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INEQUALITIES FOR SOME MAXIMAL FUNCTIONS. I
BY

MICHAEL COWLING AND GIANCARLO MAUCERI

Abstract. This paper presents a new approach to maximal functions on R". Our

method is based on Fourier analysis, but is slightly sharper than the techniques

based on square functions. In this paper, we reprove a theorem of E. M. Stein [16]

on spherical maximal functions and improve marginally work of N. E. Aguilera [1]

on the spherical maximal function in L2(R2). We prove results on the maximal

function relative to rectangles of arbitrary direction and fixed eccentricity; as far as

we know, these have not appeared in print for the case where n > 3, though they

were certainly known to the experts. Finally, we obtain a best possible theorem on

the pointwise convergence of singular integrals, answering a question of A. P.

Calderón and A. Zygmund [3, 4] to which N. E. Aguilera and E. O. Harboure [2] had

provided a partial response.

We prove, in a unified manner, the boundedness of various maximal functions.

The basis of our approach is the use of the Melhn transformation, and development

in spherical harmonics, to reduce "difficult" maximal functions to "easy" maximal

functions and expressions involving singular integrals. We are able to treat various

maximal functions which arise in differentiation theory and in the study of singular

integrals; unfortunately maximal functions based on oscillatory integrals (such as

those involved in the pointwise convergence of Fourier series) require more

sophisticated ideas.

Our fundamental inequality is the following. If

k(x,y)=fdu   D     £ a],m,«(x)k],m,u(y)
R       meN j^D„

(aj,m,u ancl kj,m.u are described below), then

[ dyk(x,y)f(x-y) < [du   £     £   \Bj,m,u(x)kJ.m.u*f(*)\-
K "       meN ;6fl.

In some cases, it is easy to verify that, for all x in R",

L   \aj,m,u(x)\"
f*Dm

1/2

< bm(u),       meN, « e R,
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432 MICHAEL COWLING AND GIANCARLO MAUCERI

and consequently

j dyk(x,y)f(x-y) < j du   £ bm(u)
R" R       meN

E  \kj,m,u*f{x)\

1/2

and so we obtain a bound, which is pointwise, in terms of convolutions. If ka axe

different kernels such that the corresponding dm-vectors am „ are dominated by the

same bm(u), we obtain the maximal function estimate

sup [ dyk°(x,y)f(x-y) < /du   £ bm(u)\km,u* f(u)\,
K K       meN

and hence

Vp

i/p

/ dx sup  / dyk"(x, y)f(x - y)
JR" a    I JW

<fdu   £ f>m(u) j dx\kmu*f(x)f
" J»6N L    R"

<[[du   £ bm(u)\\\km,u*\\\p)\\f\\p,
\J*       meN /

where |||g * \\\p denotes the operator norm on LP(R") of convolution by g. These and

similar inequalities are the backbone of our work.

The kernels k} m „ are homogeneous functions, smooth on R"\ {0}. Precisely, if

Ylm, Ylm, ...,Yd m is an orthonormal basis for the spaced of spherical harmonics

of degree m on the unit sphere S""1 in R" (often written just S), equipped with

normalised Lebesgue measure (written u~l dy', or u'1 dy'), then

kj,m.u(y) = Yj,Ây')\y\'""\    y e R"\{o},

where y = y'\y\. The functions a. m u(x) are defined by the rules

aj,m,u(x) = u-l[dy'ku(x, y')Yhm(y%
Js

ku(x, y') = (27t)-1 f  dtk(x, ty')t"-l+'u.
jR+

It is clear that, at least formally, if Dm = {1,2,..., dm}, then

jdu   £     £  ajmu(x)kjmu(y)

R       meN ye£>m

= fduku(x,y')\y\"   " = k(x, y),

by the properties of spherical harmonics and the Mellin transform. We also observe

that

«>.„..(*) = (2™)-1/ dyk(x, y)Yjtm(y')\y\,u.
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It will sometimes save effort to write am u(x) for the dm-\ectoi and |am „(x)| for its

norm.

The first part of this paper will be devoted to a few preliminary results. We derive

the mapping properties of convolution with the vector-valued kernel kmu from

LP(R") to Lp(R";Cdm), and recall the definition and elementary properties of the

Handy-Littlewood maximal function. This latter is used to control

Jj
dua0u(x)k0u*f(x),

where J is the interval [-1,1], when aQu(x), considered as a function of u, is the

restriction to J of a Fourier-Stieltjes transform.

The second part of the paper treats some radial maximal functions. We give two

general results, and derive from these easy proofs and generalizations of some results

of E. M. Stein [16] and N. E. Aguilera [1]. These results are used in §4.

In §3, certain maximal functions arising in differentiation theory are studied.

Again, we prove a few general results and use these to reprove results of A. Córdoba

[6] and J.-O. Strömberg [19], and to sharpen up some results of N. E. Aguilera and

E. O. Harboure [2].

In §4, we apply our method to the theory of singular integrals. We improve results

of N. E. Aguilera and E. O. Harboure [2] on a question raised by A. P. Calderón and

A. Zygmund [3, 4].

In this paper we systematically denote by C a constant which may depend on any

or all of the parameters in play, and which may vary from line to line, while by Cp

we mean a constant which depends only on the parameters p, q, and possibly n, the

dimension of the space. We ignore the dependence of constants on n. By / we denote

the interval [-1,1]; Jm means Jm if m = 0 and 0 (the empty set) if m e N* (the

nonzero natural numbers).

We recall that dm, the dimension of 3tCm, is given by the formula (see E. M. Stein

and G. Weiss [18, p. 147]).

_ (n + 2m - 2)T(n + m - 2)

r(m + i)r(« + 1)       '

we shall use the notation

¡m    n/2 + iu_ T(m/2 - iu/2).

T(n/2 + m/2 - iu/2)

The Fourier transformation is defined as follows:

/(É) = [ dxf(x)e-2«**
J0n

for nice/, and then extended.

