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RANK CHANGE ON ADJOINING REAL POWERS
TO HARDY FIELDS

BY

MAXWELL ROSENLICHT1

ABSTRACT. This paper concerns asymptotic approximations and expansions

in cases where the usual Poincaré power series in l/x do not suffice because

there may be more than one comparability class of functions that are very large

or very small. The attempt to find asymptotic approximations in terms of real

powers of given representatives of the comparability classes fails in general, but

the situation can be saved by the adjunction of suitable real power products

of the original functions, at the possible cost of an increase in the number of

comparability classes.

1. Recall that a Hardy field is a set of germs of real-valued functions on posi-

tive half-lines which is closed under differentiation and which forms a field under

addition and multiplication [1]. Examples of Hardy fields are Q, R, the field of

rational functions R(x) (or rather the set of germs induced by these on suitable

half-lines), and any extension field of a Hardy field obtained by adjoining a germ

that is algebraic over the given Hardy field, or an antiderivative or the exponential

of an element of the given Hardy field [1, Theorem 1 and Corollary 1 to Theorem

2].
Each element of a Hardy field approaches a limit in RU{+oo,—co} as x —»

+00 and each nonzero element of a Hardy field ultimately has a constant sign.

Nonconstant elements /, g of a Hardy field k that have the limits 0 or ±oo as

x —> +00 are called comparable if each of |/|, \g\ is bounded near +oo, above and

below, by integral powers of the other. The rank of k is the number of comparability

classes of such elements of k [2, §3]; for example, the Hardy field R(x, ex) has rank

2, with x and ex representatives of its comparability classes.

Let k be a Hardy field that contains R and let ii, t2,..., tn be positive represen-

tatives of its various comparability classes. It often happens that if we adjoin to k

any set of real powers oftx,...,tn then the resulting Hardy field has the same rank

n as k, in which case for each nonzero f E k there are unique c,cx,... ,cn G R, with

c t¿ 0, such that / ~ ctcx ■ ■ ■ tnn, and indeed each element of k will have an asymp-

totic expansion in terms of such power products. But this happy circumstance,

where the asymptotic expansions are so easy to manipulate, does not always occur.

For example, consider the Hardy field

k = R(x, ex, xai,..., xar, exp(6ix + xai ),..., exp(6rx + xar )),

where ax,... ,ar,bx,... ,br E R, with ax,... ,ar distinct numbers between 0 and 1

and l,bx,...,br are linearly independent over Q. Then k has rank 2, with x and
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ex representatives of its comparability classes, while

k(eblX,..., eb'x) = R(x, xa\..., xa\ex,eblX,..., eb'x,exp(xai),..., exp^))

has rank r+2, with x, ex, exp(x01 ),..., exp(xar ) representatives of its comparability

classes.

The main result of this paper is that if A; is a Hardy field containing R that is of

finite rational rank (for example, if k is obtained by adjoining to R a finite number

of solutions of algebraic differential equations and all their derivatives) then there

exists a Hardy field K D k, of rank at most the rational rank of k, such that any

real power of any positive element of K is in K and, furthermore, a complete set

of representatives of the comparability classes of K may be found consisting of

products of real powers of positive elements of k. This result follows immediately

from Corollary 2 of the theorem in the next section. As a consequence, each element

of K has an asymptotic expansion in terms of constant multiples of real power

products of any set of positive representatives of the various comparability classes

of K.

2. We recall from [1 and 2] the canonical valuation of any Hardy field fc, which

is a homomorphism v from the multiplicative group k* = k — {0} of k onto an

ordered abelian group (the value group) u(k*). The kernel of v consists of all

f E k* such that lim^^+oo f{x) is finite and nonzero, while v(f) > 0 if and only if

lim^^+oo f(x) = 0. From [1 or 2], we know that if /, g E k* and v(f),v(g) ^ 0,

then v(f) > u(g) if and only if v(f') > v(g'). From [2, §1], we know that if /, o G k*,

y(f) > 0 and v(g) ¿ 0, then u(f') > u(g'lg), and the set {v(f'):fE k*,v(f) ¿ 0}
consists precisely of v(k*) minus the least upper bound (if this exists) in v(k*) of

the set #(re) = {u(u'/u): uEk*, u(u) ^ 0}.

