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ON THE SPECTRUM OF Cb-SEMIGROUPS

BY

JAN PRUSS

ABSTRACT. In this paper we give characterizations of the spectrum of a

Co-semigroup eAt in terms of certain solution properties of the differential

equation (*) u' = Au + / and, in case X is a Hubert space, also in terms of

properties of ( A - A) ~1. We give several applications of these results including

a study of the existence of dichotomic projections for (*).

1. Introduction. Let X be a complex Banach space with norm | ■ | and A be

a generator of a Co-semigroup eAt in X. One of the major open problems in the

theory of such semigroups is the description of the spectrum o(eAt) of eAi in terms

of A. It is well known that e"^1 C cr(eAt) holds for all generators A (cf. Hille and

Phillips [12]), but also that the inclusion may be strict. In fact, Zabczyk [17] gave

a nice example of a Co-group in a Hilbert space such that |eAt| = e'*' for all t G R

but o(A) C ¿R is purely imaginary. Other examples may be found in Hille and

Phillips [12] or Davies [6]. Of course, there are several large classes of generators

A for which the spectrum of eAt can be expressed in terms of cr(A). Some of these

classes are:

(i) A is bounded: o(eAt) = exp(u(.4)i).

(ii) X is a Hilbert space and A is normal: o(eAi) = exp(o(A)t).

(iii) eAt is continuous in B(X) for t > t0 > 0: o(eAt) \ {0} = exp(fj(^)i).

Here B(A~) denotes the space of bounded linear operators in X normed in the usual

way.  In particular, (iii) includes Co-semigroups eAt such that eAt is compact for

t > t0 > 0 and Co-semigroups which are differentiable for t > tr, > 0; see Davies

[6].
Recently, Gearhart [8] obtained a characterization of a(eAt) for semigroups of

contractions in Hilbert spaces. His result is as follows:

\i e C \ {0} belongs to the resolvent set p(eAt) <$ {X e C: eAt = fi} C p(A)

and (A - A)-1 is uniformly bounded on this set.

However, his proof is quite lengthy and his arguments rely heavily on the harmonic

analysis of contractions in Hilbert spaces developed by Foias and Sz. Nagy [7]. So

the general case remained open, even in Hilbert spaces. Also, Gearhart's proof does

not give much insight why the growth of |(A - A)~l\ on the solution set of eAt = p,

determines whether /z e p(eAt) or not.
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It is our first purpose in this paper to prove that Gearhart's result is valid for all

Co-semigroups in Hilbert spaces. The key for our proof is the strong connection be-

tween the spectrum of eAt and periodic solutions of the inhomogeneous differential

equation

(*) u' = Au + f,

where / is a periodic forcing term. As a matter of fact, our proof is quite elementary

and natural and gives a clear understanding of o~(eAt). As a byproduct we derive

a complete characterization of the class of generators A such that for any given

T-periodic / that equation has a unique T-periodic solution; cf. Theorem 1 below.

This extends results obtained by Haraux [11].

A number of important consequences are then derived. We obtain a class of gen-

erators including (iii) mentioned above such that the relation ea^'É =

a(eAt)\{0} holds in case X is a Hilbert space. We obtain a new simpler formula for

the growth abscissa ujq(A) of a Co-semigroup (see §3) and derive characterizations

of the 'spectrum determined growth property' as well as of 'uniform asymptotic

stability' in case X is a Hilbert space; see §3. The latter are very important for lin-

ear systems theory in infinite-dimensional spaces and have attracted many authors;

see Curtain and Pritchard [4], Pritchard and Zabczyk [13], Slemrod [15] and the

references given there.

In §4 we continue the analysis of the relationship between a(eAt) and solution

properties of the inhomogeneous differential equation (*). We show that there

is dichotomic projection for eAt iff the unit sphere {\p\ = 1} is contained in the

spectrum of eA. Theorem 3 shows that this is equivalent to ¿R C p(A) and

supR \(it - A)~l\ < oo in case X is a Hilbert space. To our knowledge, such di-

chotomic projections have been obtained before only in case the essential spectrum

of eAt is strictly contained in the unit circle, i.e. the unstable subspace is finite

dimensional; for applications of this concept to functional differential equations

with finite delays (eAt compact) see Hale [10], and for problems in age-dependent

population dynamics (eAt noncompact) see Priiss [14] and Webb [16]. Once a di-

chotomic projection is known to exist, equation (*) behaves quite well; we show

that precisely one bounded or bounded, uniformly continuous or almost periodic

or convergent mild solution of (*) exists whenever / belongs to that class. Unfor-

tunately, there is an example which shows that Theorem 2 is no longer valid in

arbitrary Banach spaces; see Greiner, Voigt and Wolff [9, §4]. Hence boundedness

of the resolvent of A is not sufficient to characterize the spectrum of eAt, in general,

and therefore it would be interesting to know which additional properties of the

resolvent of A are responsible for p G C to belong to a(eM).

