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ABSTRACT. We use a technique involving skeletoids in cr-compact metric ARs

to obtain some new examples of spaces homeomorphic to the cr-compact linear

spaces I2, and E. For example, we show that (1) every No-dimensional metric

linear space is homeomorphic to ¡?; (2) every cr-compact metric linear space

which is an AR and which contains an infinite-dimensional compact convex

subset is homeomorphic to E; and (3) every weak product of a sequence of

cr-compact metric ARs which contain Hubert cubes is homeomorphic to E.

1. Introduction. We consider the cr-compact pre-Hilbert spaces Z? = {(x¿) G

I2: Xi = 0 for almost all i} and S = {(x¿) G l2: sup|i'x¿| < co}. For any cr-compact

locally convex metric linear space E, with completion E, the following results are

known from work of Anderson, Bessaga and Pelczynski, and Torunczyk (see [3,

Chapter VIII]):

(1) (Ë,E) « (l2,l2f) if E is No-dimensional;

(2) (E, E) fa (I2, S) if E contains an infinite-dimensional compact convex subset.

In this paper we extend the above results to all cr-compact metric linear spaces

E for which the completion E is an AR. More generally, it is shown that if C

is a a-compact convex subset of a metric linear space such that the closure C is

nonlocally compact, then:

(I) C fa I2 if C is cr-fd-compact (the countable union of finite-dimensional com-

pacta);

(II) C « S if C is an AR and contains an infinite-dimensional locally compact

convex subset;

(III) if the closure C in some complete metric linear space is nonlocally compact

and an AR, then (C,C) » (I2,1}) if C is cr-fd-compact, and (C,C) « (Z2,£) if C

contains an infinite-dimensional locally compact convex subset.

The proof of (III) is based on the theory of skeletoids (cap sets and fd-cap sets) in

I2, and a result from [9]. However, it does involve many of the same constructions

that appear in the proofs of (I) and (II), for which there is developed a method of

skeletoids in cr-compact metric ARs based on the topological characterizations of

l2f and S given in [13].
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This method is also used to obtain results on weak products. Specifically, every

weak product of a sequence of nondegenerate cr-fd-compact metric ARs is homeo-

morphic to I2-, and every weak product of cr-compact ARs which contain Hilbert

cubes is homeomorphic to E.

2. Strongly universal properties and skeletoids. We say that a metric

space X is strongly universal for compacta (respectively, strongly universal for finite-

dimensional compacta) if, for every map /: A —► X of a compactum (respectively,

finite-dimensional compactum), for every closed subset B of A such that / | B is

an imbedding, and for every e > 0, there exists an imbedding h: A —* X such that

h | B = f | B and d(h, f) < s.

2.1 THEOREM [13]. A metric AR is homeomorphic to E (respectively, home-

omorphic to l2r) if and only if it is o-compact and strongly universal for compacta

(respectively, o-fd-compact and strongly universal for finite-dimensional compacta).

In verifying the strongly universal properties for the spaces discussed in §1, we

find it convenient to work with skeletal versions of these properties, formulated

with respect to a tower of subsets Xx C X2 C • • • in X. We say that {X¿} is

a strongly universal tower for compacta (respectively, strongly universal tower for

finite-dimensional compacta) if, for every map /: A —> X of a compactum (re-

spectively, finite-dimensional compactum), for every closed subset B of A such that

f \ B: B —» Xm is an imbedding into some Xm, and for every e > 0, there exists an

imbedding h:A—> Xn, for some n > m, such that h \ B = f \ B and d(h, f) < e.

We refer to (J^° Xt c X as a skeletoid for compacta (respectively, skeletoid for

finite-dimensional compacta).

We also require the notion of a Z-set. A closed set F of a metric space X is a

Z-set in X if all maps of compacta into X can be arbitrarily closely approximated

by maps into X\F. When X is an ANR, it suffices to consider maps of the Hilbert

cube into X, or equivalently, maps of n-cells for all finite n.