(This last point is not stated explicitly in [2, §1], but is a direct consequence of

Theorem 1 there, which states that if / G k* and v(f) ^ l.u.b. V(k) then for some

u E k* such that v(u) /Owe have / ~ (f(fu/u')/(fu/u')')'. We have only to

show that ty(f(fu/u')/(fu/u'Y) ¿ 0. But otherwise v(f) = iy((fu/u')'/(fu/u')),

which implies that v(f) E ^(k), unless v(fu/u') = 0, or v(f) = v(u'/u) E ty(k).

Thus v(f) E V(k), contrary to our knowledge that v(f) exceeds each element of

LEMMA 1. Let k be a Hardy field, let 'i(k) = {v(u'/u):u G k*,v(u) ^ 0}, and

let l.u.b. 'i(k) denote the least upper bound in v(k*) of$>(k), if this exists. Then

any element of v(k*) that exceeds l.u.b. V(k), if this exists, or otherwise exceeds

each element o/*(re), is of the form v(f'), for some f E k* such that v(f) > 0.

By the statement immediately preceding the lemma, each such element of u(k*)

is of the form v(f'), for some f E k* such that u(f) ^ 0. We must have v(f) > 0,

for otherwise v(f') = v(f /'f) + v(f) < v(f'/f) E V(k).

LEMMA 2. Let k C k(w) be Hardy fields, with either w' E k or w'/w E k.
Suppose that w ~ 1 and that there exists t E k* such that u(t) > 0 and u(w') > v(t').

Then v((k(w))*) C Q^(fc*).

Qv(k*) is the ordered vector space over Q spanned by v(k*), which by the

first paragraph of [2, §4] is the value group of the real algebraic closure of k.

Since the real algebraic closure of k(w) is a Hardy field, we may assume without
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loss of generality that k is real algebraically closed. We may suppose w to be

transcendental over k. Then any nonzero element of k(w) equals a nonzero element

of k times a product of positive or negative integral powers of elements of the form

w + a, or (u> + ai)2+a2, with a,ai,a2 E k, a2 ^ 0. We therefore have to show that

v(w + a),u((w + ax)2 + a2) E v(k*). We first examine v((w + ax)2 + o2), with ai G

k, a2 E k*. It is impossible to have v((w + ax)2 + a2) ^ min{i^((w + ai)2),i/(a2)},

for then (w + ax)2-a2, or ((w + ax)/a2)2-1. Thus

u((w + ax)2 + a2) = 2m\n{u(w + ax), u(a2))

and it remains only to show that if o G k then v(w + a) E v(k*). Since w ~ 1, we

have v(w + a) = min{0,i^(a)} G v(k*) unless a ~ -1. We may therefore assume

a ~ -1, so that v(w + o) > 0. Now let us suppose that w' E k. Let g = w' + a' E k.

We must have g ^ 0, for otherwise u + ceR, giving the false result v(w + o) = 0,

unless w = —a, contrary to the transcendence of w over k. By the comments

preceding Lemma 1, v(g) > min{y(w'),u(a')} > min{u(t'),v(a')} > l.u.b. W(k),

if this exists, otherwise u(g) exceeds each element of ^i(k). By Lemma 1, there

exists / G k* such that v(f) > 0 and v(f') = v(g). Since v(w + a), u(f) ^ 0 and

v((w + a)') = u(f'), we have u(w + a) = u(f) G v(k*), completing the proof in the

case w' E k. Finally consider the case w'¡w E k. Here let g = w'¡w — a'¡a G k.

Then g ^ 0, for otherwise (w/a)' = 0, therefore w/a E R, so (w + a)/a E R, giving

the false result v(w + a) = i^(o) = 0, unless w = —a, contrary to the transcendence

of w over k. Thus

v(g) = v(w'/w — a'/a) > min{^(w/),i^(a')}

> mm{i>(t'),v(a')} > l.u.b. tf(fc),

if this exists, otherwise v(g) exceeds each element of ^(k). As above, there exists

/ G re* such that u(f) > 0 and u(f') = u(g). Now ((w + a)/a)' = (w/a)' =

(w/a)(w'¡w — a1 ¡a). Thus v(w + a),u(f) ^ 0 and

v((w + a)') = u(((w + o)/o)') = u{w'/w - a'/a) = v(g) = u(f),

so that v(w + a) = u(f) E u(k*), which completes the proof.