2. Periodic solutions. Let us fix some notation. If J is any real interval and

p G [l,co), we let LP(J,X) denote the space of all strongly measurable functions

/: J -» X such that |/|p = (/_, |/(í)|p<¿£)1/p is finite; W(J,X) is a Banach space

w.r.t. the norm | • |p. The space of bounded continuous functions /: J —* X is

denoted by C(J,X) and its norm is |/|o = sup{|/(i)|: t G J}.

Recall that for / G Ll([0,T},X) given, a function u G C([0,T],X) is called a

mild solution of

(1) u'(t) = Au(t) + f(t),        ÍG[0,T],
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on [0, T] with initial value uq G X if

(2) u(t) = eAtu0 + f eA^-s^f(s) ds
Jo

holds on [0, T]. Then u(t) satisfies (1) for each t G [0, T] (u is a strict solution) iff

u G C1([0, T],X), i.e. u is continuously differentiate. If u(t) is a mild solution on

[0, T] such that u(0) = u(T), then it is clear that u(t) can be continuously extended

by periodicity to all of R, hence is a T-periodic mild solution of (1) on R, provided

f(t) has been extended T-periodically, too. Therefore, we call a mild solution of

(1) on [0,T] T-periodic if u(0) = u(T).

Concerning the spectrum o(eAt) of eAT, notice first that p — eXT G C belongs

to the resolvent set p(eAT) iff eXT - eAT = eXT(I - e^A~x^T) is invertible, i.e. iff

1 G p(eB) where B = (A—X)T is the generator of the Co-semigroup eBt = e(^--MTt,

Therefore it suffices to consider '1 G p(eA)\ It is easy to see that there is a strong

connection between the property '1 G p(eAy and 1-periodic solutions of (1). In

fact, if u(t) is a 1-periodic mild solution of (1) then (2) implies

(3) (I-eA)u(0)= f eA^f(s)ds.
Jo

In particular, the 1-periodic solution of the homogeneous version of (1), i.e. f(t) =

0, are precisely the functions u(t) = eAtx with x G N(I - eA), the kernel of / - eA.

These observations lead to

THEOREM 1. Let X be a Banach space and eAt the Co-semigroup in X, gener-

ated by A. Then 1 G p(eA) iff for any f G C(J,X), J = [0,1], (1) admits precisely
one 1-periodic mild solution.

PROOF. (=>) If 1 G p(eA) then I - eA is invertible, hence (3) determines the

unique initial value of the 1-periodic mild solution u(t) of (1) according to

(4) u(0) = (I - eA)~l f  eA^-^f(s)ds.
Jo

(«=) Define K: C(J,X) -► C(J,X) by means of (Kf)(t) = u(t), where u(t)
denotes the unique 1-periodic mild solution of (1). Obviously, K is linear and

everywhere defined; if /„ —► / and Kfn —* u in C(J, X) then it is clear from (2)

that u(t) is 1-periodic and a mild solution of (1), hence u = Kf by uniqueness. This

shows that the graph of K is closed, and so K is bounded, thanks to the Closed

Graph Theorem. Now, consider f(t) = eAtx for x G X and define Sx = (Kf)(0).

Of course, S: X —» X is linear and bounded, and (3) yields

(I-eA)(Sx + x)= f eA(l-sîf(s)ds + x-eAx = x.
Jo

This shows that I — eA is surjective, and since I — eA is injective, too, we see that

I - eA is invertible, i.e. 1 G p(eA).   Q.E.D.

COROLLARY 1.  Letlep(eA). Then we have:

(i) Equation (1) has a unique mild 1-periodic solution for any f G Ll(J,X),

.7 = [0,1].
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(ii) LetfeW^l(J,X) orfeC(J,X)nLl(J,Y), where Y = D(A), normed by
the graph norm of A.  Then the 1-periodic mild solution is a strict solution.