These results were announced in [7]; related work appears in [8]. A sequel to this

paper is in preparation. We are grateful to G. Weiss for his encouragement during

the researching and writing of this paper.
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1. Some preliminaries. In this section, we obtain estimates for the operator from

Lp(Rn) to Lp(R"; Cd-») of convolution with km „, for p between 1 and 2. These are

proved by establishing L2 — L2 and Hl — Ll estimates, and then interpolating.

Later, we recall the definition of the Hardy-Littlewood maximal function, and use

this to control

[dua0   (x)k0u*f(x)

for nice a0u.

Lemma 1.1. With the notation established in the introduction,

|||km,u*/||2=|ym,_J^/2||/||2-

Proof. We denote by & the Fourier transformation. Clearly

II Ik*..*/I ¡2=1 l^(km,„*/)| ||2=| l^k-..r^/||a

<|l^kmjJ|00||#-/||2 = |||^km,J|00||/||2,

so it suffices to show that

K.-ÍOhkJ^,       ¿eR-\{0}.
This is straightforward. The Fourier transform of kj m u is ym_,„ times the function

Yj,mtt'Wu (see, e.g., p. 78 of Stein [15]), and

2]l/2

£   \Yjt„(?)\ =C,       reS-1;

clearly

C2-«-1/^'   £   \Yj,mtt')\2 = dm.   □
S        J^Dm

We note exphcitly that |vm_/u| explodes when m = 0 and u is small. This is why we

have to treat this case separately.

Lemma 1.2. With the notation established in the introduction,

I |kmWl li < Ç".J/llrf.
where

Cm.u< Cdm\o%(2 + m+\u\),       /neN,«eR\ym,

and

Ç*.« < C|uf \       m = 0,u^J.

Proof. We refer the reader to R. R. Coifman and G Weiss [5] for an excellent

discussion of H1(R"). From their work and Lemma 1.1, it is clearly enough to

estimate /, where

I=[        dx\kmu(x-y)-kmu(x)\.
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This we do by considering separately first Ix, where

h= ( dx\kmn(x-y)-kmu(x)\
J(2 + m + \u\>\y\>\u\>2\y\

<2( dx\kmJx)\
J(3 + m + \U\)\y\>\x\>\y\

= 2log(3 + m +\u\) f dx'\kmu(x')\

fdx'\kmJx')í
1/2

< 21og(3 + m+|M|)w1/2

= 21og(3 + m +\u\)ud1m/2

and then I2, where

h= [ dx\kmu(x-y)-kmu(x)\
■>\x\>(2 + m + \u\)\y\

= [ dx\ [lds d/dskmu(x - sy)
■V|>(2 + m + |u|)|>>|      KO

</ dx\vkmJx)\\y\

< [ dx(|iii + n||kmill(jc')|W""  1+|vikIBil((jc)|)H,
■,|jc|>(l + m + |«D|jj|       v

where V, is the tangential component of the gradient. Continuing by applying

Holder's inequality and integrating by parts, we obtain

.1 r, vi 1/2
I2 < (1 + m + \u\)   \iu + n\u>1/2 f dx'\km¡u(x')t

-fdx'LtkmJx')-kmtU(X')
1/2

+ (l + m+|M|)"1to1/2

= (l+m+ ¡ulY^d^lliu + n\ + [m(m + n- 2)]1/2].

Combining the estimates for Ix and for I2, we conclude that

/< Cd1m/2ÏOg(2 + m+\u\).

From this estimate and Lemma 1.1 we obtain the desired result.   D

Proposition 1.3. Suppose that 1 < p < 2. Then the following estimates hold:

\\K,u*f\\P « Cp(m + l)n/2-\m+\u\)-n/p'[\og(2 + m+\u\)]2/p~l\\f\\p,

wGN,«eR\/m,

< CM' m = 0,«eJ.

Proof. This is a corollary of Lemmata 1.1 and 1.2 and the interpolation theorem

of C. Fefferman and E. M. Stein [10]. We also use easy estimates for T-functions.    □
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Since the operator norm of convolution with k0u blows up as u tends to 0, we

need to exercise particular care in dealing with expressions of the form

fdua0u(x)k0u*f(x).
Jj

The Hardy-Littlewood maximal function Mf of a locally integrable function / is a

valuable tool in our investigations.

The Hardy-Littlewood maximal function Mfis defined as follows:

Mf(x)=  sup \B(x,r)[l[       dy\f(y)\,
reR* JB(x,r)

where B(x, r) is the ball centred at x of radius r, and \B(x, r)\ is its measure. The

essential facts about Mf may be found on p. 5 of Stein [15]. We recall only that, if

1 < p < oo, there is a constant Ap such that

\\Mf\\P < Ap\\f\\p,      /ei'(R").

Lemma 1.4. Suppose that F: R + -> R+ is decreasing, and that

[ dyF(\y\) < oo.
•'R"

Then for any \inR+ and fin LP(R"),

J dy\"F(X\y\)\f(x-y)\^\f dyF(\y\)
J\¡n *fO"

Mf(x).

Proof. The function^ -» a"F(a|>>|) satisfies the same hypotheses as y -» i'XI.yl),

so without loss of generality we may take X to be 1. Since

H\y\) = -fdF(t) = -/   dF(t)XBlo,n(y)
J\y\ yR+

(where B is the closed ball),

/ dyF(\y\)\f(x -y)\ = -(  dF(t) j dyxBV>,t){yMx - y)\
JR" JR+ JR"

<-f   dF(t)\B(0,t)\Mf(x)

= -[   dF(t)[ dy Xb(o,o( y)Mf(x)

= i dyF{\y\)Mf(x).    D
JRn

Proposition 1.5. Suppose that for some measure ponR of bounded variation,

a0.u(*)= ( dpx(v)e-2""">,       u^J,
JR

where /R \dpx(v)\ ^ A. Then

fdua0 u(x)k0u*f(x) < AmiùAMf(x)+ A ¡ du\u\ \k0u * f(x)\.
Jj jj
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Proof. We observe first that

jdua0u(x)k0u*f(x) </<*i|«||a0.B(*)ll*o.«*/(*)l

jdu(\ -\u\)j^dpx{v)e-2^"kQtU*f(x)