It would be interesting to be able to strengthen Lemma 2 by proving that

u((k(w)Y) c v{k").
The following Lemma 3 can be ignored by readers interested only in the case

where the Hardy field k has finite rank or, more generally, where max "i'(fc) exists.

Indeed, the author has no examples of the cases described in this lemma, other than

the trivial case k C R. We make the prefatory remark that if k C k(w) are Hardy

fields and w'/w E k, then if u(w'/w) > l.u.b. *(fc), if this exists, or if otherwise

v(w'/w) is greater than each element of V(k), then v(w) = 0, a consequence of

Lemma 1 and the paragraph preceding it. However, if k is any Hardy field, and

u, w E k*, v(u) ^ 0 and v(w'/w) < v(u'/u), then v(w) ^ 0 and the comparability

class of w is at least as large as that of u, with equality of these classes if and only

if v(w'/w) = v(u'/u), by [2, Propositions 3 and 4].

LEMMA 3. Let k C k(w) be Hardy fields, with w'/w E k and v(w'/w) £ *(/c) =

{v(u'/u):u E k*,v(u) j^ 0}, but v(w'/w) = l.u.b. V(k), the least upper bound

being taken in u(k*). Then v(w) ^ 0 if and only if, for each a E k* such that

v(a) = l.u.b. ,9(k) we have v(fa) < 0, that is an indefinite integral of a is divergent.
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If u(w) / 0 then the comparability class of w in k(w) is minimal and we have

v((k(w))*) = v(k*) + lv(w), V(k(w)) = $(rc) U {v(w'/w)}, and maxV(k(w)) =

v(w'/w) = l.u.b. ^(k). If u(w) = 0, with w ~ c E R Pi k*, and we set v = w — c,

then u(v) > 0, v(v') = v(w') = l.u.b. $(k), the comparability class of v in k(w) is

minimal, and we have

u((k(w))*) = !/(*•) + Zu(v),    ¥(Jfc(w)) = *(fc) U Mv'/v)},

and

maxV(k(w)) = u(v'/v) = l.u.b. #(re) - u(v).

If a,b E k* and a ~ b, then each a, b is ultimately positive or ultimately negative

and the absolute value of each is bounded above and below by constant multiples

of the absolute value of the other, so that / o diverges if and only if J b diverges.

But fa diverges if and only if v(Ja) < 0. Taking a = w'/w, with w as given

above, we have ¡a = log |tu| and ¡-"(log \w\) < 0 if and only if log |u;| is unbounded

on any positive half-line, meaning that w or 1/w is unbounded on any positive

half-line, or v(w) / 0. Now suppose we have the case v(w) / 0. Then for each

u E k* such that v(u) ^ 0 we have v(w'/w) > u(u'/u), so that the comparability

class of w is smaller than that of u. Thus v(fw%) / ^(gw^) if /, g E k* and

i,j are unequal integers, and it follows that v((k(w))*) = v(k*) + Zu(w). For

/, g E (k(w))* and v(f) = v(g) /Owe have v(f'/f) = v(g'/g), so that the

statement about v((k(w))*) implies the various assertions about ^(/cftt?)). Suppose

finally that u(w) = 0 and w~cGRnfc*. If v = w — c, then v(v) > 0 and

u(v') = u(w') = v(w'/w) = l.u.b. tf(fc) > v(u'/u) if u E k* is such that v(u) / 0,

and, as before, the comparability class of v is smaller than that of it. Since k(w) =

k(v) we deduce, exactly as above, that u((k(w))*) = v(k*) + Zv(v) and the various

assertions about the present \t(fc(tt>)) are immediate.