The first part of Corollary 1 follows from the proof of Theorem 1 and the second

part is a standard matter in semigroup theory since (/ — eA)~l commutes with

A; see [4]. If eAt is continuous in B(X) for t > t0 > 0, then by (iii) of §1, the

assumption '1 G p(eAy of Corollary 1 can be replaced by í{2irin}n€z C p(A)\

Theorem 1 is the main tool for the proof of our central result on the spectrum

of eAt in Hilbert space.

THEOREM 2. Let X be a Hilbert space and eAt the Co-semigroup in X generated

by A.  Then 1 G p(eA) iff

(5) {2win}n€z C p(A)    and    sup |(27rm - A)"1] = M < oo.
raeZ

PROOF.  (=>) Let 1 G p(eA) and consider the operators T„ defined by

Tnx = (I-eA)~1 [  eAse-2irmsxds,        x G X, n G Z.

Jo

Since A commutes with eAs as well as with (1 - eA)~l, we have for x G D(A)

(2mn - A)Tnx = Tn(2mn - A)x = (I - eA)-y [ (2mn - A)e{A-27Tin)sxds
Jo

-1 d
-(I-eA)-1 [   ^-e{A-2^n^xds = (I - eA)-\x - eAx) = x.

Jo   ds

Hence 27rm — A is invertible for each n and (27rm — A)   J = Tn; we also obtain

|(27rin-A)-1| = |Tn| < ](/ - eA)~l\ su^{\eAs\: 0 < s < 1} = M < oo,

i.e. (5) holds.

(<=) Suppose (5) holds and let / G C(J,X) be given, where J = [0,1], Then the

Fourier-coefficients of /,

fn= [   f(s)e^insds, riGZ,
Jo

are well defined and satisfy Parseval's equality

1/15=   [1\M\2ds='E\fn\\
Jo „c.tiEZ

and
N

f(t)=   lim   Yfne2^nt=   lim   fN(t)    in L2(J,X)
N—>oo '—' N—>oo

-IV

holds. If u(t) is a mild 1-periodic solution of (1), then (2) implies that the Fourier-

coefficients are

(6) un = (2mn-A)-lfn,        n G Z;

in particular, there is at most one 1-periodic mild solution. Conversely, let ttjv(i) =

Yl-N unC2nmt; then un G Cl(J,X) is 1-periodic and satisfies

(7) uN(t) = eA,uN(0) + I eA^fN(s)ds,
Jo
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and un is even a strict solution. Now, (5) implies

oo oo oo

£ K|2 < £ 1(2™ - A)"1)2!/«!2 < M2 £ l/nl2 = M2]/]2,
— oo —oo —oo

hence un —> u in L2(J,X) as iV —> oo. Obviously,

/" eA(t"s)/N(s)ds^  f eA(í-s)/(s)íis    as AT -» oo,
Jo Jo

uniformly for t G J, and so í = 1 in (7) yields

(I-eA)uN(0)= [  eA^-^fN(s)ds^ f  e^1"8)f(s)ds.
Jo Jo

On the other hand, multiplication of (7) by e"4'1-^ and integration over J yields

eAuN(0)= [ eA(l-t]uN(t)dt- [ eA{1-t] f eA(t~s)fN(s)dsdt,
Jo Jo Jo

and the right-hand side of this equality converges as N —> oo.   This shows that

ujv(O) — (I - eA)uN(0) + caun(0) tends to some «o £ X. Finally, (7) implies that

Ujv —> w in C(J, X), and that u(i) is a mild 1-periodic solution of (1). The proof is

complete.    Q.E.D.

Theorems 1 and 2 yield the following result on T-periodic solutions of (1) in

Hilbert spaces, generalizing results in Haraux [11] who additionally had to assume

|(27rm - A)"1! < C/|n|    for all n.

COROLLARY 2. Let X be a Hilbert space and eAt a Co-semigroup in X. Then,

for every f G Ll(J,X), (1) has a unique mild 1-periodic solution iff {(2nin)}nez C

p(A) and supneZ|(27rm - A)~l\ = M < oo.

3. The spectrum of eAt. In view of the remark in front of Theorem 1, Theorem

2 immediately yields a characterization of p(eAt).

THEOREM 3. Let X be a Hilbert space and eAt a Co-semigroup in X. Then

0^pGp(eAt) iffr1Logp={\eC: ext = p} C p(A) and sup{|(A - A)-11: A G

í_1 Log/z} < oo.

In this section we derive several consequences of Theorem 3 which illustrate its

usefulness. Let us begin with a nice generalization of (iii) from §1.

PROPOSITION 1. Let X be a Hilbert space and eAt be a Co-semigroup in X,

and suppose A satisfies the following condition.

