x\ = b U c for some c < b.
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By S. Lemma 6, a/(£+i) <* a/(^) U {a} = bö {a}. This implies that a > max c

for c t¿ 0. In case c = 0, ay(£+1)U{/3£+i} = o£+1 <* a_f(,j)U{a} implies 0^+x < a.

Hence b$ was indeed a threat. By S. Lemma 6, S' = Sn U {oy(ïï) U {a}} is a sequoia,

and it has the exchange property. It follows from the requirements on a threat and

from 0£+x < a that the exchange property yields

(10) d(0) ES' & afU+x) U {0} E S' for 0 < 0i+x and 0 E Ti+1.

Now we apply (v) for £ + 1. If White answered the threat by making sure

d(0£+x) (£ S we get a contradiction from (10) since then Of(i+1) U {0} E S', and

d(0i+x) E S'. But d(/3i+i) <* b E Si+i and so d(0j+x) E Si+X.
If White answered the threat the other way, and 0 = min T^+ x, then the exchange

property (10) implies a/(£+i) U {0} E S'. But a/(£+i) U {0} <* o^+i then implies

a/(£+i) U {0} E S¿+i, a contradiction to the choice of 0^+x and to S. Lemma 6.

This contradiction finally proves the claim.

By the choice of a¡tv), Tv ^ 0. Hence if n is a limit ordinal and 0 E Tn, by the

claim just proved, av = a/^) U {0} is a legal move for White. Choosing 0n to be

the minimal 0 of this kind, the ry's move of the strategy is defined and satisfies (iv)

(and (v) vacuously). Assume now r¡ = £ + 1. Since /(£ + 1) < £, Of(£+1) <* a^.

In case af^+X) = a$, a$ being the <* maximal element of S^+x, (Sv)a/M =

{0},U(Sr7)a/(n) = 0; hence |T^| > 2. In case af^) <* a$, a$ = a¡^n) U d for some

0 t¿ d < a/(r;)- Again, by the maximality of a£, maxd = max(J(Sn)af,vy Hence

|T^ | > 2 holds in this case as well.

By the claim, bç = af(v) U {a}, Ç < n, a ETn can only hold for Ç = £. In case

this holds for say an G Tn (we may assume \T„\ = 2), White is compelled to choose

the other element, say ax ofTn, as his 0V = 0^+x.

Now in this case, using the notation of (v), a/(£+i) = b, c = %. Hence in

case an < ai, b$ is not a threat and the rest of (v) holds vacuously. In case

ax < an, d(0$+x) = d(ax) = bT, , U {ao} U {ai} ^ S,, since otherwise ax E

(Sv)ajMu{ao}> «o i (^)a-(i))U{ai}, and a0,ai ETn = Twin(S^,a/(^)). Hence in

this case the only move of White answers the threat and satisfies (v).

Now assume ao < ax are the two smallest elements of Tv, bç ^ o/(^)U{a¿}, i < 2

and b^ is a threat: In case d(ai) £ Sv for some i < 2, White can choose av =

af(v) U iai} answering the threat. In case d(a¿) G Sv for i < 2, an = a¡(v) U {ai}

answers the threat.

This finishes the recursion, the strategy is defined. Assume White plays his

strategy and makes re-moves. Let S = {a$: £ < re}. Then S CW. By (i), (ii) and

S. Lemma 5, S is an almost normal sequoia, and | |J S| = re. By S. Lemma 4, S is

normal as well.    O

Now we prove our last lemma about normal sequoias.

S. LEMMA 7. Assume re > w, S C [re]<aJ and S is a normal sequoia. Let 0 be

a limit ordinal, A C \JS, tp A = 0 a set of indiscernibles for S (i.e., for a structure

coding S and the well-ordering < o/re).  Then there is B C re, tpB = 0 such that

[B]<UCS.

PROOF. Let A = {a^: £ < 0} be the natural enumeration of A. We may

assume that ao is the minimal ordinal for which a set A of indiscernibles exists



826 A. HAJNAL AND ZS. NAGY

with min A = ao- If [A]<UJ C S we are home. Assume that k is the minimal integer

for which [A\k ¿ S. Then fc> 1 and by indiscernibility [A]k n S = 0.