< AJdu\u\ \k0tU*f(x)\ + j \dpx(v)\ fdu(l - |M|)e-2*""V„ *f(x)

Next, let H: R -> R be the function H(w) = sin2(w/2Xw/2)2, and let G: R -> R be

the majorant G(w) = 8/4 + w2. Then

jdu(\ -|w|)e-2,r""'[yf"   " = jdu(\ -|w|)exp(-iM[2™ + log|j|])|>f "

= H(\og(e2™\u\))\y\",

and so, by Lemma 1.4,

fjdpx(v)\ jdu(l-\u\)e-2™»k0tU*f(x)

= />/»,(»)! / dyH{\og(e2™\y\))\y\"f(x - y)
JR JR"

<f\dpx(v)\( dyG{log(e2™\y\))\y\-"\f(x-y)\
JR JR"

< f\dpx(u)\f dyG{log(\y\))\y\~"Mf(x)
JR JR"

<A¡dy' f  dtrlG(\og(t))Mf(x)

= 47tü)AMf(x).    a

We remark that if a0 u(x) is Holder continuous with exponent more than 1/2, as

a function of u, then it is certainly equal to a Fourier-Stieltjes transform in J. More

to the point of what follows, if

a0j u(x)= ¡dpx(v)e-2«iu»,       u^J,
JR

then, for any s in R+,

i'X-W - fdPÁ" + \og(s)/27t)e-2"iu»,       u 6 J,
JR

and of course

\\dpx(V + \og(s)/2m)\ = \\dpx(v)\.
JR JR

We also point out that the above proof goes through verbatim for vector-valued

functions /, provided that convolution be appropriately defined. See the discussion

of the point at the end of the proof of Theorem 2.1.
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2. Radial maximal functions. In this section we prove two general theorems, and

show that these contain the results of Stein [16] and Aguilera [1] as particular cases.

We shall treat a vector-valued version of one of these results, since it will be useful

later in this form. Naturally the other theorem also could be given a vectorial

formulation.

Theorem 2.1. Suppose that p e (1,2], that A e R+, and that b: R -» R+ be such

that

B = [    dub(u)\u[n/p'\og(2 +\u\)2/p~1 < oo.
■'hV

Let 3> be the set of all radial distributions <j> on R", integrable near 0 and at oo, for

which the function a, given by the formula

JR"

is such that

"o,u = (2™Y1i d<p(y)\y\'u,       «eR,
j™

«o„ = (dp(v)e-2"-»»,       u&J,
Jo

with /R \dp(v)\ < A,and\a0u\ < b(u), u e R\J.

Then for any d in N*, and for all fin Lp(Rn; Cd),

M4,/=sup{ |<#>*/| :<f>e<D}

exists in LP(R"); more precisely,

MJ < 4™AM\f\ + A (du\u\\k0 „* f\+ f    dub(u)\k0¡u*f\,
JJ JR\J

and so

IK/II, < Cp(A + B)\\f\\p.

Proof. Since «> is radial, we obtain, by inverting the Mellin transformation, that,

distributionally

<b= fdua0uk0
JR

(Integrability of <b near 0 avoids the difficulties one encounters trying to synthesize

the Laplace operator in 0 in this manner; integrability at oo appears in the

hypothesis of the theorem purely to assure an easy definition of a0 u, and may be

relaxed). Thus

(/>*/= fdua0uk0u*f
JR

= ídua0^uk0u*f+ f    dua0uk0u*f.
JJ JR\J



MAXIMAL FUNCTIONS. I 439

By Proposition 1.5 and the hypotheses,

l**/l< idua0iHk0iU*f + f   du|a0.JI*o.H*/l
JJ JR\J

4ttuAMl/l + A fdu\u\ \k0,u * f\

+ f   dub(u)\k0,u*f\.

The right-hand side is independent of <b in $, and so

M9f<4vaAM\f\ + A[du\u\\k0u*f\ + [    dub(u)\k0u*f\.
JJ JR\J

(The "supremum" is defined in the separable Banach lattice L^R"); this avoids

measurability questions. See N. Dunford and J. T. Schwartz [9, Chapter 3] for the

general theory necessary). We conclude by noting that, from Proposition 1.3 and the

properties of M \f\,

\\MJ\\p < A™A\\M\f\ \\P + AJdu\u\ \\ |fc0i„*/| ||, + /    dub(u)\\ \k0,u*f\ \\p.

For vector-valued/, we have been guilty of omitting the definition of k0u*f; we

mean, of course, the operator, perhaps more correctly written k0 ® / * / (but is

pedantry correct?) which acts in each component of the vector by convolution with

k0u. It is a well-known result of J. Marcinkiewicz and A. Zygmund [13] that the

norm of this operator on L^R"; Cd) is that of convolution by k0 „ on LP(R").

Consequently, ||M,/||, < Cp(A + B)\\f\\p.    D

The next result is a variant on the same theme.

Theorem 2.2. Suppose that p g (1,2], that r g [1, p], that a g (-oo, n/p' - \/r),

and that A, B G R+. Let 4> be the set of all radial distributions §onR+, integrable near

0 and at go, for which the function a, given by the formula

a0u = (27TO})'1 f d<b(y)\y\'U,        u e R,
Jtoj,

is such that,

a0u= [dp(v)e-2",uv,       u^J,
JR

with fR\dp(v)\ < A, and also such that

f    du[\aQJ\u\tt]r
JR\J

(with the obvious modification ifr' — oo). Then for all fin LP(R"),

Af<p/=sup{|<i»*/|:</.GO}

exists in LP(R"). More precisely

I \1/r

M*f^4™AMf+Afdu\u\\k0tU*f\ + B[f   <k|nf |*o,..*/í      >
J \ RV /

whence \\M9f\\p < CPi,JA + B)\\f\\p.