(R) There is tp: R+ —> R+ increasing with ip(r) —> oo as r —> oo such that

H^ = {XeC: Re A > -^(|ImA|)} C p(A) and supHJ(A - A)-1] = M < oo.

Then o(eAt) \ {0} = e^X holds for all t > 0.

PROOF. Let p G C \ {0} be given and suppose that

Í"1 hogp = {A G C: ext = p) = {f-1 log/x + t~l2mn: n G Z} c p(A).

Condition (R) then implies that (A - A)-1 is uniformly bounded on t~l Log/i, and

so by Theorem 3 we obtain p G p(eAt); this proves o(eAt) \ {0} C ea^A^. Since the

converse inclusion always holds, we obtain the asserted equality.    Q.E.D.
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Note that Co-semigroups eAt which are continuous in B(X) for t > to > 0 satisfy

(Ri) There is uj G R such that {w + ir}Ten C p(A) and |(w + Í7--A)"1|^0

as \t\ —> oo, and (Ri) in turn implies (R). In applications, Conditions (R) or (Ri)

are easier to check than continuity of eAt in B(X) since, in general, information on

the resolvent (A — A)-1 of A is better available. In order to see the limitations of

(R), in case eAt is a Co-group and (R) holds then c(A) is bounded, hence A must

be a bounded operator.

For applications of semigroup theory to linear systems theory it is important

to know whether eAt has the spectrum determined growth property (SDG), i.e. the

growth abscissa

(8) Lüo(A) = lim r1 log|eAt| = inf í-^ogle^l
t—>oo t>0

of eAt and the upper bound of the spectrum of A

(9) wa(J4) = sup{Re A: Agct(A)}

coincide. It is well known that e"'0^* is the spectral radius of eAt and therefore

the spectral containment e"^1 C a(eAt) implies that

(10) u„(A) < wo (A)

always holds. Theorem 3 yields a new formula for wo(A) which immediately leads

to a characterization of those Co-semigroups in a Hilbert space which enjoy the

SDG-property.

PROPOSITION 2.   Let X be a Hilbert space and eAt a Co-semigroup in X. Then

(11) w0(A) = inf{w > ljo(A): \(X - A)_1| < M(lj) for Re A > w}.

PROOF. Let uj\ denote the right-hand side of (11); it is clear that uj\ < i¿o(A)

holds, even in general Banach spaces. To prove the converse inequality, let p G C

be such that \p\ > eUl. Then

hogp = {log|//| + i arg p + 2nin: n G Z} C {A G C: Re A > Log|¿¿| > wi} C p(A),

hence (X — A)^1 is uniformly bounded on Log p. Theorem 3 implies p G p(eA), and

so a(eA) C {p G C: |^| < e"1}; this shows that uo(Â) < wi, since eUJo(j4) is the

spectral radius of eA.   Q.E.D.

COROLLARY 3. Let X be a Hubert space. Then a Co-semigroup eAt in X has

the SDG-property iff for each e > 0 there is Me > 1 such that |(A — j4)_1| < Me

for all Re A > ujo(A) + e.

Recall that the trivial solution u(t) = 0 of

(12) u'(t) = Au(t)

is said to be uniformly asymptotically stable if eAtx —> 0 as t —> oo, uniformly w.r.t.

|x| < 1. It is well known that this property is equivalent to exponential stability,

i.e. wq (A) < 0; see [4]. As another corollary to Proposition 2 we obtain
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COROLLARY 4. Let X be a Hilbert space and eAt be a Co-semigroup in X. Then

u(t) = 0 is uniformly asymptotically stable w.r.t. (12) iff {X G C: Re A > 0} C p(A)

and there is M > 1 such that j (A — ̂4) ̂11 < M for all Re A > 0.

4. Dichotomic projections. Recall the following definition of dichotomic pro-

jections for eAt.

DEFINITION. A projection operator P G B(X) is called a dichotomic projection

for the Co-semigroup eAt in X if there are M > 1, 6 > 0 such that:

(PI) PeAt = eAtP for all t > 0;

(P2) |e^'Px| < Me-6t\Px\ for allxEX,t> 0;

(P3) eAt(I - P) extends to a Co-group on N(P);

(P4) \eAt(I - P)x\ < MeSt\(I - P)x\ for allxeX,t< 0.

In case A is a bounded operator it is known that eAt admits a dichotomic pro-

jection iff ¿R c p(A)\ see [5]. Many important properties of the inhomogeneous

equation (1) can be derived if eAt is known to have a dichotomic projection, cf.