2.2 PROPOSITION. Let X be a metric ANR such that every compact subset is

a Z-set. Then if X contains a skeletoid for compacta (respectively, skeletoid for

finite-dimensional compacta), X is strongly universal for compacta (respectively,

strongly universal for finite-dimensional compacta).

PROOF. Given a map /: A —> X of a compactum, a closed subset B of A such

that / | B is an imbedding, and s > 0, we must construct an imbedding g: A —* X

such that g \ B = f \ B and d(g, f) < e. Let {Xi} be a strongly universal tower for

compacta, and let {Ai} be a tower of compacta such that Ui° M = A\B. We will

inductively construct a sequence of maps {gn: A —> X} such that:

(i) 9n{An) C Xitn) for some i(n);

(ii) gn | An U B is an imbedding;

(iii) gn | An_i U B = c/n_i | An_i U B (set AQ = 0 and g0 = f);

(iv) d(g„,9n_i) <e/2n.

Then g = limn^oo gn is the required imbedding.

Suppose maps go,. ■ ■ ,gn-i have been constructed. Since the compacta

gn-X(An-X) and gn^x(B) are disjoint, there exists a neighborhood U of An-X in A

such that dist(ç7„_i(<7),c;n_i(Z?)) > 0. Take

6 = min{e/2"+1,dist(gn_1(í/),í7n_1(Z3))}.
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Since X is an ANR, there exists n > 0 such that every map g': A —» X with

d(g',gn-X) < n is ¿-homotopic to gn-\- By the Z-set hypothesis, there exists a

map g': A -» X\gn-X(B) with ci(c7',c7n_i) < n. Let h: A x [0,1] -* I be a Í-

homotopy between c/ = /io and gn-\ = hx, and let A: A —> [0,1] be a Urysohn map

with X(An-i) = 1 and X(X\U) = 0. Define g: A -> X by g(a) = /i(a,A(a)). Then

g(A) nc7n_i(jB) = 0, £ | An_i =gn-i \ An-X, and 3 is e/2n+1-homotopic to gn-X.

Choose 0 < p < dist(g(A),gn-X(B)) such that every map h: A —> X with

d(h,g) < ii is £/2n+1-homotopic to g. By the tower hypothesis, there exists an

imbedding h: A —> X^n) for some i(n) > i(n - 1), with h \ An-X = g \ An-X =

gn-i I An_i and d(h,g) < p. Then h(Ä) n t7n_i(Z?) = 0, and /i is e/2n-homotopic

to gn-\. Using such a homotopy and a Urysohn map A: A —* [0,1] with A(A„) = 1

and X(B) = 0, we then construct the desired map gn.

The identical construction works in the case that {Xi} is strongly universal for

finite-dimensional compacta and A is finite-dimensional.

In general, the compact Z-set hypothesis in the above proposition is strictly

necessary, and cannot be weakened to nowhere-local compactness. Consider the

infinite-dimensional compact convex ellipsoid M = {(x¿) G I2: Y1T i2xï - 1}>

a topological Hilbert cube. Let Mcoie = {(x¿) G I2: YlT^2xl < 1}> an(^ ̂  ^
be a wild (i.e., not a Z-set) Cantor set in M. Then X = Mcore U W is a cr-

compact, nowhere-locally compact, convex subset of I2 which contains a skeletoid

for compacta, but X 9e E, and is therefore not strongly universal for compacta,

since W is not a Z-set in X.

There also exists a cr-fd-compact counterexample. With M and W as above, let

Mf = M n /?, and consider Y = Mf U W. Then F is a cr-fd-compact, nowhere-

locally compact AR which contains a skeletoid for finite-dimensional compacta, but

again W is not a Z-set in Y. Thus Y ffe /? and is not strongly universal for finite-

dimensional compacta. (Although Y is nonconvex, it is easily seen that there exist

maps g: M —> Y arbitrarily close to the identity map such that g \ W =id and

g(M\W) C Mf. Thus Y is arbitrarily finely dominated by M, and is therefore

an AR.) It is an open question (see §4) whether the compact Z-set hypothesis

is redundant when X is an infinite-dimensional, a-fd-compact, convex subset of a

metric linear space.