Let k be a Hardy field containing R. If t is a positive (i.e. ultimately positive)

element of k and c G R, then k(tc) is a Hardy field. We call tc a real power of

t. The expression v(tc) makes sense, as an element of the value group of k(tc), or

indeed the value group of any extension Hardy field of k(tc). If tx,t2 E k* and

v(tx) = v(t2) then t2 ~ atx for some a E R*, so that |í2|c ~ |a|c|£i|c and therefore

i/(|i2|c) = i^(|ti|c). It therefore makes sense, for a G v(k*) and c G R, to define ca

to be /^([i jc), where t is any element of k such that v(t) = a. We deduce immediately

that c(a + 0) = ca + c0 for c G R and a,0 E v(k*), that (cx + c2)a = cxa + c2a

and ci(c2a) = (cic2)a for ci,c2 G R and a G v(k*), and that la = a for each

a G u(k*). If a G v(k*) and c G Q, the present ca has the same sense as earlier,

when ca E Qf(fc*). If K is an extension Hardy field of k that is closed under

the taking of real powers of positive elements, then the value group v(K*) is a

vector space over R. A main object of study is the subspace Yltek' R-K*)> eac^

element of which is of the form v(u), for some real power product of elements of

k u = \tx\Cl ■ ■ • |£n|c"> where each í¿ G k* and each c, G R. Note that for such a u

we have u'/u = cxt'x/tx + • • ■ + cnt'n/tn G k, so that for such a u the field k(u), as

a subfield closed under differentiation of a Hardy field, is itself a Hardy field.

THEOREM.   Let k be a Hardy field that contains R and let

fc = K({|t|c: tEk*, cGR}).

Write *(rc) = {v(u'/u): u E k*, v(u) / 0}.  Then k is a Hardy field and:
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(1) if max ^(k) exists, then v(k*) is the R-span of v(k*), that is v(k*) =

Rv(k)* = £tefc. Rv(t), and max*(A;) = max'i'(fc);

(2) if there is no real power product w of elements of k such that v(w'/w) is the

least upper bound ofV(k) in v(k*), then v(k*) = Rv(k*) and each element ofty(k)

is less than some element of^(k);

(3) if there is a real power product w of elements of k such that v(w'/w) £ $(fc)

and v(w'/w) is the least upper bound of^(k) in v(k*), then

(a) if v(w) ± 0, we have v(k*) = Rv(k*),max^!(k) = v(w'/w) = l.u.b. *(&),

and any other element ofty(k) is less than some element ofií(k),

(b) ifv(w) =0 andw~cER*, then Rv(k*) + Zu(w - c) Cu(k*) cRv(k*) +

Rv(w — c) and max*(fc) = l.u.b. $t(k) — u(w — c), with v(w - c) positive and less

than any positive element of v(k*), while any other element of ^(k) is less than

some element ofiS(k). These four cases are exhaustive and mutually exclusive.

We already know that k is a Hardy field and that Rv(k*) C v{k*)- Recall that

for any nonconstant real power product u of elements of k we have u(u'/u) G i^(fc*).

If max *(rc) exists we are in case (1), but not (2) or (3). If max ty(k) does not exist

but l.u.b. ^(k) exists, we are not in case (1), but we are in precisely one of the

two cases (2) or (3). If l.u.b. W(k) does not exist, we are in case (2), but in neither

cases (1) nor (3). Thus cases (1), (2), (3) are exhaustive and mutually exclusive. If

we are in case (3), then at least one of (3) (a) or (b) must obtain, but not both, as

will follow from their different consequences, once these are proved. So it remains

to prove the individual consequences of cases (1), (2), (3)(a) and (b). In cases

(1) and (2), we use Zorn's lemma to get the existence of a maximal set U of real

power products of elements of k such that k* C U and v((k(U))*) C Y1ugu Qu{u)-

Clearly U is a multiplicative group and fci = k(U) is a Hardy subfield of k, with

v(k\) C Q^({7). If un G U and n is a positive integer, then kx(u0'n) is an algebraic

extension of kx, so that v((kx(u0 ))*) C Qv(kl) C Qv(U) and the maximality of

U implies that uQ E U. Therefore v(k\) = Q^(<7) = is(U). If z is any real power

product of elements of k such that v(z) £ i^{k]*), then for ao, ax,..., an E kl and