[3, 5, 10] and the results below. It turns out that this concept is quite useful for

unbounded operators, too, although its full strength will appear in connection with

Theorems 2 and 3 in Hilbert spaces. The main result of this section is

THEOREM 4. Let eAt be a Co-semigroup in the Banach space X. Then the

following are equivalent:

(i) eAt admits a dichotomic projection.

(ii) For each bounded f G C(R, X) there is precisely one bounded mild solution

uGC(R,X) o/(l).

(iii) Sx = {p G C:  \p\ = l}Cp(eA).

PROOF. (i)=>(ii). Let P be a dichotomic projection for eAt. Define Green's

kernel GA(t) associated with (1) by means of

(13) GA(t) -
eAtP for t > 0,

~eAt(I-P)    fori<0;

recall that eAt(I — P) has an extension to a Co-group on N(P) which we denote

by eAt(I — P) again. In view of (P2) and (P4) we have

/oo
\GA(t)\dt <2M/S <oo

and therefore K: BC(R,X) -» BC(R,X) given by

/OO

GA(t-s)f(s)ds
-co

is well defined and continuous; here ßC(R. X) denotes the space of bounded con-

tinuous functions /: R —*• X. We want to show that ».(/) = (Kf)(t) is the unique
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bounded mild solution of (1). In fact, we have for s < t

u(t) - eA{t~s)u(s) =  f     eA(f-T)p/(r) dr - eA{t~a) f   eA^-^Pf(T) dr
J— oo J— oo

/oo poo
eA{s-T)Qf(T)dr- I    eA^-^Qf(r)dT

=  f eA^-T^Pf(T)dT+ f eA{t-^Qf(r)dr
J 3 J 3

= f eA(t-T)f(r)dr,
J s

where Q = I - P, i.e. u is a mild solution of (1) on all of R. To prove uniqueness

suppose u(t) is a bounded mild solution of the homogeneous equation (12). Then

u(t + s) = eAtu(s) for all s G R, t > 0; in particular, u(s) = eAtu(s - t) for all

s G R, t > 0. Hence

\Pu(s)\ < \eAtP\ \Pu(s - t)\ < Me~st ■ \P\ ■ \u\0 -> 0    as t -* oo,

i.e. Pu(s) = 0. Similarly, since eAtQ is a Co-group on A^P) = R(Q),

\Qu(s)\ = \e~AtQu(s + t)\ < Me~H\Q\ \u\0 ^ 0   as t -» oo,

hence Qu(s) = 0, i.e. u(s) = 0.

(ii)=>(iii). Let p = eîa, a G R, be given; we want to show that eia G p(eA),

i.e. that eloc - eA = exct(I - eA~ta) is invertible. Since v(t) = e~iatu(t) is a mild

solution of v' = (A — ia)v + f(t)e~iat whenever u(t) is a mild solution of (1) and

conversely, it suffices to show that 1 G p(eA). In view of Theorem 1, it remains to

prove that for a 1-periodic / G C(R, X), the unique bounded solution u(t) of (1)

is 1-periodic. But this follows since v(t) = u(t + 1) is also a mild solution of (1),

hence u(t + 1) = u(t) by uniqueness.

(iii)=>(i). Let Si C p(eA); then

1

2ni
f      (z-eAY^dz
'1*1=

is well defined since (z — eA)~l is holomorphic and bounded on an open neigh-

bourhood of Si, clearly P is linear and bounded, and the usual argument shows

that P2 = P, i.e. P is a projection. Since eAt commutes with (z — eA)~x for all

t > 0, l^l = 1, it is clear that PeAt — eAtP, i.e. (PI) is satisfied; this also implies

that eAt leaves N(P) and R(P) invariant. The Co-semigroup U(t) = ej4t|ß(p), the

restriction of eAt to R(P), then has spectrum tr(U(l)) C {p G C: \p\ < 1}, hence

the spectral radius of (7(1) is less than 1 and so there is 6 > 0 and M > Í such

that (P2) is fulfilled. Similarly, the Co-semigroup V(t) = cm\n(p) has spectrum

a(V(l)) c{peC: \p\ > 1}, in particular 0 G p(V(l)). By Theorem 16.4.6 in [12],
V(t) extends to a C0-group in N(P). Moreover, cr(V(-l)) = fj(F(l)_1) c{/i£

C: \p\ < 1} and so there is 6 > 0 and M > 1 such that \V(-t)\ < Me~6t for all

í > 0, i.e. (P3) and (P4) follow.    Q.E.D.
We want to stress that both spaces, R(P) and N(P) may be infinite dimensional.