The skeletoids contained in the above counterexamples are proper subsets of the

spaces. In the case that a cr-compact metric ANR is covered by a strongly universal

tower, with each tower element cr-compact, compact subsets are automatically Z-

sets. The following proposition will be used for weak products (§5).

2.3. PROPOSITION. Let X be a metric ANR, and let {Xi} be a strongly univer-

sal tower for compacta (respectively, strongly universal tower for finite-dimensional

compacta), with each Xi o-compact (respectively, o-fd-compact), and such that

(J^° X% = X. Then every compact subset of X is a Z-set.

PROOF. We first verify that every compact subset (respectively, finite-dimen-

sional compact subset) of a tower element Xi is a Z-set in X. Let F be such a

subset, let /: K —> X be a map of a compactum, and let e > 0. Consider the

disjoint union K U F, and the map /: K U F —> X defined by / | K = f and

/ I F = id.  Then / can be approximated by an imbedding h: K U F —► Xj for
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some j > i, with h | F = f \ F = id and d(h,f) < e. Thus d(h \ K,f) < e and
h(K) n F = 0.

Of course, since X is an ANR, it suffices to consider the case that K is an n-cell.

Thus if {Xi} is strongly universal for finite-dimensional compacta, and F C v, is

finite-dimensional, the above procedure still works.

Since X = (J^° Xi, it follows that every compact subset of X is a a Z-set (i.e., a

countable union of Z-sets), and the proof of the proposition will be completed by

the following.

2.4. LEMMA. Every topologically complete closed a Z-set in a metric ANR is

a Z-set.

PROOF. Consider F = (J^° Fn, with each Fn a Z-set in X. Choose a complete

metric d for F; since F is closed in X, d can be extended to X. Let a map f:K—>X

of a compactum and e > 0 be given. Using the fact that each Fn is a Z-set, and

the techniques in the second paragraph of the proof of 2.2, we may construct a

sequence of maps {/„: K —> X} and a sequence of positive constants {en} such

that:

(i)/n(Zi)nF„ = 0;
(ii) en < min{dist(/n(Zi),F„),£ri_1/2}, with e0 = s;

(iii) d(fn,fn+x) < £„/2, with /o = /;

(iv) /„+, | Kn = fn | Kn, where Kn = {qE K: dist(fn(q),F) > 2""}.

The subsets Kn form a tower, and if (Ji° Kn = K,f = limn_oo fn is a well-

defined map of K into X\F, with ci(/, /) < s. Suppose there exists q E K\ (J^° Kn.

Then for some sequence {yn} in F, d(fn(q),yn) < 2~n for each n. Since {fn(q)} is

Cauchy, so is {yn}, and yn —> y E F. Hence fn(q) —* y, and y E Fm for some m.

But since dist(/m(Zi),Fm) > em and d(fm,fn) < em for each n > m, we cannot

have fn{<¡) —* y- Thus Ui° Kn = K, and the proof is complete.

3. Convex sets in metric linear spaces. Throughout this section, C denotes

a convex subset of a metric linear space E. We use a monotone invariant metric

d on E, and the corresponding F-norm | • |: E —> [0,oo), defined by \x\ = d(x,6),

where 6 is the zero element. The monotone property means that |ix| < |x| if |i| < 1.

In attempting to identify convex sets in metric linear spaces which may be home-

omorphic to I2 or E, we need first of all to determine whether compact subsets are

Z-sets. As shown by the example following the proof of 2.2, it does not suffice to re-

quire only that the convex set be nowhere-locally compact. However, it is sufficient

that the closure of a convex set be nonlocally compact (note that a closed convex

set which fails to be locally compact at some point is nowhere-locally compact).