We now claim that Sa = Sb for a,b E [A]k~1, mino = min6. This is obvious

for k = 2. For k > 2 assume first that a = a" U {a} U a', b = a" U {/?} U a', a' -<

{a}, {/3} -< a", a' ^ 0.
Then \a" U {a,/3}| < k - 1, a" U {a,/?} G S. Hence for any c -< a', by the

exchange property,

cUaGS<3>cU6GS,    i.e. Sa = Sb

holds in this case. Since for any pair a,b E [A]fe_1 with mino = mint, b can be

obtained from a by repeated applications of the operation described above, Sa = Sb

holds for any such pair.

For £ < 0, let S(£) = S{ûi,Q£+1.*i+k_2}.

We now claim that S(£) ^ S(??) holds for every pair £ < n < 0. Indeed otherwise

S(£) = S(n) would hold for all pairs, and as a consequence of this Sa = Sb would

hold for all o, b E [A]fc_1. This is impossible since e.g.

^{oo,a3,...,at_i/ = ^{oc1,a3,...,ak-i} ~ *{a2,a3,...,afc_i}

implies that ao,ax G Twin(S, {a2,... , a^-i}) a contradiction to the normality of

S.
For £ < n < 0, let a(£, n) be the <* minimal element of S(£) o S(n). Now either

(i) V£ < r, < 0, o(£,r?) G S(0\S(n) or (ii) V£ < r, < 0, a(Z,n) G S(íj)\S(£) holds.
Both of these conditions imply, that a(£, £ + 1) ^ a(£ + 1, £ + 2) for £ < 0, since

e.g. if (i) holds then o(£, £ + 1) $ S(£ + 1) and o(£ + 1, £ + 2) G S(£ + 1).

This in turn implies that a(£, £ + 1) <* o(£ + 1, £ + 2) hence the elements

{a(£) iJc^)'-i<ß} axe all different. Let aj denote the jth element of a.

There is a j < w such that the elements {aj(£, £ + 1): £ < 0} are all different

and indeed increasing. If (i) holds then Oj(£, £ + 1) G US(£) C a¿, for £ < 0;

hence {oj(£, £ + 1): £ < 0} is a set of indiscernibles with with a smaller minimal

element than ao, a contradiction. Thus we may assume that (ii) holds and that

S(£)cS(£ + l)for£</3.

Let/3€ = minU(S(£+l)\S(£))for£</3. In case /3€ < a€ for £ < 0, {% £ < 0}
is a set of indiscernibles with a smaller minimal element than ao- 0ç ^ a£ because

of the choice of k. It follows that aç < 0$ < a^+x holds for £ < 0. Now using the

fact {/?£, a£+i,..., a£+fc_i} G S the exchange property for S implies that

V6 -< {/3J (6 U {% a$2,..., ai+fc_,} G S ^ o U {aç+i, aí+2,.. •, aí+fc_!} G S).

This means that

S{/w..ai+fc-1} = [/5d<wns(£ + i)

holds for £ < 0.

Considering that S(£) C S(£ + 1) and taking into account the definition of 0%

it follows that

[ßz]<w n S(£ + 1) = S(£) = sw,aî+2,...,Qi+fc_l}.

These equalities imply that

aè E Twin(S, {0c, ai+2,..., ai+fc_i})
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and that U%,af+J,..,af+n} = IJS(£) has a maximal element (because of the

definition of normality).

Let g(£) = max(JS(£) for £ < 0.
The g(£) must be all different, since {a£} < {0^} E S(£ + 1) holds for £ < 0.

Then {<?(£):£ < 0} is a set of indiscernibles with a smaller maximal element

than ao- This contradiction concludes the proof of the lemma.    D

THEOREM 6. Assume re —> (0)2W holds for some limit ordinal 0. Then White

wins the game Z2(re, < oj,0).

PROOF. By Theorem 5, White has a strategy which insures that he gets a

normal sequoia S C W with ||JS| = re. By the assumption, there is a set A C

\JS, tpA = 0 which is a set of indiscernibles for A. Then, by S. Lemma 7, there

is a set B c re,tp£ = 0 such that [£]<" C S C W.   D
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