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SOME SHARP NEIGHBORHOODS

OF UNIVALENT FUNCTIONS

BY

JOHNNY E. BROWN

Abstract. For 5 > 0 and /(z) = z + a2z2 + ••■ analytic in \z\ < 1 let the 5-

neighborhood of/, Ns(f), consist of those analytic functions g(z) — z + b2z2 + •••

with E"_2 k\ak - bk\ < S. We determine sufficient conditions guaranteeing which

neighborhoods of certain classes of convex functions belong to certain classes of

starlike functions. We extend some recent results of St. Ruscheweyh and R. Fournier

and, at the same time, provide much simpler proofs. We also prove precisely how

boundaries affect the value of 8 for some general classes of functions.

Let ^denote the class of functions analytic in the unit disk D normalized so that

/(0) = 0 and f'(0) = 1. If f(z) = z + a2z2 + ■■■ ejfandS>0 we define the

S-neighborhood of/by

Ns(f) = lg(z) = z + b2z2+ ••• ejf:   £ k\ak - bk\ < s).
\ k-2 I

A. W. Goodman [3] proved that if f0(z) = z, the identity function in Jif, then

Nx(fQ) c S*, the class of starlike functions in Jif. St. Ruscheweyh [5] recently

extended this result and proved that if f(z) = z + an+xz"+1 + •■• gC (convex

functions in Jif), then Ns(f) cz S* for 8n = 2'2/". In the same paper he asked

whether a corresponding result would hold if C were replaced by f (functions in Jf

with \zf"(z)/f'(z)\ < 1) and S* replaced by T (functions in Jif with \zf'(z)/f(z) - 1|

< 1). R. Fournier [2] has now proved the corresponding result for f and T. The

purpose of this paper is to prove an analogous result for a specific one-parameter

family of functions in Jf? which will contain all of the above results as special cases.

It should be noted that St. Ruscheweyh used results related to the Pólya-Schoenberg

conjecture (established in [6]) as well as an extended version of the Clunie-Jack

Lemma. We show that none of this machinery is necessary. The results obtained are

best possible.

St. Ruscheweyh also proved that if / G S* (starlike functions of order a), then

there is no value of 5 > 0 such that NS(S*) cz S* for any 0 < a < 1. On the other

hand, R. Fournier considers a subclass Ta of T for which there exists a (sharp) 8 > 0

with Ns(Ta) c T. The differences in the two cases reduce to a question of boundaries.
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We show precisely how the boundaries influence the value of 8 for more general (but

related) classes of functions.

Main results. Let 0 < B < 1 and define the class S*(B) to be those functions

/ g jf for which

(1)
zf'(z) <l+z

/(*) Bz'
D,

where ■< denotes subordination (i.e., g < h if g(z) = h(u(z)), where co(0) = 0 and

|w| < 1). Let C(B) be those functions/ g JCsuch that

(2)
l  ,  zf"(z)   i   :   f:

/'(*) 1- Bz'
z G D.

We observe that S*(B) c S* and C(i)cC and note also that S*(0) = T and

C(0) = T. Our main result can now be stated.

Theorem 1. Let 0 < B < 1. Iff(z) = z + an+xzn+l +

c S*(B), where

C(B),thenNs(f)

8  =_ /(!+*)
-(1 + fi)/Bn

,-1/n

5*0,

5 = 0.

77»¿s /-eW? « sharp.

It is clear that B = 0 and 5 = 1 give the results of R. Fournier [2] and St.

Ruscheweyh [5], respectively. From (1) we see that/ g S*(B) if and only if

zf'(z) +   1 + e"

f(z)       1 - Be'
0 < 0 < 2t7.