3.1. PROPOSITION. If the convex set C has a nonlocally compact closure in

E, then every compact subset of C is a Z-set in C.

PROOF. We may assume 6 E C. Consider a compact subset F of C, a map

/: K —> C of a compactum, and e > 0. Choose 0 < 8 < 1 such that \Sf(q)\ < e/2

for all q E K. Set D = {(x - (1 - 6)f(q))/6: x E F and q E K). Then D C E
is compact. Since there is no compact neighborhood of 9 in C, we must have

C D {x E E: \x\ < e/3} <t D, and there exists z G C\D with \z\ < e/2. Define a

map g: K —> C by the formula g(q) = 6z + (1 — S)f(q). Since z £ D, g(q) ^ F for
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any q E K, and

\g(q) - f(Q)\ = \Sz - Sf(q)\ < |*| + \6f(q)\ < e/2 + e/2 = e.

Thus F is a Z-set in C.

3.2. LEMMA. Let {Ci} be a tower of convex sets such that [J^° C¿ is dense in

the convex set C, and suppose that C is an AR and each Ci is an AR. Then for

every map f: A —» C of a compactum, for every closed subset B of A such that

f(B) C Cm for some m, and for every e > 0, there exists a map g: A —> Cn for

some n>m, such that g \ B = f \ B and d(g, f) < e.

PROOF. We will construct maps fo,fi' A —> C„, for some n > m, such that

fo\B = f\B and d(fx,f) < e/2. Then for any Urysohn map A: A —> [0,1] such
that X(B) = 0 and {a E A: |/0(o) - f(a)\ > e/2} C A_1(l), the required map g

may be defined by the formula g(a) = (1 — X(a))fo(a) + X(a)fx(a).

The map /o is obtained as an extension of the map / | B into the AR space Cm.

In constructing the map fx, we may assume that A is a Hilbert cube, since C is

an AR. Thus we may assume that A admits small self-maps into finite-dimensional

subcompacta. (If A itself is finite-dimensional, the AR hypothesis on C is unneces-

sary.) Choose 6 > 0 such that \f(a) — f(a')\ < e/4 for all a,a' E A with d(a, a') < 6.

Choose a finite-dimensional subcompactum F of A for which there exists a map

t: A-> F with d(r, id) < 6. Choose n > 0 such that \f(a)-f(a')\ < e/£(dimF + l)
for all a, a' E F with d(a,a') < n. Let ii be a finite open cover of F, with

dim Nerve ii < dim F and meshii < n. For each U Ell, choose <p(U) E \Jf Ci

such that for some a E U, \<p(U) — f(a)\ < e/6(dimF + 1). This defines a partial

realization of Nerve Ü in some C„, n > m, which may be extended linearly to a

full realization tp: Nerve ii —* Cn. Let a: F —» Nerve ii be any barycentric map.

Then the composition f = ip ■ a maps F into Cn, and d(f, f \ F) < e/4. Finally,

take fi = f or: A —> Cn. For each a G A, we have

\fi(a) - f(a)\ < \f(r(a)) - f(r(a))\ + \f(r(a)) - f(a)\

< e/4 + e/4 = e/2.

This completes the proof of the lemma.

An infinite-dimensional compact convex set which can be affinely imbedded in

I2 is called a Keller cube. (For a discussion of such sets, including the fundamental

theorem that all Keller cubes are homeomorphic to the Hilbert cube, we refer the

reader to [3].)

3.3. LEMMA. Let K be a Keller cube in a metric linear space E. Then for

every finite set {xx,..., xn} in E the set L = conv{ZT, xi,..., xn} is also a Keller

cube. Furthermore, there exists z E K with the property that, for every such L, the

subset aur,j L = {JyeL[z,y) is a aZ-set in L.

