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EPIMORPHICALLY CLOSED PERMUTATIVE VARIETIES
BY
N. M. KHAN

ABSTRACT. We show that for semigroups all permutation identities are preserved
under epis and that all subvarieties of the permutative variety defined by any
permutation identity

XyXy =0 xn=xilxi2 x’_"’

with n > 3 and such that i, # n or i; # 1, are closed under epis. Finally we find

some sufficient conditions that an identity be preserved under epis in conjunction
with any nontrivial permutation identity.

1. Introduction and summary. We establish that for semigroups all permutation
identities are preserved under epis. A stronger result for commutativity has long
been known, namely that the semigroup dominion of a commutative semigroup is
also commutative; we show by a counterexample due to P. M. Higgins that this
stronger result is false for each (nontrivial) permutation identity other than com-
mutativity. Next we show that all subvarieties of the permutative variety defined by
any permutation identity

=X.X:. *** X

1) X1Xp "0 X iXi,

i

n n

with n > 3 and such that i, # [i; # 1], are closed under epis, thus generalizing
Theorem 4.1 of the author [10] which states that all commutative varieties are closed
under epis. Finally we find some sufficient conditions that an identity be preserved
under epis in conjunction with any nontrivial permutation identity.

2. Preliminaries. Let U, S be semigroups with U a subsemigroup of S. We say that
U dominates an element d of S if for every semigroup T and for all homomorphisms
B,v: S—= T, uf = uy for all u € U implies dB = dy. The set of all elements of S
dominated by U is called the dominion of U in S, and we denote it by Dom (U). It
can be easily verified that Domg(U') is a subsemigroup of S containing U. Following
Howie and Isbell [8], we call a semigroup U saturated if Domg(U) # S for every
properly contained semigroup S.

A morphism a: 4 — B in the category % of semigroups is called an epimorphism
(epi for short) if for all C € ¥ and for all morphisms 8, y: B — C, a8 = ay implies
B = y. It can be easily verified that a morphism a: S — T is epi if and only if the
inclusion map i: Sa —» T is epi, and the inclusion map i: U — S from any
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subsemigroup U of S is epi if and only if Domg(U) = S. In such a case S will be
called an epimorphic extension of U.

A most useful characterization of semigroup dominions is provided by Isbell’s -
Zigzag Theorem.

REesULT 1 [9, Theorem 2.3 or 7, Theorem VI1.2.13]. Let U be a subsemigroup of
any semigroup S, and let d be any element of S. Then d € Dom(U) if and only if
either d € U or there are elements ay, a,, a,,...,a,,, € U, t}, t5,. .., 1, Y1, Vase o3 Vm
€ S such that

d=ay, ap = N4,
(2) Yy = Yinr8aivr,  Gyti=ayti (i=12,...m—1),
aZm—ltm = Ao Ym@am = d.

These equations are called a zigzag of length m over U with value d and with spine a,,
ay, ay,y...,dy,,

An identity of the form of equation (1) for some permutation i of the set
{1,2,...,n} is called a permutation identity. The permutation identity (1) is said to
be nontrivial if the permutation i is different from the identity permutation.

REsULT 2 [11, Result 3]. Let U and S be any semigroups with U a subsemigroup of
S. For any d € Domg(U)\ U, if (2) is a zigzag of shortest possible length m over U
with value d, then L,y € S\ Uforj=1,2,...,m.

REsuLT 3 [11, Proposition 3.1]. Let S be any semigroup satisfying the identity (1)
withn > 3.

(i) For each j € (2,3,...,n} such that x;_,x; is not a subword of x; x, --- x
also satisfies the permutation identity

S

l"’

x1x2 b xj_lxyxl R xn = x1x2 cet Xj_lyxxj ct x".
(ii) If x; #+ x, , then S also satisfies the permutation identity

XPX Xy 0 X, = YXX1X5 " X

In the following results, let U and S be any semigroups with U a subsemigroup of
S and such that Domg(U) = S.

RESULT 4 [11, Result 4]. If d € S\ U, then for any positive integer k, there exist
a,,a,,...,a, € Uandd, € S\ Usuch thatd = a,a, --- a,d,.

RESULT 5 [11, Corollary 4.4]. Let U satisfy a permutation identity (1) with i, # n.
Then, for each positive integer k&,

SXy Xy vt X T SX X v X

forall x;, x,,...,x, € §,s € S\ U, and for any permutation of the set {1,2,...,k}.
REesuLT 6 [11, Corollary 4.2]. If U satisfies a nontrivial permutation identity, then
for each positive integer k,

SX Xyttt Xyl = 8X

X - Xt

Jr Jk

for all s, t€ S\ U, x;, X5,...,x, €S, and for any permutation j of the set
{1,2,...,k}.

The notations and conventions of Clifford and Preston [3] and Howie [7] will be
used throughout without explicit mention.
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The general question of which varieties are closed under epis has been studied in
semigroup theory, ring theory and elsewhere [2]. For example, in [4] Gardner has
shown that certain identities weaker than commutativity are not preserved under
epis of rings although the variety of commutative rings is closed under epis [1]. P. M.
Higgins [5] has shown that identities for which both sides contain a repeated variable
are not preserved under epis of semigroups. In showing that all varieties of
commutative semigroups are closed under epis [10], the author has generalized the
classic result of Isbell [9, Corollary 2.5] that commutativity is preserved under epis.
However, finding a complete determination of all identities which are preserved
under epis of semigroups still remains an open problem.