1A'

<5
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Proof. As in the proof of Theorem 2.1, we have that

\<t>*f\\fdua0iUk0iU*f\+ f   du\a0J\k0u*f\.
| JJ JR\J

By Proposition 1.5, Holder's inequality, and the hypothesis,

|<f>*/|< 4iruAMf+ A fdu\u\ \k0u*f\

+(/RV/"[iao,ji«f ] j (/Hv^i«r>o,«*/i)

< 4truAMf+ A Jdu\u\ |rc0>„*/|+ B if    du\u\ar\kGu */M

As before, it follows that the right-hand side of this inequality dominates M9f. We

conclude by observing that Minkowski's inequality finishes off the proof:

1A

f    du\u\ar\k0u*f\'
JR\J

X/r

< /   du\u<\'\\k^u* f{p
'R\J

l/r

/    du\u\   C\u\       log(2 + \u\
\JR\J

2/p-l,
,iA

= cPt,j\fl,
from Proposition 1.3 and the initial restrictions on p and r.    D

Before we pass to a few applications of these results, we remark that by duality,

the estimates for \\\kQu * 111^ are valid for \\\kQ „ * Illy, and so Theorems 2.1 and 2.2

have easy extensions to LP(R") with p in (2, oo). However, for those p, a better

strategy for treating maximal functions seems to be interpolation between L2-results

(of the type just proved) and L°°-results (obtained trivially if <ï> contains only

measures of uniformly bounded variation). So we omit these extensions.

Some applications of Theorems 2.1 and 2.2 will now be given. First, we discuss the

results of Stein [16].

Put mz(x) = b\[\ - \x\2]+)z-\ x g R", where

jWli-Hl)' = [(u/2)B(n/2,z)]-\

Then mz, defined initially for Re(z) > 0 as an integrable function, extends mero-

morphically to z in C as a distribution with singular support S"^1. Further,

mz = /R du azuk0u where

az=(2^y1f dymz(y)\y\iu

= (2ir)-1bz(  dt([l - f2]),"V"+"-1
JR*

= (2tru)'1B(n/2, ZylB((m + iu)/2, z).

_i T((n + iu)/2)        T(n/2 + z)
=   (2<!Tu)

T(n/2)        T((n + iu)/2 + z)
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This is analytic in Re(z) > -n/2. As a function of u it is clearly real-analytic, and so

certainly admits an expansion as a Fourier-Stieltjes transform in J.

From the well-known asymptotic formulae for the T-function, it is clear that, if

1 > Re(z) > -n/2, then

kl < Cz\u\~R<z),       ueR\;.

We therefore obtain the following corollary of Theorem 2.1.

Corollary 2.3 (Stein [16]). If I < p < 2, and Re(z) > 1 - n/p', then \\MJ\\p <

Cz\\f\\pfor all fin Lp(Rn), where

MJ = sup ( dyr"mz(y/t)f(x-y)
Jnn

t G R +

Proof. We take some representation of a zu as a Fourier-Stieltjes transform in /,

azu= (' dp(v)e-2"iuv,       u<eJ,
JR

and let b: R -» R+ be the function given by the rule

b(u) = (2irco)-1\B(n/2, z)_15((« + iu)/2, z)\,       u g R.

Since mz(y)= fRdu azuk0u(y) then

r"mz(y/t) = fduazur"k0Jy/t) = fdutiua*uk0¡u(y).
JR JR

Alternatively

(2™)"7 <fyt-m'(y/t)]y\"-t"(2w)-1[ dymz(y)\y\'"
JR" JRT

= tiuaz.

Now as remarked at the end of §1,

tiuazu = fdp(v + \og(t)/2w)e-2,,iuv,       u^J,
JR

and

( \dp(v) + \Og(t)(27T)\= f \dp(v)\ = A,
JR JR

say. Further,

\fuazu\= b(u),       «GR.

So with $ as in the enunciation of Theorem 2.1, MJ < M9f, and the estimate for

MJ follows from that for M^f.   D

Now we consider some work of N. Aguilera [1]. If <b g L^R"), and «> is radial (let

us write <#>(jc) = F(\xfj), then

(1) a0¡u=(27ro>yl[ dx4>(x)\x\'u
R"

= (2tr)'1 (  dtF(t)t"-1 + iu
JR+

= (2ir)~1 f dvG(v)eiuv,



442 MICHAEL COWLING AND GIANCARLO MAUCERI

where G(v) = envF(ev). Since 4> g L\R"),

fdv\G(v)\= f dx\(p(x)\< oo,
JR JRn

and so a0 u is automatically a Fourier-Stieltjes transform.

By using Theorem 2.2, we recover Aguilera's results.

Corollary 2.4. If n = 2, 1 < q < 2, and Í» is the set of all <p in L\R") such that

\\4>\\i < A and

\ l/<7

j dx\x\2"~2\<j>(x)\q\      ^B,

then M^fisup^^Q \<¡> * f\) exists in L2(R2), and

\\MJW2 < Cq(A + B)\\f\\2,      /GL2(R2).

Proof. We apply Theorem 2.2 with r equal to 2, and a = l/2q. For e> in $, a0u is

equal to a Fourier-Stieltjes transform, as remarked above (after formula (1)). Let

G(v) = e2vF(ev), as before. Then a0>B = (27r)-1G(-(27r)-1M).

It is sufficient to show that, if <j> g í>, then

/ ¿" lh>,JM
•'rV

■1/2,12
1/2

<*',

where B' may depend on B, A, q, etc. but not on <¡>. We estimate this integral as

follows:

[    du\\a0J\u\   '
•'RV

1/2

W

f   du\a0j" f du\u\
-q'/q(q'-2)

'RV RV

(q'-2)/2q'

f    du\(2rr)-lG(-(2tT)-1u)\''
'RV

w
[2(q> - 2)]("'-2)/29'

/"  í/íí-1í2^|F(/)|'7
JR+

j dx\x\2q-2\<p(x)\q

[2(q'-2)\
(q'-2)/2q'

= c

= c

1/?