PROOF. Let a: K —> I2 be an affine imbedding. We may assume that 6 E K and

that a(6) = (0,0,...) G I2. For any L = conv{Zf, X\,..., xn} a can be extended

to an affine imbedding of L as follows. If xx E spanZC = [j^ n(K - K), say

xx = n(kx — fc2), set a(xx) = n(a(kx) — a(k2)). And if xx ^ spanZf, choose

a(xx) G Z2\spana(ZÍ). Then a extends linearly to a homeomorphism between

conv{Zi, £1} and conv{a(Zi),a(ii)}. Repeating this procedure n times, we obtain

the desired extension of a over L, with a(L) = conv{a(Zi), a(xx),..., a(xn)}.
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By the foregoing, we may assume without loss of generality that E = I2 and

(0,0,...) G K. Choose an orthogonal sequence {u¿} of nonzero vectors in the

infinite-dimensional pre-Hilbert space span K. We may suppose that each tt¿ G

K — K; pick Vi, Wi E K such that u¿ = vt - ti>¿. Since K is compact, the sequence

{wi} is bounded. Consider z = J2T 2~%Wi. We have z E K, and z + 2_,u¿ G K
for each t. It follows from Proposition 2.5 of [4] that for any compact convex set

L D K, aur2 L is a a Z-set in L.

We are now ready to construct skeletoids in convex sets.

3.4. PROPOSITION. Let C be a separable infinite-dimensional convex set. Then

C contains a skeletoid for finite-dimensional compacta, and if C is an AR and

contains a Keller cube, then C contains a skeletoid for compacta.

PROOF. Let {xi} be a dense sequence in C, and define Ci = conv{xi,..., x¿},

t > 1. We verify that {d} is a strongly universal tower for finite-dimensional

compacta. Given a map /: A —> C of a finite-dimensional compactum, a closed

subset B of A such that f \ B: B —> Cm is an imbedding into some Cm, and

e > 0, we must construct an imbedding h: A —> Cr for some r > m, such that

h | B = f | B and d(h, f) < e. By 3.2, / may be approximated by a map

¡7: A —» Cn for some n> m, such that g \ B = f \ B and d(<j, /) < e/2. (As noted

in the proof of 3.2, the finite-dimensionality of A makes the AR hypothesis on C

unnecessary.) Since A is finite-dimensional, there exists a map tp: A —► J into some

finite-dimensional cell J, with tp \ B a constant map onto some boundary point p

of J, such that if <p(a) = tp(a'), then either a = a' or a, a' E B. Since {dimC¿} is

unbounded, there exists an imbedding e: C„ x J —> Cr, for some r > n, such that

e(x,p) = x and |e(x,c7) — x| < e/2 for all x E Cn and q E J. Then the required

imbedding h: A —> Cr is defined by the formula h(a) = e(g(a),tp(a)).

Now suppose C contains a Keller cube K. Let z E K be a point with the

property specified in 3.3. We may assume z = 6. As before, let {x¿} be a dense

sequence in C, and define L¿ = conv{ZÍ, xx,..., x¿}, i > 1. Then each Keller cube

Li has the property that aurgL¿ = [0,1) • L¿ is a cr Z-set in Li. Equivalently, for

each 0 < t < 1 the Keller cube fX¿ is a Z-set in L¿.

Let {U} be a strictly increasing sequence of positive numbers such that U —* 1.

For each i, set C¿ = í¿Z>¿. Then {C¿} is a tower of convex sets, with each d ~ Z°°,

and (Ji°Cj is dense in C. Since the pair (í¿+iL¿+i,í¿L¿+i) is homeomorphic to

the pair (Li+x,tLi+x) for some 0 < í < 1, í¿L¿+i is a Z-set in U+xLi+x. Thus

Ci = tiLi C tiLi+x is a Z-set in C¿+i. By Anderson's theorem on topological

infinite deficiency [1], (C¿+i,C¿) ~ (Ci x Z°°,C¿ x pt).