3. Epimorphisms of semigroups and permutation identities. An identity u = v is
said to be preserved under epis if for all semigroups U and S with U a subsemigroup
of S and such that Dom ((U) = S, U satisfying u = v implies S satisfies u = v.

THEOREM 3.1. All permutation identities are preserved under epis.

PrOOF. Let equation (1) be any permutation identity with » > 3. Without loss we
can assume that (1) is nontrivial. Take any semigroup U satisfying (1), and any
semigroup S containing U properly and such that Domgy(U) = S. We shall show
that S also satisfies (1).

For k = 1,2,...,n, consider the word x; x; --- x; of length k. We shall prove the
theorem by induction on the length of these words, assuming that the remaining
elements Xi, oeeesXi € U.

First for k = 1, that is, when x; €8, and Xis--sX; € U, we wish to show that
equation (1) holds. When x; € U, (1) holds so we assume that x, € S\ U. By
Result 1, we may let (2) be a zigzag of shortest possible length m over U with value
X;.

n
First we introduce some notation:

3) wi(X, XiseooX; ) =x,%, 000 X, = (X, Xp,...,X,),
Wy (X5 Xisee s Xy ) = X1 X5 o o0 X, = Uy (xy, Xp,...,%,).
Case (i). i; = 1. Now
X Xiy *0 Xy = YmoamXy, T X, = YuW1(a3,5 Xiyseo- ’xi,,)
= Y2 (@3pms X, 5...,x; ) (since U satisfies (1))
= Py Xy Xy = XyXy e X,
as required.
Case (ii). 1 < i; < n. Now, putting j = i;, we have
(4) x;x;, "+ X; =Ynay,%; ** x; (from equations (2))

= Yu1(agps Xi- 5%,

= YWy (@gps X, 5. ..,%; ) (since U satisfies (1))
T VmX1Xa 1t Xj 18Xy 0 Xy

= Ym¥1Xy *** X; 183, 1t,,z (from equations (2),

wherez = x;,,,. c0X,)

(Continues)
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= YmX1 X2t xj—102m—lbj(-'+nl) s b\ 2
(by Result 4, for somebH, ..,b{me U,

andz, € S\ U, sincet,, € S\ U)

= (m) m) | 41
= ymu2(x1, Xgsee s X015 Gty by s e by ))tmz

_ (m)
_ymul(xl, Xgse s X1 Qpmots by ..,b,Sm))t:"Z

(since U satisfies (1)).

Now u,(z, 25,...,2,) begins with z; =z, so the product (4) in S contains

Ym@2m—1 Which equals y,,_,a,,,_, (from equations (2)). Thus the product (4) above
equals

(5)
ym—-lul('xl’XZ’ ces X1 Aoy 2,b,(+1» . b(m))

=y,,,_1u2(x1,x2,... X; 15 Gypmogs BT, b"”))t,’,,z (since U satisfies (1))

= Ym-1%1%2 """ X; 14— 2b,(1"1) - b{™t,,2

= Yo1X1X3 0 X182y olpZ (sincet =b - b,‘,’"’tj”z)
= Ym-1X1X3 *** X;_183,_5t, 1z (from equations (2))
=YX Xy o X a15h2

= P1X1X, "¢ j lalb(l) e b,(,l)t{Z

(by Result 4, for some
b®,,....b" € U,and 1] € S\ U, sincet, € S\ U)
=y1u2(x1,x2,...,xj_1,a1,bj+l, b,(,l))t{z

= ylul(xl, XgyeeesXj_1s ay, bR, b))z (since U satisfies (1)).

Again as before, product (5) in S contains y,&, which equals a, (from equations (2)).
Thus the product (5) above equals

1 ’
ul(xl, XyeenX;_15 Ao, b1, B ))tlz

= uz(xl, XgyeeasX;_1s g, DY, .. b,(,l))t;,z (since U satisfies (1))

J= J
= x,%; - x,_1agb®, -+ b1}z
= X)X; " X;_181,2 (since 6, =bP - b,f”t{)
=x,x, -+ x, (sinceayt; = x,=x,andz=x;,, - x,),

which proves the result for k = 1 in Case (ii).
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Case (iii). i; = n. Now

XyXiy ©7 0 X, T YmbamXi, T X

nviy n

=y, X1X; *** X,_14,, (since U satisfies (1))
= YX1X3 " Xy _18m_1lm (from equations (2))
= Ymlom-1%;, " X; 1, (since U satisfies (1))

= Ym—-182m-2%;, *** X; 1,, (from equations (2))

= Yp_1X1Xy *** Xpy_1@3m_2t, (since U satisfies (1))
= Ym_1X1X2 *** Xp_183m_3tm_1 (from equations (2))
ENXiXy X,

=yax; -+ x; 1, (since U satisfies (1))

=ayx; -+ x; 1, (from equations (2))

= X1 Xyttt Xp_qdoly

= x,x, -+* x, (from equations (2), since i, = n),

as required.