Note that in view of Theorem 3 we may add another equivalence in Theorem 4 in

case X is a Hilbert space.
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COROLLARY 5. Let X be a Hilbert space and eAt a Co-semigroup in X. Then

(i) -(iii) of Theorem 4 are equivalent to

(iv) l'R C p(A) and supR|(iV - A)~1\ < oo.

In general, (iv) will be easier to check than (iii). Theorem 4 and Corollary 5 show

that dichotomic projections for Co-semigroups eAt with unbounded A are almost

as easy available as in the case of bounded A, at least in Hilbert spaces.

Before we prove some properties of the solution operator K of (1) defined by

(14) we have to introduce some notation.

The translation group TT is defined by means of

(15) (2V/)(«) = /(T + a),        r,3GR.

TT is not of class Co in RC(R, X) but in each of the following subspaces of

BC(R,X):

UBC = {/ G J3C(R,X): / is uniformly continuous on R},

C1 = \feBC(R,X):    lim   f(t) = f(±oo) exist} ,
t—>±oo

Co = {/ G d: /(±oo) = 0},

AP = {/ G RC(R,X): / is almost periodic (a.p.)};

recall that / G BC(R,X) is called almost periodic if (Tt/)t6r C £?C(R,X) is

relatively compact. If / is a.p. the Bohr-transform

(16) a(p,f)=KmN-1[e-i>»f(8)d8,        p G R,
iV^oo J0

is well defined and the exponent set of /, exp(/) = {/)6R: a(p, f) ^ 0}, is at most

countable; see [1].

PROPOSITION 3. Let eAt be a Co-semigroup in the Banach space X such that

eAt admits a dichotomic projection P, and let K be defined by (13) and (14). Then

K has the following properties.

(i) KTT = TTK for all r G R;

(ii) K is leaving each of the spaces UBC, AP, C\, Co invariant;

(iii) iff € d, then limt^±00(Kf)(t) = -A~1f(±oo);
(iv) if f G AP, then exp(Kf) = exp(/) and

(17) a(p,Kf) = (ip-A)-1a(p,f)    forallpGR.

PROOF. Let / G 5C(R,X) and r G R; then u(t) = (Kf)(t + t) is a mild
solution of (1) with f(t) replaced by (TTf)(t) and so (ii) of Theorem 4 implies

TTKf = u = KTTf by uniqueness, i.e. (i) holds. This in turn yields

\TTKf - Kf\o = \KTTf - Kf\0 < \K\ ■ \TTf - f\0,

hence UBC is invariant w.r.t. K. Next, if / G AP then {TTKf}TeR = K{TTf}TeR,

hence Kf G AP since K is bounded. To prove assertion (iv), let u(t) = (Kf)(t);

then
rs+t

eAt.*u(s) = u(t + s) - Í      eA(s+t-T)/(r) dr,
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since u is a mild solution. Hence

/■iV

eAta(p, u) =   lim  X"1 /    eAtu(s)e-lpa ds
JV^oo J0

rN

= elpt   lim  A^1 /    u(t + s)e-lp{t+s) ds
N^oo JQ

rN rs + t

-   lim  X"1 /    e-ips /       eA{s+t-T)f(T)dTds
N^°°        Jo Js

ft rN

= elpta(p,u)-   lim  X"1 /   eA{t-T)eipT /    e~lp{s+T)f(s + T)dsdT

N~*°°        Jo Jo

= elpta(p,u)-eipt f e^'^ dra(p,f),
Jo

by Lebesgue's theorem, and therefore we obtain

r1(eAt -I)a(p:u) = rl(elpt - l)a(p,u) - eiptrl [ ¿A-ip)T dra(p,f).
Jo

Taking limits as t —> 0+ we see that a(p, u) G D(A) for each p G R and (ip, A)a(p, u)

= a(p,f), i.e. (iv) holds.

Finally, to show that the assertions for C\ hold, notice first that K is contin-

uous w.r.t. the topology of uniform convergence on compact subsets. Now let

/ G Ci; then TTf —► /(oo) as r —> oo uniformly on compact subsets, hence

TTKf = KTTf —> Kf (oo) = -A~1f(oo) uniformly on compact subsets, i.e.

(Kf)(t) —» — A~1f(oo) as t —> oo. The same argument applies for r —» —oo

and so /fCi C Ci and (iii) holds.    Q.E.D.
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