It follows that/ g S*(B) if and only if he(z)*f(z)/z * 0, z g D, where * denotes

the Hadamard product and h$(z) is defined as

(3)
I   (1-2) (1-z)2

If he(z) = z + E^_2 Qz*, then Ck = [(1 - k) + e,0(l + Bk)]/ei0(l + B) and hence

\Ck\ < k. A sufficient condition for Ns(f) cz S*(B) can now be given. Following [5]

we suppose g(z) = z + b2z2 +  ■ ■ ■ G Ns(f), where /(z) = z + a2z2 +  ■ ■ ■  g Jíf

and |«9 * //z| > 8 > 0. Then we have (since \Ck\ < /c)

hg*g K*f he*(g-f)

>8- 2ZCk(ak-bk)z>
k = 2

>8- Lk\ak-bk\>0.
k = 2

Hence ht * g/z i= 0 for z g D so g g 5'*(5). Hence to prove the theorem we need

only prove that if f(z) = z + an + xz"+1 +  ■ ■ ■  G C(B), then

(4) \he*f/z\>8n,

where 5„ is as defined in the theorem. We will need several preliminary lemmas.
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Lemma 1. Iff(z) = z + an+xz' C(B), then

\f'U)\>
exp[-r"/w]> 5 = 0,

(1 + Br")-(1 + B)/Bn,    5*0,

\z\ = r, 0 < r < 1.

Proof. It is easy to see that if f(z) = z + an+xz
n + l C(B), then by (2)

we must have

(5)
i   ,  zf"(z) _   l + "(')

f'(z)   'l-BvizYf'(z)       l-Ba(z)

where u(z) = zn$(z) with r>(0) * 0 and \<j>(z)\ < 1. From (5) it follows that the

range of values of 1 + zf"/f, \z\ < r, hes inside the disk A(r) given by

(6) A(r)={w:|w-w0|<5},

where w  — n -1- D-2n^//"1 — r>2-2"^   o — n j. dw /n _ o2„2«

It is then easy to check that

- (1 + 5r2")/(l - B2r2n), R = (1 + 5)r"/(l - B2r2n) and 0 < r < 1.

1+Re(c^u -'■
/'(*) 1 + Br" '

r.

From this we observe that

3 „  r,     ,„    ,«m      „  /«"/"(n?''9))      -(l + 5)r"
r^Re{log/V")} = ̂ ("^if j > "TT^

or

The result now follows by integration.

Lemma 2. If f(z) = z + a„+1z"+1 +

«ewce univalent, for each 0 G [0, 2tt).

C(B), then he*f is close-to-convex,

Proof. If 0 = 0 and 5 = 1, then he(z) = z/(l - z) and hence he* f = f. We

may thus assume that O<0<277orO<5<l. From the definition of he and

properties of the Hadamard product we have

(7)
e"(l + B) (hB*f)'

(1 - Be«)       f

1 + eie

1 - Be"
1 +

zT_

f

Let 6 be fixed and put 00 = arg{ ei9/(l - BeiB)}. Then we see that for any a g R

(8)
.tt,* + aM»*f)' = \1-Beie\

f '  (1 + B)

1 + e'v

1 - Be'6
1 + zÇ

Now from (6) it follows that the range of values of 1 + zf"/f, z g D, lies in the

interior of A = A(l). It is evident that the interior of A lies strictly inside the circle

(or to the right of the line if 5 = 1)

(9) T: w(t) = (1 + e")/(l - Be"),       0 ^ t < 2t7.

Now (1 + e'e)/(l - Be'9) g T so we can choose a = a($) so that the right-hand

side of (8) has positive real part. As /g C(B) C C, we conclude that he* f is

close-to-convex (see [4]).
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Lemma 3. Iff(z) = z + an+xz"+1 + C(B), then

I+77 >(i + *)(rnL+ Br'
\z\ = r,0 < 0 < 277.

Proof. The lemma is obviously true for 0 = 0 and 5 = 1. So suppose 0 < 0 < 2ir

or 0 < 5 < 1 and define

H(w) = (1 - Beif>)
1 + e'

w G A(r),
1-5*'*,

where A(r) is defined by (6). Now since A(r) n T == 0, T defined by (9), we see

that H # 0 on A(r). We can then apply the minimum principle to log|//(w)| to

conclude that

\H(w)\ >    min   \H(w)\=    min
we3A(r) 0<9<2m

0«t<2tt

= (1 + 8>(tt^

The result now follows.