REMARK 1. A proof for Case (iii) could also be obtained from the proof for Case
(ii) above by making the following conventions:

(@ytheword x;,; --- x,=1;

®bE = =pP=1andt; =1, fork=12,...,m

(c) the vector

0Y =
(’xl’ XaseeerXj15 o1, b,+1, by )) = (%1, X505 X1, A2p—1)

fork=1,2,...,m
(d) the vector

k ) -
(xuxz,--- Xj—1s Qop— 2,bj(+)1’ . ,b.f )) = (xuxzv-wxn—uazk—z)

fork=1,2,....m

So assume now that (1) is true for all x;, x, ,...,x; € S and all X0 X,
€ U. We prove from this assumption that (1) is true for all x;, x, ,.. ,x S S and
for all x; o> Xig, e -2 %;, € U. We need not consider the case where X; = U, so we
assume that x;, €S\ U. As x; € S\ U and Domg(U) = S, by Result 1, we may
let (2) be a z1gzag of shortest poss1b1e length m over U with value x; i

Putj=i and/=i,_

Case (i). ] = j — 1. Now

<9 X

ig+1” In

XiXiy, "0t Xy =X X 00 xiq_l(ymaZm)xqu X,
= XXy, e (xiq_,ym)amequ T
= XpXp vt xj—2(xiq_1ym)a2mxj+l Tt Xy

(by the inductive hypothesis)

(Continues)
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= XXy xj—2xiq_l(yma2m)xj+l Xy
= x1x2 .. xj—zxj—lxjxj+1 DY x"
(smce X, =X and X, = xj_l),

as required.
Case (i1). / < j — 1 andj < n. Now

(6)

=X, " X Ymlam - X;, (from equations (2))
=wi(x;,,x,... s X Ym> Qs X))

= wy (X, Xipye 2 X; V> Qams---»X;, ) (by the inductive hypothesis)

= wz(xil,. X Ym Qam il - ,x,.") (from equations (2))

=x1x, 0 xq(x _,ym)x/+1 xj—l(aZm—llm)z (wherez =X 0 'xn)
q J
= (m) | (m)yr
XX, xl—l(xiq_lym)xl+l X; 18y, b - b, ),z

(by Result 4 for some b("),...,b{™ € U,
and 1, € S\ U, sincet,, € S\ U)

= (m)
uz(xl,xz,...,x,_l,xiq_lym,x,+1,..., j_l,az,,,_l,bjﬂ,. , b, )t z

= ul(xl,...,x,_l, Xio V> X1s 1o+ 5% 1, Q15 BT, ,b,ﬁ'"))t,'nz
(by the inductive hypothesis).
Since u,(zy, z,,...,2,) contains as a subword z iyoiZip the product (6) in S contains

(x; fyr Y )Am_1 Wthh equals (x Ym-1)82,,_, (from equations (2)). Thus the
product (6) above equals

()
( (m)
ul(xl""’xl—l’xiq_lym—l’xl+1""’xj—l’aZm—Z’b_/+l’ by )
= ( (m)
u2(x1""’xl—l’xiq_lym—l’xl+1""’ j=1> A2 27bj+1» »bn )t Z

(by the inductive hypothesis)

= (m) . . p(m)yr

= X1X; Xi-1%i,_ Ym—1%141 X; 185,07 b,z

= i = pim ... <m>/)
= X)X, X1 X, Ym-1%141 X; 18ym-2lmZ (smce t, = b b,™'t,,
=Xy X XX w1 X T Xj18om-3lm 12 (from equations (2))
=XXp v XX NiXpe 0 XjdihZ

— e [CJR N ¢ 3 PY4

=X Xg ot XX ViXie xj—lalbj+1 btz

(by Result 4 for some b(),,...,6" € U, t; € S\ U, sincet; € S\ U)

(Continues)
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- 1) 1
= uz(xl,...,x,_l, Xi V1> Xpa1- -5 %15 a1, By, ..,b())t z

_ Q) )4/
—ul(xl,...,x,_l,xiq_lyl,x,ﬂ,. X 1,al,bjﬂ, ..,b, )tlz

(by the inductive hypothesis).

Now as uy(z), z,,...,2,) contains z;, z; as a subword, the product (7) in S

contains (x; _ y;)a; which equals X; 4o (from equations (2)). Thus the product (7)
above equalsq,

1
ul(xl, Xase s Xp_1s Xi s Xpy1oe -5 X 1, Ao, bP1se 0, b ))
= 1
- uz(xl,. . ,X,_l, xiq_l, xl+1,. ..,xj'_l, ao, bj+1’ ,b's ))t{Z

(by the inductive hypothesis)

= @ ... pQyr
=X Xi-1%i,_ X141 x;_q1a0b;y btz
=Xyt XX Xyttt Xpa@h Xttt Xy, (since z = Xjp1 """ x,)
= XX, " X, (smce X =X and ayt; = x; = xj),
as required.
Case (iii). ] < j — l,j n. Now
x x CECEY x x' .. x’
i q—l q n
=X X;, " X; YAy - %;, (from equations (2))
= xil'xiz e (xiq_lym)az'n e xi,,

= X%y + X, y(X; _ Ym)X111 * X4 18,5, (by the inductive hypothesis)

= X%y <+ Xy (X Ym)Xps1 **" Xu_182m-1t, (from equations (2))
= x;%;, = (X _ Ym)@2m-1 ** X, 1,, (by the inductive hypothesis)
= XXy, vt Xy ()’m Aypm_) " L

= x,%;, 0 X (Ym-182m-_2) * X, 1,, (from equations (2))

=X X (x Xiy 1 Ym— )82m_2 C X lm

= XXyt xl—l(xiq_lygn—l)xl+l ***X,_183m-21, (by the inductive hypothesis)

=%y 0 X g (X Ymo1)Xie1 0 X 1@amo3tmon (from equations (2))
= xpxp e x (X )Xy e Xeoah