not all zero we have

v(ao + axz + • • • + anzn) =min{v(ai) + iv(z): i = 0,... ,n}

Ev(k\) + Zv(z)c     Y,     Q^«)'
u€t/U{z}

so that v((k(U U {z}))*) C Ylueuutz} QK^)) contradicting the maximality of the

set U. Thus if z is any real power product of elements of k then there is au EU such

that u(z) = v(u). Therefore there is a real power product w of elements of k such

that z/w E U and w ~ 1. Looking at the Hardy field k(w), we get v(w') greater

than each element of ^(k). Also v(w') = v(w'/w) E u(k*). In either case (1) or

(2), we can apply Lemma 1 to v(w') to get the existence of an element t E k* such

that v(t) > 0 and v(t') = v(w'). If we apply Lemma 2 to w,t and the Hardy fields

kx C kx(w) we get v((kx(w))*) C Qu(kl). By the maximality of U we get w E U,

so that z E U. In other words, U consists of all real power products of elements

of k, so that kx = k and Ru(k*) C u(k*) C u(U) C Ru(k*), or v(k*) = Rv(k*).
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Therefore

*(jfc) = {v(u'/u): u E k*,v(u) ¿ 0} = {v(u'/u): uEU, v(u) ¿ 0}.

If there were some u E U such that u(u) / 0 and u(u'/u) exceeds each element

of ty(k) then by Lemma 1, in either case (1) or (2), there would be an / G k*

such that ¡y(f) > 0 and v(f') = u(u'/u), a contradiction. This completes the

proof of all our contentions in cases (1) and (2). Now suppose that we are in case

(3), with w as indicated in the statement of the theorem. In case (3)(a), Lemma

3 tells us that k(w) is a Hardy field with value group v(k*) + Zv(w), with the

comparability class of w smaller than the comparability class of any element of k,

so that *(rc(u;)) = 4,(fc) U {v(w'/w)} has a greatest element v(w'/w). Applying

what has been proved in case (1) to the Hardy field k(w) we get

v(k*) C v(({k(w)f)*) = Rv{(k{w))*) = Ru(k*) + Rty(w) = Rv(k*) C v{k*),

so that u(k") = ty(((k(w)f)*) = Rv(k*). Since v(k*) = v{[{k{w))~)*) we have

max*(fc) = max$((rc(u;))~) = v(w'/w) = l.u.b. \P(re). Since ty(k) = {v(v!/u): u

a real power product of elements of k, v(u) / 0} C v(k*), every element of ^(k)

other than the maximum l.u.b. \í(fc) ^ $(fc) is less than some element of ^(k).

This proves everything in case (3)(a). Finally consider case (3)(b). We again use

Lemma 3 to get ¡y((k(w))*) = v(k*) + Zv(w — c), with the comparability class of

w — c minimal in k(w) and v(w - c) less than any positive element of v(k*), so that

max\I>(fc(u;)) = u((w - c)'¡(w — c)) = l.u.b. *(fc) - v(w — c).

Also k C k(w) C k. Applying case (1) to k(w), we obtain v(k*) C v(((k(w))~)*) =

Rv((k(w))*) = Rv(k*) + Rv(w-c) and max4,(fc) = max*(fc(iü)). Any element of

^(k) other than its maximum is of the form u(u'/u), with u a real power product

of elements of k, which is an element of u(k*) less than l.u.b. *(k) and hence less

than some element of <ï?(fc). This completes the proof of the theorem.

COROLLARY 1.   Notations being as in the theorem,

(1) *(fc) C *(fc) C v(k*) except in case (3)(b), where *(fc) C *(fc) C v(k') U

{max #(£)};

(2) in cases (1) and (3), k satisfies case (1), while, in case (2), k satisfies

case (2);

(3) in all cases except (3)(b), v(k ) = v(k ).