Lemma 4. Lei

(l + e'e)-(l-Be'e)
1 + r"c'"T

1 - Br"emT

,    x 1    f_1   -  t"
v(r) = - 1  --dt,

rJo (1+Bt")m + 1
m > 0,

and

p(r) = -f(l-t")e->n/"dt.
r j0

Then both are decreasing functions of r for 0 < r < 1.

Proof. Note that

Ar) >(r)
(!-/•")

0 < r < 1.
(1 + Br")m+

Thus we clearly have v'(r) < 0 for 0 < r < 1. To see this, fix 0 < r < 1 and note by

the mean value theorem it is enough to show that

ß(*) =
1 1 - r"

—    for all x G (0, r).
(l+Bxn)m + i      (1+Br")'

Since m > 0, ß(x) is decreasing and so v' < 0. The proof for p(r) is similar and is

omitted.

Proof of Theorem 1. Let f(z) = z + a„+xz"+1 +

Lemma 3 we see that

■!/'(*)■!
\(he*f)'\

(1 + 5)

>\f'(Mf+-BT»

g C(B). From (7) and

(1 +ei6)-(l- Be'e)ll+zÇ)

1
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Now we apply Lemma 1 to obtain

i(l-r")exp{-r"/n},       5 = 0,

(10) l(A, •/)'!>{_Ll¿_      B*0
(1 + Br")(a + B)/Bn)+1 '

Fix 0 < r < 1 and choose z0, |z0| = r, so that |(«9 */)(z0)| = Imn|z|=rl('!# * f)(z)\-

By Lemma 2, he* fis univalent and hence the preimage L of the segment from 0 to

(he * f)(z0) is an arc inside \z\ < r. Thus we conclude that for \z\ < r

\(he*f)(z)\>\(he*f)(z0)\=f\(hg*f)'(z)\\dz\

> f\(he*f)'(z)\dr.

Using (10) we conclude that

h,*f MÍO,    5 = 0,
p(r),     5*0,

where ju, p are defined in Lemma 4 with m = (1 + B)/Bn. Applying that lemma we

see that

he*f Mi),   b = o,
v(l),     5*0.

The right-hand side then determines <5„. To evaluate p(l) and v(l) we simply put

'zexp{-z"/«}; 5 = 0,
7(z) =

z(l+5z")-((1 + B)/Sn),    5*0,

and note that

(1 - z")e-z"/n,    5 = 0,

/'(*) -'< 1 - z"

(1 + Bz")'
5*0.

Thus ju(l) and v(l) are now easily found. Hence 8n is given as in the theorem.

To prove sharpness, we define/(z) by

(/V"/" ¿£, 5 = 0,
f(  ) = /   °

\f(l-Bè")-ai + BVBn)d$,     5*0.
I/o

Clearly

/(z) = z + a„ + 1z" + 1+  •■• ^C(B).

If we let g(z) =/(z) + o„z"+1/(w + 1), then clearly g g Ns(f) and g'(*) =/'(z)

+ 8nz" vanishes at z" = -1. The proof of the theorem is complete.
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St. Ruscheweyh [15] showed that if S* denotes the starlike functions of order a

(Re{z/'//} > a), then there is no value of <S > 0 such that NS(S*) c S* for any

0 < a < 1. On the other hand R. Fournier [2] showed that if f(z) = z + an+xzn+l

+ • • ■ g Ta, where Ta is the subclass of T defined by \zf'(z)/f(z) - 1\ < a, then

Ns(g) c T, where 8„ = (1 - a)e'a/". He accounts for the differences by noting that

the boundaries in Ruscheweyh's case, {w: Rew > 0} and {w: Rew > a), are not

disjoint whereas in his case the boundaries, {w: \w — 1\ < 1} and {w: \w - 1\ < a),

are. In our next result we show precisely how the boundaries affect the value of 8n in

situations more general than those mentioned above while at the same time includ-

ing the results in [2, Theorems 2 and 3 and 5, Theorem 3(ii)].