=x;x;, -+ (x; _»)ay -+~ x;t; (by the inductive hypothesis)

= xil'xiz .o xiq-l(ylal) e X L

= xilxiz oo xiq_lao oo xi,,tl

= XXy *tt X;_1X; _ ** X, 4ot (by the inductive hypothesis)

= x,x, -+ x, (from equations (2), since i,=nandi,_, = 1),

as required.
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REMARK 2. A proof for Case (iii) could also be obtained from the proof for Case
(ii) by making the following conventions:

(a)theword x;,, --- x, =1,
®) oY, =--- =bpP=1Tandt, =1, fork =1,2,...,m;

(c) the vector

K K
(xl,xz,...,x,»q'lyk,x,H,...,xj_l,a2k_1,b}+)1,...,b,f ))
= (x,, XgseosXy  Vireoos Xyt G—p) fork =1,2,....m;
and

(xl,xz,...,xiq_lyk_l,x,+1,...,xj_1,azk_z,b}f’l,...,b,fk))
= (xy, Xasees Xy (Yi—1500 5 Xn-1s Ar-2)
fork =1,2,...,m and where y, = 1.
Case (iv). j + 1 <! < n. We have

(8)

X, X; X, =X

P X
hoh in h

iz...

=X X, X YmlymX;,, -+ X, (from equations (2))
=w(x;,x,,... SXio Vs Doy X o X))

=wy(X;se s X; Vs @ams X, »---»X;, ) (by the inductive hypothesis)

=Xy Xg vt Xy a@omXjer C 0 XX YmXier T Xy
=X Xyt X Gyl X e Xy X Y X1 T Xy

(from equations (2))
= Xy Xy o xj—1a2m—1bj(-'+-"l) T ;-T()I~j—1)t:nxj+l XXy YmXie1 T X

(by Result 4 for some b{7},...,b7%)_ 1) € U,
andt,, € S\ Usincet,, € S\ U)
U, xq, x X,_i,a bim (m) Lt XX,
20 X1 X5 s X 15 Qop—15 Oji i+ 5 05— j—1)> T X 41 ig_ 1 Ym>
Xpp1rensXy)
ul(xl?x2""’xj—1’a2m—1’b}rl)""’b}r()l—j—l)’t;nxj+1 X Y
Xpi1seeerXp)
(by the inductive hypothesis).

Now since the word u(zy, z,,...,2,) contains z, z; as a subword, the product
(8) in S contains (Xi,_ Ym)G2m-1 which equals (Xi,_ Ym-1)82m—2 (from equations
(2)). Thus the product (8) above equals

(m) (m) ’
(9) ul(xl, x2,.. .,xj_l, azm_2, bj+1" o Yivi—j-1y tmxj+1

XX, Ym-1o Xip1r-e>Xn)

(Continues)
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— (m) (m) ’
= uz(xl, XoseeesX;_1s Qom_2s BT OFT0 1y tnX i1
.. xl_lxiq_lym_ly x,_,_l,...,x,,)

(by the inductive hypothesis)

= XXy v xj—1a2m—2b}-'l—nl). b}:?l—j—l)t:nxj+l Tt XX Ym—1Xi41 T X
= XXyttt X8yl Xjer XX Ym-1Xi41 T Xy
(since £, = BT} -+ B 1yth)
=X Xyt X 4l 3lmo1 X1 0 XX Yme1Xie1 T Xy
(from equations (2))
=Xy Xp ot X @0 Xq XX N1Xpe T X,
=X1Xp v X, lalb : bjﬂl—j—l)t{xj+l Tt XX NiXper X,

1 1
(by Result 4 for some b,,...,b0%_;_, € U,
andt; € S\ U, sincet; € S\ U)
- bD. ... bY) X 0y
= Up| Xpse a5 Xjo15 815 D15 00— -1y B X Xi V1o Xpa1-- 5%,
= 1
- ul(xl,...,xj_l,al, b by Xy xiq_lyl,x,ﬂ,...,x,,).

As u,(zy, z,,...,2,) contains z;,_,2i, as a subword, the product (9) in § contains
(x,.q_1 y1)a; which equals x;,_40 (from equations (2)). Thus the product (9) above

equals
ul(xl,...,xj_l, ag, bR, b oy Xy x,.q_l,x,ﬂ,...,xn)
= u2(xl,...,xj_l, ao, b, ..,b}i)(,_j_l), 0Xj4q 0 Xi s Xppts ..,xn)
(by the inductive hypothesis)
= XXt X _q@0bPy e bR _ytix v X1 X, Xie1 "0 Xp
= XXyt X8l Xyttt XX Xppy X,
(since 6 =b% - b 1)‘1)
= XX, *"* X, (since X, =xp,andx; =apt; = xj),
as required.
Case (v). j + 1 =1 Now
XX X

= XXy X Vo X, (from equations (2))
= xilxiz cee (xiq—lym)azm e xi"

= XpXp t o xj—laZm(xiq_,ym)xl+l T Xy

(by the inductive hypothesis; if / = n, the product x,,, - - x,, = 1)

(Continues)
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= XXy - xj_1(12,,,_11,,,(x,-rly,,,)x,+1 -+ x, (from equations (2))

= XyXp xj—la2m—l(tmxiq_l.ym)x[+l Tt Xy

=X, X, x,.q_z(tm i\ ym)a2m 1%, -+ X, (by the inductive hypothesis)
=X, X, " x,-q_z(tm iy Y- ) 2%, -+ x;, (from equations (2))

= XXy + - xj_laz,,,_z(t,,,x,-q_ly,,,_l)xH1 .-+ x, (by the inductive hypothesis)
= XXy + - xj_lazm_3(tm_lx,-q_lym_l)x,+1 -+- x, (from equations (2))

= XXy vt xj—lal(tlxiq_lyl)xl+1 X,

=X, % ‘" x,.q_z(tlx,.q_lyl)alx,.q+l -+ x,  (by the inductive hypothesis)
=X, % ‘" x,.q_z(tlx, )aox, ., *++x, (from equations (2))

= XXy - xj_lao(tlxiqvl)x,+1 -+ x, (by the inductive hypothesis)

= x,x, -+ x, (from equations (2) and gy =1=j+ 1),

as required.