We verify that {Ci} is a strongly universal tower for compacta. Let a map

/: A —> C, a closed subset B of A, and e > 0 be given as before (except that now

we do not assume A is finite-dimensional). Let ¡7: A —» Cn be the approximation

given by 3.2, with g \ B = f \ B and d(g, f) < e/2. There exists a map tp: A —> Z°°,
with tp I B a constant map onto a point p, such that if tp(a) = tp(a'), then either

a = a' or a, a' E B. Let e: Cn x Z°° —> C„+i be an imbedding such that e(x,p) = x

and |e(x,<j) - x| < e/2 for all x E Cn and q G Z°°. Then as before, the formula

h(a) = e(g(a),tp(a)) defines the required imbedding h: A —► Cn+X.

The hypothesis in 3.4 concerning the existence of Keller cubes in convex sets

has an easier, but equivalent, formulation. We say that a convex set C in a metric
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linear space E is locally complete at x E C if there exists a neighborhood of x in C

which is complete with respect to an invariant metric on E.

3.5. PROPOSITION. Every infinite-dimensional convex set which is somewhere

locally complete contains a Keller cube.

PROOF. We may assume C is locally complete at 6 E C, i.e., there exists e > 0

such that every Cauchy sequence in C D {x G E: |x| < e} converges in C. Let {x,}

be a linearly independent sequence in C. We will construct a sequence of scalars

{r¿}, with 0 < tí < 2~l for each i, such that the correspondence (í¿) —► ^^° í¿xt

defines an affine imbedding of the Keller cube Z°° = FJ^° [0, r¿] C I2 into C. Choose

0 < tx < 1/2 such that |tiXi| < e/2. Suppose inductively that tx,. .. ,rn have been

chosen. For each m, 1 < m < n, set

m

: W,(t,)e[l[o,i
1

and \sí — ti\ > 1/m for some i

Since (U) —► Y1T tixi IS an imbedding of rTT[0>T¿] into C, we have <5m > 0 for
each m. Now choose rn+x > 0 such that |rn+ixn+i| < e/2n+1 and t„+i <

min{l/2n+1,6x/2n,...,6n/2}. With the scalars {t¿} so chosen, it is routine to

verify that the correspondence (í¿) —* J2T U^i is an affine imbedding of Z°°

into C.

Thus a convex set contains a Keller cube if and only if it contains an infinite-

dimensional convex set which is somewhere locally complete. In particular, a convex

set containing an infinite-dimensional locally compact convex set contains a Keller

cube.

4. Convex sets homeomorphic to I2 and E. We can now prove the results

stated in §1.

4.1. THEOREM. Let C be a a-compact subset of a metric linear space such

that the closure C is nonlocally compact. If C is a-fd-compact, then C ~ /?. If C

is an AR and contains an infinite-dimensional locally compact convex subset, then

C«E.

PROOF. Clearly, C is infinite dimensional, and by 3.1 every compact subset of

C is a Z-set.

Suppose C is cr-fd-compact. As a convex subset of a linear space, C is contractible

and locally contractible. Since every cr-fd-compact locally contractible metric space

is an ANR [10], C is an AR. By 3.4, C contains a skeletoid for finite-dimensional

compacta. Then 2.2 shows that C is strongly universal for finite-dimensional com-

pacta, and 2.1 gives C r¿ /?.

Now suppose that C is an AR and contains an infinite-dimensional locally com-

pact convex subset. Then C contains a Keller cube by 3.5, and by 3.4 C contains

a skeletoid for compacta. Then C is strongly universal for compacta, and C sa E.

Since no infinite-dimensional metric linear space is locally compact, we have the

following corollary.

inf- / ,, SiXi       / ^ ti
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4.2. COROLLARY. Every infinite-dimensional a-fd-compact metric linear space

(in particular, every Nq-dimensional metric linear space) is homeomorphic to ti.

Every cr-compact metric linear space which is an AR and contains an infinite-

dimensional locally compact convex subset is homeomorphic to E.