Let F and G be fixed functions analytic and univalent in D with F < G and

F(0) = G(0) = 1. It is known [1, p. 50] that F and G belong to Hp for all 0 < p < \

and hence have radial limits almost everywhere. Let E* denote the set of all

0 g [0 , 277) such that G(e'e) exists. We next suppose that G has the property that

there exists an integer N ^ 2 such that

(11) X=   inf |JV- G(e">)\> 0.
0e£*

Define the classes J^and ^by

&= IfeJT: ^t<f)    and    ^={/g^:^<G

Then we have the following result:

Theorem 2. Let t¡ = dist(F (D), G(D)).

(a) Ift) * 0 andg(z) = z + bn + xz" + l + ■■■  ejf, then NsJig) c ^, with

<5„ = Tjexp   f1-!nun ReF(z") - l) dt
I/o t M*l=' '

(b) If i] = 0 and if G satisfies (11), then there exists a function gN g IFsuch that for

no value of 8 > 0 is Ns(gN) c 'S.

Proof, (a) If g(z) = z + bn+1zn+1 + ■■■ g &, it follows that zg'/g = F(u(z)),

where w(z) = z"<j>(z) and |<|>(z)| < 1. Hence we see that

r|-Re/log líí^*i\ = Re/^ - l\ > min ReF(«(z)) - 1
or      { r      ) {  g j      |Z|_r

^ min ReF(z") - 1
\z\-r

> exp /""-(min ReF(z") - l) dt.
J0   t   l|z| = r I

and we conclude that

(.2) \^fl
Since G is univalent we see that g g ^if and only if g(0) = 0, g'(0) * 0 and

(13) ^-*G(e's)    for all f? g £*,zgD.
o

It is evident that (13) holds only if (k0 * g)/z * 0 for all 9e£* and z g D, where

z G(eiS)z
(14) ke(z) =

(1-z) 2 1-z
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We easily see that for g(z) = z + bn + xzn + 1 +

are contained in F(D) and hence

ke* g g(z) zg'(z)

*(*)
- G(e")

g i^the range of values of zg'/g

*(*)
>1

In view of (12) we have

ke*g
> t) • exp fr-lminReF(zn)-l\dt

Since F(0) = 1 we see that min|z|_,Re F(z") < 1, 0 < t < 1, and hence the right-

hand side of the last inequality is a decreasing function of r. This proves (a),

(b) Let A be given by (11) and define gN by

gN(z) = zexp\f){F(t")-l}
/o l

It is clear that zg'N(z)/gN(z) = F(zN) < F(z) and hence gN g &. Furthermore,

since T) = 0, we have by (14)

dt

(15) inf
gN*kB

inf
gN(z)

\F(zN) - G(e«)\ 0,

where the infimum is taken over all 0 g E* and z g D.

Assume there exists a S > 0 such that Ns(gN) c <^. Since g^(0) * 0 we have

gN(z)/z * 0 in |z| < r0 for some 0 < r0 < 1. Clearly \F(zN) - G(eiB)\ * 0 in \z\ <

r0. Hence for any fixed 0 G E* we can conclude that |gN * A:s/z| > e > 0 for some e,

when |z| < r0. In view of (15), we can then select z0 g D, with r0 < |z0| < 1, and

0O g £* such that

U/v*^0Kzo)

N

Putting

Af (gN*kBo)(z0)

we observe that

(16)
{gN*k0j(zo)      X^n-

N

and 1/x.J < 8. Let /(z) = gN(z) - XpzN/NCN, where CN=N- G(e'e") is the Nth

coefficient of kio(z). Now we see that since /'(z) - g^(z) = -\pzN~l/CN and

|A/CJ < 1 we have/ g A^g^) c ^. Finally, we have by (16)

(keo*f)(z0)      (keo*gN)(z0)     \pzg-1

N
= 0.

Hence (k8o* f)(z0)/z0 = 0 and so/<£ ^. This is a contradiction. The proof of the

theorem is complete.

The author wishes to thank the referee for some useful comments.
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