Finally, a proof in the remaining Case (vi), namely whenj + 1 < /and / = n, can
be obtained from the proof for Case (iv) above by making the following conven-
tions:

(a)theword x, ., -+ x,=1;

(b) the vector

(x17x2"" x’-—l’GZk—l’bj+l’ . b,+(/ Jony Xyt xl—lxiq_lyk’xl+1"""xn)

_ (k) 41
= (xl"xZ"" X;_1 @1y BB X xn—lxiq_lyk)

fork=1,2,...,m
(c) the vector

(xl,xz,...,x i—1> Q24— 2’b/+1’ : b,+(1 ey LeXjen T x[—lxiq_lyk—l’x1+17""xn)
- (k)
= (xl’x2"" X 15 @op- 2’b,+1’ N AN ¥ S xn—lxiq_lyk—l)

fork =1,2,...,mand where y, = 1.

This completes the proof of Theorem 3.1.

The following corollary gives a sufficient condition for Domg(U) to satisfy any
permutation identity that U satisfies and, thus, generalizes [9, Corollary 2.5] from
commutativity to any permutation identity.

COROLLARY 3.2 (TO THE PROOF OF THEOREM 3.1). Let U and S be any semigroups

with U a subsemigroup of S. Let U satisfy a permutation identity (1). If for all
s€ S\ U, s=as’ for some a€ U and s’ € S, then Domg(U) also satisfies the

permutation identity (1) satisfied by U.
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REMARK 3. Theorem 3.1 generalizes [9, Corollary 2.5], which stated that commuta-
tivity is preserved under epis of semigroups.

ExaMPLE (P. M. HIGGINS, VERBAL COMMUNICATION). This shows that the nontriv-
ial permutation identities other than commutativity are not carried over to domin-
ions.

Let Fy be the free semigroup on a countable infinite set X = {x,, x,,...}. Let
T = {Y), the subsemigroup of F, generated by the set Y, where

oo

Y= U {X3041%3042> X30425 X3042X3,43 )«
n=0

Put § = Fy ,, and T = T*, where p is the congruence generated by the relation p,
which consists of the pairs (u,u;, - - u,, u;u; -+ u; ywithu; € Tforj=1,2,...,n,
and where i is a fixed nontrivial permutation of the set {1,2,...,n} withn > 3. Itis
easy to see that for each n = 0,1,2,..., (X3,,1X3,42%X3n+3)P € Dom (7). Now we
show that Dom¢(T) does not satisfy the permutation identity corresponding to the
permutation i.

To see this consider the product (x,x,X;)(X4XsX¢) * - (X3,+1X304+2%3n+3) N Fy.
Since no n members of T occur consecutively in this word, no elementary p,
transition is possible from this base and hence Domg(T) does not satisfy the
permutation identity corresponding to the permutation i.

4. Epimorphically closed permutative varieties. In Theorems 4.1 and 4.4 the
bracketed statements are dual to the other statements.

THEOREM 4.1. Let equation (1) be any permutation identity with n > 3 and such that
i, # nli, # 1). Then all identities, in conjunction with (1), are preserved under epis.

ProoOF. Take any identity
(10) u(xy, X5,...,%,) = 0(xg, X3,...,%,)
and any semigroups U and S such that U is a subsemigroup of S, U satisfies (1) and
(10), and Domg(U) = S.

By Theorem 3.1, S satisfies (1). Now we show that S satisfies (10). Since S satisfies
(1), by the dual of Result 3, S also satisfies the permutation identity
(11) X1Xgseeer Xy XY = XXyt 0 X, PX.

LEMMA 4.2. Take any word w in variables x,, x,,...,x, say, any a,, a,,...,a, € U,
and any t, t,,...,t, € S' such that if t; € S, then a, = yb, for some y,€ S\ U,
b,e S(i=1,2,...,k). Then

w(ayt,, azty,....a,t,) = wlay, ay,....a,)w(ty, ty,. .. 0;).

PROOF. Let x, be the first variable appearing in w for which ¢, € S (whence

a,=y,b,forsomey, € S\ U, b, € S). Then

w(ayty, ayty,...,a ) = wlayty, asty,...,ybt,,....a,t;)

w(ay, ay,....p,b,,...a)w(ty, 1y,...,1,)  (by Result 5)

w(a,, ay,...,a)w(ty, ty,...,1,),

as required.




518 N. M. KHAN

We return to the proof of Theorem 4.1. Take any d,, d,,...,d, € S. If some
d, € U, there is a zigzag in S' over u with value d,, namely

;,=dl=1d1=1d,.