It was shown in [8] that every cr-compact locally convex metric linear space

which contains a topological Hilbert cube is homeomorphic to E, and an example

was given of such a space which contains no infinite-dimensional locally compact

convex subsets. We do not know whether the hypothesis in the above corollary (or

in the theorem) concerning the existence of an infinite-dimensional locally compact

convex subset can be weakened by requiring only that C contain a topological

Hilbert cube.

As mentioned in §2, it is not known whether every infinite-dimensional cr-fd-

compact convex subset of a metric linear space has the property that compact

subsets are Z-sets. (Note that every such convex set must be locally infinite dimen-

sional, and is therefore a first-category space. Thus in any case it is nowhere-locally

compact). By 3.4, every such convex set C contains a skeletoid for finite-dimensional

compacta. Thus, the question of whether C fa /? reduces to the question of whether

every compact subset of C is a Z-set. We do have the following partial answer.

4.3. COROLLARY. Let C be an infinite-dimensional a-fd-compact convex sub-

set of a metric linear space E, and suppose that E does not contain a Keller cube.

Then Cm I}.

PROOF. C must be nonlocally compact, since otherwise it would contain a Keller

cube, by 3.5. Thus the corollary follows from 4.1.

In particular, every infinite-dimensional cr-fd-compact symmetric convex subset

C of a metric linear space is homeomorphic to Í?, since in this case span C = (J^° nC

is cr-fd-compact.

4.4. THEOREM. Let C be a a-compact convex subset of a complete metric lin-

ear space such that the closure C is nonlocally compact and an AR. Then (C, C) fa

(l2,l2f) if C is a-fd-compact, and (C,C) ss (¿2,E) if C contains an infinite-

dimensional locally compact convex subset.

PROOF. By [9], a closed convex subset of a complete metric linear space is

homeomorphic to I2 if it is separable, nonlocally compact, and an AR. Thus C fal2.

Applying 3.4 to C, we obtain a strongly universal tower {d} for finite-dimension-

al compacta, and the proof shows that the tower elements may be taken to be finite-

dimensional cells in the dense convex subset C. Then, in the sense of Bessaga and

Pelczynski [2], (J^° d is a skeletoid for the collection of finite-dimensional compacta

in C fa I2 (an fd-cap set for C in the sense of Anderson—see [5]). And if C D (J^° C¿

is cr-fd-compact, then C is also a skeletoid [14]. Since ïi is a skeletoid for finite-

dimensional compacta in I2, and since all such skeletoids are equivalent under space

homeomorphisms (see [3]), we have (C,C) fa(l2,ñ).

On the other hand, if C contains an infinite-dimensional locally compact convex

subset, and therefore contains a Keller cube, 3.4 applied to C shows there exists a

strongly universal tower {Ci} for compacta in C. Again, the construction may be

done such that each d is a compactum in C. Then (J^° d is a skeletoid for the

collection of compacta in C ~ I2, and since C D Ui° C»> the cr-compact set C is
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also a skeletoid. Since E is a skeletoid for compacta in Z2, we have by equivalence

of skeletoids that (Ü, C) fa (I2, E).

5. Weak products of cr-compact ARs. For a sequence of pointed spaces

{(Xi,pi)}, the weak product E(X¿,p¿) is defined by

T,(Xi,pi) = j (xi) E \\Xi: Xi = pi for almost all i\.

5.1. THEOREM. If each Xi is a nondegenerate a-fd-compact metric AR, then

T,(Xi,pi) fa l2j. If each Xi is a a-compact metric AR containing a Hilbert cube,

then E(Xi,pi) fa E.

PROOF. For each n = 1,2,..., let

Zn = |(x¿) G Y\xi- Xi = pi for i > n\.

Since there exist arbitrarily small deformations of E(X¿,p¿) into its AR subspaces

Z„ (use contractions of X¿ to p¿, for all large »'), E(X¿,p¿) is an AR [12].