1/9

as required, by Holder's inequality and the Hausdorff-Young theorem.   D

On the other hand, by applying Theorem 2.1, we may obtain a slightly sharper

theorem for a different class 0. Let b: R -» R+ be such that

B = I    dub(u)\u\    < 00.
•'rv
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In particular, if we take <f>: R2 -» C such that G, defined above (after formula (1)), is

in hl(R), as defined by D. Goldberg [11], then we may set b(u) = |a0, J-

Corollary 2.5. Suppose that A g R+ and that b is as above, and let $ be the set of

integrable functions <$> such that ||<p>j|x < A and \a0u\ < b(u), u g R\!/. Then Jt\f

exists in L1(R2)for any fin L2(R2), and

MVII2 < CAJ\f\\2,       /GL2(R2).

Proof. Omitted, since it is essentially like those of Corollaries 2.3 and 2.4.

We note explicitly that this corollary contains the following result: if <¡> is such that

G is in hx(R), then, putting </>,(;c) = t~2<j>(x/t),

sup k,,*/|     <CJ/||2,       /GL2(R2).
f>0 2

We were unable to prove this using Aguilera's technique.

3. Nonradial maximal functions. As in §2, we shall first prove some general results

on maximal functions, and then apply them.

Theorem 3.1. Suppose that 1 < p < 2, and that l»:NxR-»R+ij such that

£    f     dub(m,u)(l + m)m/2-\m+\u\yn/p'\og(2 + m+\u\f/p~l

is finite. Suppose that A g R+. Let $ be the set of all distributions </> on R", integrable

near 0 and at 00 such that, if

"j^u^C™)'1 j d<p(y)\y\'%m(y'),
J Jnt,

then

and also

.a\1/a

£   Wj.mJ  I      <b(m,u),        wGR\/m,

a0u= [ dp(v)e-2"iuv,       uej,
JR

with JR \dp(v)\ < A. Then for all f in LP(R"),

M9f= sup{|<f>*/|:«> g $}

exists in LP(R"). More precisely,

MJ < 4-nuAMf+ A j'du\u\\k0<u* f\

+   £   /     dub(m,u)\km,u*f\,

whence\\M*f\\p^Cp^b\\f\\p.

Proof. This is just a routine generalization of the proof of Theorem 2.1, and we

omit it.
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Theorem 3.2. Supposep e (1,2], r e [1, p], A, B g R+, a,ß,y& R, and

(i) « + y > 1/r - n/p';

(ii) a + ß + y > 2/r - n/p' + (n/2 - 1);

(ii) ß + y > 1/r - n/p' + (n/2 - 1).

Let <5> be the set of all distributions <¡> on R", integrable near 0 and at oo, for which the

function a, given by the formula

is such that

*,,„,,„ »O™)"1/ d4>(y)\y\\m(y>)JR"

«o.B= (dp(v)e-2"iuv,       u^J,
Jo

1A'

< B

with jR \dp(v)\ < A, and also such that

£   /     du\2tm/(l+\u\Ya(l + mY'ß(m+\u\)^
_ m e N    R Vm

(with the obvious modifications ifr' = oo). Then for all f in LP(R"),

M*/=supi>*/|:o>e$}

exists in LP(R"). More precisely,

M9f^AwaAMf+AJdu\u\\k0tU*f\

£ /   *(i+H)-~(i+ «)■*(».+MH|k111.../r+ B
ieN    rVh

1A

and so

\\M»f\\P<Cp^BjA+B)\\f\\p.

Proof. As before, it is straightforward to see that

\4>*f\< 4truAMf+ A fdu\u\\k0u*f\

+   £   j     du\amJ\kmu*f\.
m e N    R V/n

It will suffice to consider the last term, which we estimate using Holder's inequality:

£    f     du\amJ\kmu*f\
meN ,/RVm

^

1/r'

£   /    du\*mJ\l+\u\Ya(\ + mYß{m+\u\y
meN "Wm

£   /     du(l+\u\)-ra(l + mrß(m+\u\r\km^f(
meN ;RV„

i A
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By hypothesis,  the first term of this product is bounded by B, while,  from

Minkowski's inequality,

EN   'RV~

£   /     du(l+\u\r\\ + m)-rß(m+\u\r\kmtU*f\r
_», Jo\ I

£ / du(\ +\u\y\\ + mr\m+i«inikm,B*/n;
-N yRVm

£    f     du(l+\u\yra(l + m)-rß+'

1A

< C
- rn/1 — r

,eN 'RV.

(m +\u\)
■ry-rn/p'

log(2 + m + \u\)
2r/p-r

1/r

The last expression in square brackets may be estimated easily by considering

separately |m| < m + 1 and |w| > m + 1, and using hypotheses (i), (ii) and (in). We

leave this to the reader.   D

Our applications regard functions (or distributions) on R" which may be readily

expressed in polar coordinates. It will be useful to remind the reader of a few

familiar results on spherical harmonic expansions, so that the angular part of the

functions may be treated.