Now d, d,,...,d, all have zigzags over U in S! of some common length [10,
Lemma 4.2], say

d, = afr®,  aff = yaf),
(1) WAL =aln, e,
(i=1,2,....,p,k=1,2,....m—1),
APt = ah, Al = d,
where a{? € U (i=1,2,...,p,j=0,1,2,...,2m) and ), y{"» € §' (i =
1,2,...,p,q = 1,2,...,m), and further, for each d, € S\ U we can assume that (",
y{? € §\ U (from the proof of [10, Lemma 4.2]).
In the following , we shall make free use of Lemma 4.2 without explicit mention.
We put X = (x;, x5,...,x,). In this notation, the identity (10) is simply u(%) = v(%).
Put

d=(d, d,,....d,),
= (a®,a@,...,a”)  (k=0,1,2,...,2m),
= (tf,l), tflz),...,tf]”)) (g=1,2,...,m),

(13)

~1
N N

9= (60,52, yP)  (g=1,2,...,m).

We wish to show that u(d) = v(d).

By [10, Lemma 4.3], d € §? is in the dominion of U” in (S')?, where T, for any
semigroup T and any integer y > 2, denotes the cartesian product of y-copies of the
semigroup T; d has the following zigzag of length m:

d=ayt, ag = 4y,
(14)  Judrp = Prs18ak41 Aypati = ypliiy (k=1,2,....m—1),
&2m—ltm = &2m’ j)maZm = d’

whered, € U (1 €0,1,2,...,2m),and j,, 1, € (§')? (¢ = 1,2,...,m).

LEMMA 4.3. Let the word v in (10) begin with x;, say. If d;€ S\ U, then
u(d) = v(d).

PROOF.

u(d) = u(ayt,) (from equations (14))

u(ay)u(t,) (by Lemma4.2, since each af’ = y{Va{")
v(5,a,)u(t,) (since U satisfies (10))
v(y)v(a)u(s;) (byResults, since i’ € S\ U)
v(7,)u(a,)u(t,) (since U satisfies (10))

(Continues)
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v(3)u(a,t;) (byResults, sincey’> € S\ U)

v(§,)u(a,t,) (from equation (14))

= 0(Ipm-1)4(83m—21m)

= 0(Fp_1)u(dym_p)u(t,) (byResults,sincey?, € S\ U)
= 0(Pp_1)v(dy,_,)u(t,) (since U satisfies (10))

= 0(Fn_183m-2)u(t,,) (byResult5,sinceyl?, € S\ U)

= 0v(J,d,_1)u(t,) (from equations (14))

() 0(83m-1)u(,) (by Result5, since y € S\ U)

v(5,)u(@y,_1t,,) (byResult5,sincey) € S\ U,

and since U satisfies (10))

v(9,)u(a,,) (fromequations (14))
= 0(Jnyn) (by Results,sincey$’ € S\ U and U satisfies (10))
= v(d) (from equations (14)).

This completes the proof of Lemma 4.3.

We return again to the proof of Theorem 4.1. We regard the variables x;,
X,,...,X, as being “replaced by” d,, d,,...,d, respectively, and it will be convenient
for us to use the phrase “replaced by” in our proof. If all the variables in 4 and v are
replaced from U, then u(d) = v(d) as required; hence we assume that in v, say, not
every variable is replaced from U.

By Lemma 4.3, if the first variable of v is replaced by an element of S\ U, then
we have the required result again. Hence we consider now the case where further the
first variable of v is replaced by an element of U. Then

(15) v(%) = v,(%)0,(%)

for some words v, and v, in the variables x;, x,,... s X ps where v, is of the maximum
length such that all the variables of v, are replaced by elements of U (the word v, is
nonempty and not all the variables x,, x,,...,x, appear in v,). Let the first variable
of v,(X) be x,, say (that is, x, is the first variable appearing in v(X) which is replaced
by an element of S\ U).

For any i, if d,€ S\ U then yj(") e S\ U for j =1,2,...,m. Therefore, by
Results 1 and 2, for d; € S\ U, we can write

(16) yP=b05" and bP =z0c? forj=1,2,...,m,

for some b(”, ¢(? € U, 5, z{” € S\ U. For each d, € U, we put

17) O = ) = 5O = 0 = 1,
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In addition to the notations (13), we shall also use the following:

B‘I= (b‘(ll) b(z) "’bt(]p)) (q = 1,2,...,m),

L

5,= (GO, 59, 59)  (g=1,2,...,m),

(18)
i, = (cf,”,cf),...,cf,")) (g=1,2,...,m),
2q=(2‘(’l)’z‘(72),...,z;p)) (¢g=1,2,...,m).

Now from equations (17) and (18) we have
(19) Y, = b,3, = Z84Ve
Now
u(d) = u(a,t,) (from equations (14))
= u(dy)u(f,) (byLemma 4.2 sinceal’ = y{a{" fori=1,2,...,p)
= v(ay)u(t,) (since U satisfies (10))
= v(j,a,)u(t,) (from equations (14))