We verify that {Zn} is a strongly universal tower for finite-dimensional compacta

in T,(Xi,pi). Let /: A —> E(X¿,p¿) be a map of a finite-dimensional compactum,

and B a closed subset of A such that / | B: B —► Zm is an imbedding into

some Zm. For each i, let /¿ denote the i'th-coordinate projection of /. Then /

can be arbitrarily closely approximated by a truncated map /: A ^> Zn, where

f(a) = (/i(a),..., fn(a),pn+x,...). And assuming n>m, f | B = f \ B. Since A

is finite dimensional, and each Xi is nondegenerate and path-connected, there exists

a map e: A —» Xn+X x • ■ • xXr into some finite product, with e(B) = (pn+i,... ,pr),

such that if e(a) = e(a'), then either a = a' or a, a' G B. Then the map h: A^> Zr,

defined by

Ka) ~ (/i(a); • • • i fn{a), e„+i(o),..., er(a),p^+i,...),

is an imbedding which approximates /, and h \ B = f \ B.

If each Xi is cr-fd-compact, then so is each Zn, and since (J^° Zn = E(X¿,p¿),

it follows from (2.1), (2.2) and (2.3) that E(X¿,p¿) fa lj. (This result, in the case

that each X¿ is finite-dimensional, was observed without proof in [11].)

The same type of argument as above shows that {Zn} is a strongly universal

tower for compacta, provided that each Xi contains a Hilbert cube containing the

base point p¿. In such cases, then, E(X¿,p¿) fa E.

Let N = Nx U iV2 U • • • be a partition of the positive integers into infinite subsets.

For each fc = 1,2,..., let Wk denote the weak product of the pointed spaces (Xi, pt)

which axe indexed by ZVfc, and let qk E Wk denote the base point (p¿: i G Nk)-

Clearly, E(X¿,p¿) « E(Wfc,c7fc). Thus to complete the proof, in the general case

that each X¿ contains a Hilbert cube, we need to show that each weak product

space Wk contains a Hilbert cube containing the base point qk- In other words, it

suffices to show that T,(Xi,pi) contains a Hilbert cube containing (p¿).

Let Q denote the Hilbert cube. Pick c/o G Q, and let d be a metric on Q such that

d(c7,c2o) < 1 for all q. For each i > 1, set M, = {q G Q: 2"1"1 < d(q,q0) < 2~i+l}
and Ti = {q E Q: q = ç0 or d(q, c/o) > 2_t+2}. Since each Xi is an AR and contains

a Hilbert cube, there exist maps ç/j: Q —> X¿ such that gi | M¿ is an imbedding of

Mi into Xi\{pi} and gi(Ti) = pi. It is easily verified that the formula g(q) = (gi(q))
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defines an imbedding g: Q —» E(X¿,p¿), with g(qo) = (pi)- This completes the proof

of the theorem.

If each Xi as above has an AR compactification Zí¿, then the weak product

T,(Xi,pi) is densely imbedded as a cr Z-set in the product space ni°^»> which

is a Hilbert cube (see [6]). It is shown in [7] that, under the hypotheses of (5.1),

T,(Xi,pi) is an fd-cap set, or a cap set, in f]^3 Kt if and only if each Xi is map-dense

in Ki, i.e., the identity map on Zí¿ can be approximated by maps into Xx.

In particular, let S be any dense cr-compact 1-dimensional AR in the 2-cell

I2, and pick p E S. Then E(5,p) C fli0^2 = ^°° is a dense cr Z-set and is

homeomorphic to an fd-cap set in Z°°, but is not itself an fd-cap set, since the

1-dimensional space S cannot be map-dense in I2.

ADDED IN PROOF. It has very recently been discovered that the characteriza-

tion 2.1 requires the additional hypothesis that every compact subset F of X is a

strong Z-set, i.e., for every open cover ii of X there exists a map f:X—>X limited

by ii such that f(X) n F = 0. In all the applications of this paper, the strong Z-set

hypothesis is satisfied.
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