Lemma 3.3. Suppose that q g [1,2], and that ß0 = (2 - n\l/q - 1/2). If f ^

L^S"-1), and

bj,m - a1 f dx'f(x')?hm{x'),

then ifß = ß0 and r' > q', or if ß < ß0 and 1/r' < 1/q' + ß0 - ß,

,!A'

;fl\\J \\q-i (i + ™yym\rY < c,r,ß
weN /

Proof. If/ g L2(S"  1), we have the Plancherel formula

/ \l/2        / \l/2

(ew)  - (-r-jr*irt*oi ) ■

Next, by an obvious estimation,

|bJ<W^'|/(x')|f £ |r„m(*')|2

= ^jdx'\f(x')\d)¿2.
Js

By interpolation we obtain the Hausdorff-Young inequality

1/2

£ dm{dX2K\Y
meN

W
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(where the norm is relative to normalised Lebesgue measure in S"1-1). Since dn

grows like (1 + m)"~2, we obtain

.A1/«'/ '\l/q'

£ (l + m)**|bj' <C9
VmeN /

Evidently, if r' > q',

I £ (1 + mr'>/)1A < C?
V meN '

while if /? < ß0 and 1/r' < 1/ç' + ß0 - ß, then Holder's inequality, dextrously

applied, proves the rest of the lemma.   D

Lemma 3.4. Suppose thatf g L\Snl), and that

bJtm-uTl fdx'f{x')Yhm{x').
Js

Ifn = 2 a/u// g Llog+ L, ¡7,<?w

£ (i + m)ibj< c/^'i/(x')i[iog+i/(x')i+1].
meN S

If n ^ 3, q = 2(1 - \/n), and f"e L?,1(5n_1) (i/ie wsmû/ Lorentz space, as defined

and studied in [18], e.g.) i/zen

£ (H-m)|bJ<Cj|/||,,i-
meN

Proof. In the case where « = 2, the result is well known. It follows readily from

Hardy's inequality and the fact that Llog+ L(Sl) Q if^S1) (à propos, see E. M.

Stein [14]).

To prove the second result, we use the Lorentz spaces lp'q(N; d) on N relative to

the weight d. Let cm be a dm-vector such that |cm| = (1 + m)_1, for m in N. Then the

generalized Hausdorf f-Young inequality implies that

£   K ■ Cm   <     £   ¿m(¿m1/2|bml)(¿m1/2|cj)
weN meN

^^-^Iblll^lllJ-^lcllU^Cll/ll,,!,
whence EmeN(l + «»J < C||/||,fl.    D

To state our applications, we need a httle notation. If u g CC°°(R"), a g SO(n),

and t g R+, we denote by «"•' the Cc°°(R")-function defined thus

u"-'(x) = u(atx),       x G R".

For a distribution <f> on R", we denote by <3>„ , the distribution given by the rule

*„,,(«) = *(«'•'),       «eCc"(R").

For obvious reasons, we call <¡>a , a "normalised dilate and rotate of <j>".

Suppose that E be an open subset of R", of finite measure |£|, starlike about 0.

Then there exists a (measurable) function R: S""1 -» R+ such that

E = {rx'\ x' g S"-1, r G [0, R(x'))}.
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Let <j> be \E\ X1E (1E is the characteristic function of E).

We shall be interested in the maximal functions M^f:

M9f= sup{|</>*/|:<j> g $}

for various families of distributions $. See M. de Guzman's book [12] for the

relevance of these maximal functions in differentiation theory.

Corollary 3.5. Suppose that R2 g Llog+ L(S1)ifn = 2,orthatR" g L"\S"-1),

where q = 2 — 2/n if n > 3. Then if § is as above, and 3> is the set of all normalized

dilates and rotates of<f>, we have the inequalities following:

IK/l^clll^lk^i + ll^lklllAlí1!!/!!,.
forn = 2 and all fin L2(R2); if n > 3, then for all f in L2(Rn),

M.fJ II2
**  /'"'II Dnil    , || D«||
< C||ä ||?,l|[K ||2

Proof. Let >// be the distribution associated to the function given by the formula

*(*) =\E\~1exv(-\x\/R(x')),       x G R"\{0},

and let ^ be the family of all its mentioned dilates and rotates. Since

k,s */I <<V* 1/1^*1/1,
it suffices to show that, for any/in L2(R"),

ll^*/ll2 < Qll/112-
Let b: N x R -» R+ be defined by the rule

,2\ V2

b(m, u) = (2-ïïù}) M   £
l y« A»

/ d^(y)\y\\m(y')
Jnn J

We observe that, for any a and s in SO(n) and R+,

(2*«n £ / d^tyM'X^y')
Jo"

2\l/2

= b(m, u).

Theorem 3.1 may be applied as long as the function

u -» (2-tTu)'1 f dxp(y)\y\'"
•'R"

may be written as a Fourier-Stieltjes transform in /, and provided

£    f     dub(m,u)(l + m)n/2-1(m+\u\y/2<oo.

Since

(2iru)~1 f d^(y)\y\iu = (2tto}\E\)~1 f dx' f  dt t"'1 exp(-t/R(x'))t'u
JR" JS       JR+

= (2™|£|)-1r(H + i") fdx'R(x')n+iu,
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which is differentiate qua function of u provided that

f dx'R(x')"\log(R(x'))\ < oo
Js

(true by hypothesis), while

£    [     dub(m,u)(l+m)n/2-\m+\u\)~n/2

meN JR\Jm

< 2n/2 £   fdub(m,u)(l+m)~1
meN    R

/ 2\1/2

^Cm'1 £   f du\T(n + iu)\\   £   fdy'R(yy+i%m(y')
meN    R \j^D„    S j

< C||A||î1[||JR2||Liog+L + \\R2\\i]    if n = 2

< C||JR"||î1||A',||<7,i    if« S* 3

by Lemma 3.4; the corollary is proved.    D

Corollary 3.6. Suppose that 2n/n + 1 < p < 2, and that p'(l - 1/n) < q < 2.

Let 3> ¿>e the set of all functions of the form l-EI-1^, where E = {x G R": 0 < |jc| <

Ä(xO}«rf||Ä"||,<C||Ä"lli<<»-
Then

WofWp < Cp J/IU       /el'(R').

Proof. This result follows from Theorem 3.2 and Lemma 3.3 much as Corollary

3.5 followed from Theorem 3.1 and Lemma 3.4. We omit the details.

We obtain similar results when we consider distributions <b on R" of the form

(2) *(/)= Pdtt"-lldx'6(x')f(tx'),       /GC(R"),
■'o Js

where d g Ll(Sn~l), and let $ be the set of all normalized dilates and rotates of </>.