= v(j,d,_,)u(z,) (thisequality is essentially an inductive assumption;
we now obtain equality with v( ,, ,d,,, 1) u(,+,))
= 0,($,d5,1)03($18,,_1) u(t,) (from equation (15))
= 0,(@5,_1) 02 (5, ) u(ty)
(since all variables of v, are replaced from U)
= 0,(dy-1)0,(5,)v,(d5,_,)u(z;) (by Result 5, since v, ( 7,d,,_;)
begins with y"a{)_; and y’ € S\U)
= v,(d@3;_1)vy(b;y,)0y(@5,_)u(f,) (from equation (19))
= v,(a@y_1)vy(B,)vy(3,)v,(ay_1)u(t,) (by Result5, since b = z "
and z{"’ € S\ U from equation (16))
= 0,(@y,_1)0,(b,dy,_,)u(t,)v,(7) (by Result5, since b = z{c)
and z{’ € §\ U from equation (16))
= Ul(bi&Zi—l)UZ(Bi52i—l)u(;i)v2()_)i)
(since all variables of v, are replaced from U )
= v(b,a,,_,)u(t,)v,(5,) (from equation (15))
= u(b,a,;,_,)u(t,)v,(5) (since U satisfies (10))
= u(b,a,,_,1,)v,(5,) (byLemma 4.2, sinceif any (/> € S\ U for any j,
then b/) = zVe with z(/) € S\ U from equation (16))

= u(b,d,t,,,)v,(7) (from equations (14))

(Continues)
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= u(b,a,;)u(t,,,)v,(5) (by Lemma 4.2, since if any ¢!/, € S\ U for any j,
then b)) = 2z with (/) € S\ U from equation (16))
= v(b,a,,)u(t,,,)v,(5) (since U satisfies (10))
= 0y(ba5,) vy (Bidy;)u(t;.1)v,(5;)  (from equation (15))
= vl(&Zi)UZ(Bi&Zi)u({i+l)v2(yi)
(since all variables of v, are replaced from U)
= v,(a,,)v,(5,)v,(5;) v, (@5, )u(t;4,)  (by Result 5, since b = z(Vc(?
and z{’ € §\ U from equation (16))
= v,(d,,)vy(b,7,d,;)u(t,,,) (byResult$,since b’ = z{Nc"
and z{" € §\ U from equation (16))
= v,(d,,)v,(§,d3)u(2,,,) (from equation (19))
= v,(7,d,;) v,(7:d,,)u(t,,,) (since all variables of v, are replaced from U)
= v(j'}ia2i)u(;i+l)

= 0(F180)u(1) (fi<m—1)

= v(j)m&Zm) = U(J)’
as required. This completes the proof of Theorem 4.1.
A restatement of Theorem 4.1 in terms of permutative varieties gives us a
generalization of the author’s result [10, Theorem 4.1] which states that all commuta-
tive varieties are closed under epis.

THEOREM 4.4. Let ¥ be the permutative variety defined by a permutation identity (1)
such that i, + n[i; # 1]. Then all subvarieties of the variety ¥ are closed under epis.

Call an identity u = v epimorphically stable or stable under epis if all identities in
conjunction with it are preserved under epis, by which we mean that if U is any
semigroup satisfying ¥ = v and S is any epimorphic extension of U, then S satisfies
all the identities satisfied by U.

In his paper [6], P. M. Higgins has provided an example showing that some
permuation identities are not epimorphically stable, namely those permutation
identities which are consequences of the normality identity xyzw = xzyw. Theorem
4.4 gives a sufficient condition for permutation identities to be epimorphically
stable. So as a joint result, in the following theorem, we determine all the permuta-
tion identities which are epimorphically stable.

THEOREM 4.5. A permutation identity (1) is epimorphically stable if and only if i, # n
ori; # 1.

PROPOSITION 4.6. Let U and S be any semigroups with U a subsemigroup of S and
such that Domg(U) = S. Take any d € S\ U. Let (2) be a zigzag of length m over U
with value d with y, € S\ U ( for example if the zigzag is of shortest possible length).
If U satisfies any nontrivial permutation identity, then d* = aktf for any positive
integer k.
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PROOF. We have
d* = (agty)" = agty(agt)* 2agt; (ifk —2=0,(a,) *=1)
= y,a,t,(ayt,)* *ayt, (from equations (2))
= y,a,ak 1tk (by Result 5, since y,, 1, € S\ U)
= agtf,
as required.
In general, for any nontrivial permutation identity /, say, we have not yet been

able to determine completely which identities are preserved under epis in conjunc-
tion with I. However, we have the following

THEOREM 4.7. Let equation (1) be any nontrivial permutation identity. Then a
nontrivial semigroup identity I (one which is not satisfied by the class of all semigroups)
is preserved under epis in conjunction with (1) if I has one of the following forms:

(i) at least one side of I has no repeated variable;
(i) x? =y%p,q>0;
(i) xxh - X =xixd - x],p,g>0,121;
(iv) x?y9 = y'x’,p,q,r,5 > 0;

V) x?=0,p>0;
(vi) xPy1=10,p,q > 0.

REMARK 4. We regard u = 0 (for some nonempty word u) as a semigroup identity:
We define it to mean the conjunction of the two identities uy = u = yu (in each case
y is a variable not occurring in the word u).

PRrOOF. Take any semigroups U and S with U epimorphically embedded in S, and
such that U (and hence, S, by Theorem 3.1) satisfies the identity (1). We show that
each of the identities (i) to (vi) satisfied by U is also satisfied by S.

(i) That S satisfies (i), if U does, follows from [11, Theorem 3.5].

(ii) Assume U satisfies (ii). Then for all u, v € U we have u? = v? = v? = uf.