Clearly \I>(k) C 'í(fc). Also, for any u E k such that u(u) / 0 there is a real

power product ux of elements of k (or, in case (3)(b), of elements of k and ofw-c)

such that v(u) = u(ux), so that v(u'/u) = v(u'x/ux), which is the value of an

element of k* (or of an element of fc* plus a real multiple of (w — c)'/(w — c)), so

that (1) follows. The first part of (2) is clear. For the second part of (2), suppose

that it; is a real power product of elements of k such that u(w' /w) is the least upper

bound of *(k) in v(k ). Since v(k ) = Rv(k*), there is a real power product wx of

elements of k such that w ~ wx. If u(w) / 0, then v(w'/w) = v(w'x/wx) E ^(k), so

that v(w'/w) is less than some element of V(k), a contradiction. If v(w) = 0, then

for some c G R* we have v(w — c) > 0, therefore there is a real power product vx of

elements of k such that vx ~ w — c, so that u(v'x) = u(w') = v(w'/w) = l.u.b. í'(fc),
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which contradicts the last statement preceding Lemma 1. So it remains only to

verify (3), which is done by noting that a real power product of real power products

of certain elements is a real power product of these elements.

COROLLARY 2. For any Hardy field k that contains R there is a smallest Hardy

field K D k such that \t[c E Rfor anyt E K* and anyc E R. Also v(K*) = Rv(k*)

or v(K*) = R^(fc*) + Ru(w — c), with w a real power product of elements of k and

c E R*, u(w — c) > 0, and the comparability class ofw-c smaller than that of any

real power product of elements of k, and this last case can occur only if^(k) has

a least upper bound in v(k*) that is not in \I>(fc). Furthermore rankfc < rankZi <

rat rank k.

Define the sequence of Hardy fields fco, kx, k2,... by setting fco = fc and fc¿+i = fc¿

for each i. Then K = (J¿>o^*- Everything is now clear except for the last part,

where we reason that

rankfc < rankZf < diniR. v(K*) = dimR R^(fc*) < diniQ Qt/(fc*) = rat rank fc.

COROLLARY 3. Let fc be a Hardy field of rank 1 that contains R. Then rank fc =
rank K = 1.

Here we are in case (1) of the theorem, with max\I/(fc) = max4'(Zi) = max\I>(fc).

Therefore if t G fc* is such that v(t) / 0, then í is in the smallest comparability

class of fc or of K. On the other hand, it is clear that some integral power of £ is

ultimately larger than any given element of fc or of K, so that í is also in the largest

comparability class of fc or of K.

Because it is so important, it is worth reconsidering the case of a Hardy field

fc containing R that is of finite rational rank. Here the earlier proofs simplify

considerably, Lemma 1 becoming almost trivial, Lemma 3 unnecessary, and the

theorem needing proof only in the relatively easy case (1). The situation may

be reviewed in the following suggestive manner. Let fc have rational rank n, so

that there exist ti,...,tn G fc* such that i^(fc*) C £™=i Q^(í¿)- Choose a basis

2/i>-")2/m (>w < n) of the real vector space S = 'Êi=xRt'i/ti C k such that

v(yx) = mm{v(y): y E S}, v(y2) = min{i/(y): y E S,v(y) > v(y{)}, v(y3) =

min{i>(y): y E S,v(y) > v(y2)}, etc., so that v(yx) < v(y2) < ••■ < v(ym). For

any u E fc* such that v(u) / 0 there exist integers N,ax,... ,o„, with N / 0,

such that v(uN) = Nv(u) = ¡/(i"1 • ■ • tn"), so that v(u'/u) = ^(£"=1 atfJU), and

therefore Vl>(fc) C {v(yi): i= l,...,m}. If we choose r such that max ^(fc) = v(yr),

then r <m <n and the set of all v(u'/u) as u ranges over all real power products

of elements of fc such that v(u) / 0 is precisely the set {v(y\), ■■ ■, v(yr)}- Letting

Ui = exp(/y¿) for i = 1,...,r, the u¿'s are real power products of elements of fc,

each v(ui) / 0, the comparability classes of ux,..., ur are distinct and in decreasing

order, and for any nonzero u in fc or K we have t^(it) = v(ucx ■ ■ -ucr') for certain

unique C\,... ,cr G R. Thus for each uE K* there is an asymptotic expansion

u ~ ciuï11 ■ • ■ <" + c2ucx21 ■ ■ ■ u?* +■■■,

possibly terminating, with each c», Cij E R and each c¿ nonzero. If each yx had

been chosen positive we would have each u¿ infinitely increasing and the sequence

of r-tuples {(c¿i,. ..,Cjr)}i>i would be strictly decreasing in the lexicographical

ordering.
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