Corollary 3.7. With the notation just described, M<¡, is bounded on L2(R") if

0 g H\Sl) (when n = 2), or ifO G L'^S"-1), where q = 2 - 2/n (when n > 3).

Corollary 3.8. If2n/(n + 1) < p < 2 and (n - l)p'/n < q < 2, and if <S> is the

set of all normalized dilates and rotates of distributions 4> described above, where

\\6\\q < 1, then M<¡, is bounded on LP(R").

Proofs. We omit these: Corollary 3.7 is like Corollary 3.5, and Corollary 3.8 is

like Corollary 3.6.

By interpolation with easily proved results for L1(R") and L°°(R"), we may extend

the above results. For instance, we have the following improvement of Corollary 3.8.

Corollary 3.9. // 1 < p < 2 and (n - l)p'/n < q, and if O is the set of all

normalized dilates and rotates of distributions § described above (2), where \\0\\ < 1,

then Mq is bounded on LP(R").
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Proof. If p = oo, then M^ is bounded when q = 1; if p = 1, then M9 is of weak

type (1,1) if q = oo. Consequently, if q = oo, M$ is bounded on L1+e(R") for any e

in R+. Interpolating between this result and that of Corollary 3.8 for p = 2, we

obtain the claim.

Of course, we could also obtain information for p in (2, oo) by interpolation (it

would suffice to have q' < p(n - l)/(n - 2)), but this is perhaps not best possible,

at least if « > 3.

It may be of interest that the results of Corollary 3.8 are as sharp as those of

Corollary 3.9, for those p for which Corollary 3.8 holds. It seems to be impossible to

modify the argument leading to Corollary 3.8 to obtain the whole range (1,2] for p.

The essential difficulty is that we cannot prove estimates for the decrease of the

coefficients in the spherical harmonic expansion of /in Lq(S"~1) for q greater than 2

which are better than those for q equal to 2.

The results of Corollaries 3.8 and 3.9 are essentially best possible if 1 < p < 2 (see

N. E. Aguilera and E. O. Harboure [2]). From Corollary 3.5, we may obtain

estimates for maximal functions involving rectangles of fixed eccentricity and

arbitrary directions, essentially equivalent to the results of A. Córdoba [6] and J.-O.

Strömberg [19]. If we take E to be the rectangle [-/, /] X [-1/1, l/l] in R2 (with

/ > 1), then parametrising x' in Sl by the argument 6, we obtain

R(8) = minf/lcos^)!""1, /^sin^)!"1).

For norm calculations, we might as well use

R'(6) = min(l,r1\0\~1),        \0\ < n/2,

= min(/, rl\e - wf1),       |0-ff|<u-/2.

It follows that the norm of the maximal operator on L2(R1) is of the order of log(/).

If we take E to be the rectangle [-/""V"1] X [-/,/]"_1 in R" (n > 3), then similar

calculations lead to the estimate that the norm of the maximal operator on L2(R") is

of the order of /"<"-2)/2. This is essentially best possible. However, as E. M. Stein

[17] points out, the interesting case is when p > 2, and we have no significant

contribution to the casep = n.

4. Convergence of singular integrals. In this section, we apply our techniques to the

pointwise convergence of singular integrals. Our results complement work of A. P.

Calderón and A. Zygmund [3,4] and of N. E. Aguilera and E. O. Harboure [2].

A singular integral kernel is a measurable function k: R" X R" \ {0} -> C such

that

k(x, Xy) = \-"k(x, y),       X g R, x g R",;; g R"\{0},

and

fk(x,y')dy' = 0,       xeR".
Js
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Given a singular integral kernel, we attempt to associate to it an operator K, by the

following procedure. First we form, for e in R +, KJ:

KJ(x)=f     k(x,y)f(x-y)dy

where Be is the ball of radius e. Then we try to let e tend to 0. There are two natural

questions: when does KJ converge in norm and when does it converge pointwise, as

e tends to 0? The pointwise convergence will, of course, be controlled by the

maximal operator Ksf = supe6R+|A"e/|.

Theorem 4.1. Suppose that k is a singular integral kernel, and that for some q

greater than 2(n — l)/n,

I \ /q
\jdy'\k(x,y')\q\      ^B,       xgR".

Then ||#*/H2 < C9||/||2/g L2(R"), and K J converges pointwise and in L2(R") to an

L2(Rn)-function denoted Kf.

Proof. The arguments presented by Aguilera and Harboure (op. cit., pp. 567 and

570) show that it suffices to prove a priori estimates for K^f. We may also suppose

that q < 2.

By using spherical harmonics, we may write

k(x, y) =    £      £ bjm(x)kj m(y)
meN*  7'eOm

where

bJim(x) = tí-1fdyfk(x,y')YJ¡m(y)

and

kj,m{y)=\y\nYj,m(y')-

Since q > 2(n — l)/n, we may choose ß in R such that

-1/2 < ß < (1/q - 1/2)(1 - n).

From Lemma 3.3, with r = 2, and the hypothesis,

£ «v £ hJx)\'
meN« j^D„

1/2

<   Cq.ßB-
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Now

\KJ(x)\ £      LbjMJ     dykJJy)f(x-y)
reN*  /en

'R'XB,

£ ™2ß £ \bj,m(x)\À
teN' /efl„

1/2

£   m"2/î sup     £

meN* teR*   /<=£>„. 'R"\B,

1/2

«   C,./l* /      dykJ¡m(y)f(x-y)
JR"\B,

1/2

£   m"2/} sup     £

meN* eeR+  7eDm

Since the right-hand side is now independent of e, it also majorises A"*/. The proof

will be finished by showing that

2\ 1/211

(3)

I T
sup      £    /      dykj,m(y)f(--y)

^R+\^ö~   R"XS<

< Clog(2 + m)m-1\\f\\2,

for then

£   m 2/? sup    £

meN* eeR+ jeD„
/      dykjtm(y)f(--y)
JB"\ B

£   m
meN*

2/3

'R"\Se

sup
EeR+

1/2

£ /      dykJ<m(y)f(--y)
JR"\B,

A 1/2

/

1/2

1/2

c\\fh,£   m-2^C2log2(2 + w)w-2||.
16N'

as required.

Up to this point, our proof follows those of Calderón and Zygmund [3] and of

Aguilera and Harboure [2]. Our approach now diverges from theirs, in that we have

the machinery of the previous sections at our disposal.

By a theorem of Bochner, presented by Stein [15, p. 72], if

hj(x) = Y^Jx'W'lr^ix),       x g R",

then hj(i) = gm(£)Yjm(£), £ g R", for some radial function gm in L2(R"). On the

other hand,

KM = Ym,0^,m(r), É £ R",

(Vm,o is defined in Lemma 1.1), and so hj = <¡>m * kjm where <£m = ym)0gm. Clearly

<pm g L2(R"). Observe that

Lh¡*kim=   £ <¡>m* k¡ m*k¡ „
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and

£   {kj^kjj |) = (-l)mYm,o £   Yj^)Yj,M)

= (~i) ymßdm,

and so

(4)

and

(5)

*m =  (-irVmK,1    Zhj*k )■ "'

kU) = ym1ßd-J £ hj^Yj^iè').

As a consequence of (4), we see that <t>m is C°° off S"  l. More importantly, by

putting hj = kj mlB, we see that

<t>m = {-l)mym20dml  £  {kj,m*kJm-hj*kjm)

= ô0-(-l)'"ymi20(im1  £ hj*kjm,

<50 being the Dirac measure at 0, from which it follows that

<¡>m(x) = Odxf'1)    ii\x\>l,

and in particular 4>m g L^R").

Normahzed dilation is such that (o>m)e * k,m = kjimlR»\Bt, and so

sup
eeR+

£ i      dykJtJy)f(--y)

1/2

sup
EeR +

£ |(*J«**,-,m*/(-
JeDm

1/2

This maximal function may be treated using Theorem 2.1. It is necessary to calculate

/R„ dy <pm(y)\y\'u, which requires a little work.

First, by the properties of <¡>m, Plancherel's theorem, and the formula (5), we have

that

[ dy<pm(y)\y\'u =   lim    f dy^m(y)\y\'u^

Í       *   / >\ \*-\^~'u~n
=   hm    / rf¿*m(í)Yo,B + /u-«líl

S->0+   JR"

=   hm d-Jym]0y0¡n + iu_s  £   / ^Ây(|)^,m(|')|||
S — iu — n
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Continuing, by using Plancherel's theorem again, we find that

£ ( dthJ(s)Yjjm\s~'u~n

=   £   j dyh+yX-iry^.^Jy'yyr8
j^Dm    K

= (-l)mym)n + ¡u-s   £   jdy'fdtt^-^y'rf
y^Dm   s       i

=  (-l)mym]n + iu-sUdm(8 - iu)'1.

and consequently we may conclude that

(2-truy1 [ dy<t>m(y)\y\'" = (2try1(-l)mym10y0n+iuym]n + ¡u(-iuy1
Jo"

= a, say.

In order to apply Theorem 2.1, we must study am. First, we consider its behaviour

for small u (u g J). Later we shall estimate |am| for large u(u g R\/).

Let M be the integral part of (m - l)/2, and let 5 be m — 2M. Then, by the

recurrence formula for the T-function,

a» = (47-rV
i__H/2T(n/2 + m/2)    T(n/2 + iu/2) T(m/2 - iu/2)

T(m/2) r(l - iu/2)      r(«/2 + m/2 + iu/2)

= (A„y\-"/2 n {n/2 + 8/1 + J){8/1 + j ~iu/2)

K     ' fJ0   (8/2 + j)(n/2 + 8/2 + j + iu/2)

Y (n/2 + 8/2)T(n/2 + iu/2)T(8/2 - iu/2)

T(8/2)T(1 - m/2)r(n/2 + 8/2 + iu/2)

"f.1 (n + 8 + 2j)(8 + 2j-iu)      .
jJo   (8 + 2j)(n + 8 + 2J + iu)      "'

Since 8 is either 1 or 2, asu is analytic in J. Evidently, if |w| < w and y G N,

(n + 8 + 2j)(8 + 2j - iu)

(8 + 2j)(n + 8 + 2j + iu)

<

1 -

1 -

iu

8 + 2j
1 +

iu

n + 8 + 2j

< 1 + 5(5 + 2j)~
8 + 2j

Similarly, for the same range of u andy, for the derivative (w.r.t.u), we have

(n + 8 + 2j)(8 + 2j - iu)

(8 + 2j)(n + 8 + 2j + iu)
< 22(5 + 2j)~\

Consequently,

sup
|"|s¡ir

"   (n + 8 + 2j)(8 + 2j - iu)

j=i (8 + 2j)(n + 8 + 2j + iu)
<C
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and

sup
|u|<w

^  (n + 8 + 2j)(8 + 2j - iu)
< Clog(2 + m),

/=i (5 + 2j)(n + 5 + 27 + '")

for some absolute constant C. Elementary Fourier analysis now shows that it is

possible to write

m= (dp(v)e-2niuv,       ug/,

Jo
a   =w

where jR\dp(v)\ < Clog(2 + m).

It is easiest to study am for u large by using the asynptotic formula for the

T-function (see, for instance, E. T. Whittaker and G. N. Watson [20, 12.33]). The

details of the estimation are rather tedious but straightforward, so we shall omit

them. The fruits of our labours are the following inequalities:

|a™|< C|u|"/2_1       if|«|<m,

\a™\ < Cmn/2\u\~l    if|u|s*m.

We may apply Theorem 2.1, takingp to be 2 and b(u) to be am. It follows that

sup
eeR+

£ K*uwr
1/2

< Clog(2 + m) I   \kj,m*fï
1/2

< Clog(2 + m)m-1||/||2,

by Lemma 1.1. This is the estimate (3) needed to finish the proof.    D
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