Take any x, y € S. We assume first that x € S\ U. By Result 1, we may let (2) be
a zigzag of shortest possible length m over U with value x. Then

x? = aft? (by Proposition 4.6 and equations (2))
= (y,a2)’tf (sincey,a? = y,a,a, = aga, € U)
= y?a’(a;t,)” (by Result 6, sincey,, 1, € S\ U)
= y’d(a,t,)” (from equations (2))
= ylalaft? (by Result 6, sincey,, 1, € S\ U)

= yfalaft? (since af = af)

— PP P P
= )Y14193,, 1

= (y,4,a3,_1tm)" (by Result 6, sincey,, t,, € S\ U)

= (y,a,a,,,)" (from equations (2))

= (a,a,,,)” =u? forallue U.




EPIMORPHICALLY CLOSED PERMUTATIVE VARIETIES 523

Hence x? = u”? for all x € S, u € U and likewise y?=u9forally € Sand u € U.
Therefore x? = u? = u9 = y9, as required.

(iii) Assume U satisfies (iii). For k = 1,2,...,/, consider the word x{x5 --- x% of
length kp. We shall prove that S satisfies (iii) by induction on the length of these
words, assuming that the remaining elements x, , ,,...,x, € U.

First for k = 0, the equation (iii) is satisfied vacuously. So assume next that (iii) is
true for all x,, x,,...,x,_; € S and all x;, x;,,...,x;, € U. We prove from this
assumption that (iii) is true for all x;, x,,...,x, € Sand for all x, ., x;,5,...,X, €
U. We need not consider the case where x, € U, so we assume that x, € S\ U. As
x, € S\ U and Domg(U) = S, by Result 1, we may let (2) be a zigzag of shortest
possible length m over U with value x,. Assume first that 1 < k < /. Then

xxh oo X =xExb - dbfxf,, -+ x! (by Proposition 4.6 and equations (2))
= xbxb .- aﬁbﬂ’i e b}l)Pt{Pz
(by Result 4 and Proposition 4.6
for some b{) ,,...,bV € U,and t, € S\ U,
sincet; € S\ U, and where z = x2, | - - x¥)
=xfx3 .-+ afbNq --- bP9;Pz (by the inductive hypothesis)
= wyfafb()q --- b’z (by Result 6 and equations (2), since y,, t]
€ S\ U, and where w = x{ ---xJ_;)
= wy{"cil)"cgl)q . C;ﬁll‘{a{’bill"l e b}l)qt{Pz
(by Result 4 for some c¢{,...,c, € U,
andy; € S\ U, sincey, € S\ U)

= wy[9cP - cPrapbM? - -+ bMP1;Pz  (since U satisfies (iii))
= wy[9c(VP - cPraftPz (since tf = bPA - -+ bP1P)

= wy(9cV? - - cPhaftsz  (by Result 6 and equations (2),
since y{, t;,t, €S\ U)

= wyd c{m VP (M DPgl 1Pz (for some {7 D,. .. ,c{m"TV e U
andy, ;€ S\U)
= wyd_jc{m= VP ... mIDrgp  pIP - b{™¢/Pz

(by Result 4 and Proposition 4.6 for some b{™,...,b{™ € U,
and 1), € S\ U, sincet,, € S\U)
= wy,:,"_lc{'"_l)" c/(ﬁfl)qagm—zbfc':)lq bf'")"t,’,{’z

(since U satisfies (iii))

— 3 ——t -1 -
= WyrZ—laZm—zbﬂ)lq s bfmapz (Smcey'Z—l =y efmhe ... cmTD9)

(Continues)
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= wyda§, _b\7 -+ b{™9tPz (by Result 6 and equations (2),
Sinceym—l’ Ym>s t:n < S\ U)

= wy9c{™9 - - c¢{™da], _ 1b§<':)1q ce b('")qt”’z

(by Result 4 and Proposition 4.6 for some c¢{™,...,c{™, € U,
and y, € S\ U, sincey, € S\ U)

= wy dc{™P ... c{mPal _ B\™P ... b{™PPz  (since U satisfies (iii))
= wy’qc('n)p s C 'f pagm_lt'l:'z (Slnce b;(’_':_)lp . b;m)pt:r{’ = tf:')
= wy"’c(’”“’ e C,(('n)l agmxkﬂ <o xp

(by Result 6 and equations (2),

since y,,, t,, € S\ U, and since z = x|, ~~~x‘;’)

= wy'dc{™9 ... cfmfal xi., -+ x7 (since U satisfies (iii))

= 4 xd oo x? (s 190(mg ... (M) =

=wylaj, X} 1 X; (smceym"c1 q c{md = )’,?,)

=xf - xf_xixf,, -+ x7 (byProposition 4.6 and equations (2)),

as required.

Finally, a proof in the remaining cases, namely when k =1 or k =/, can be
obtained from the proof above by making the following conventions:

First when k = 1,

(i) the word w = 1,

(ii) the word ¢{77 - - ¢Dh = ¢(D9 ... ¢V =1andy/ =y, fori=1,2,...,m

Dually when k = /,

(i) the word z = 1,

(ii) the word b{2% --- b{P = b9 .. b{V9=1and 1, =t,fori=1,2,...,m

(iv) Assume U satisfies (iv) and take any x, y € S. First we consider the case
where x € S\ U and y € U (the case where x € U and y € S\ U is symmetric to
this case).

Since x € S\ U, we may let (2), by Result 1, be a zigzag for x of shortest possible
length m over U. Now

xPy9 = yPab y9 (by Proposition 4.6 and equations (2))
= yFy'aj, (since U satisfies (iv))
=y?y"(a,,_it,)° (from equations (2))
=yPy'as, ,t5 (byResult6,sincey,,t,, € S\U)
= yFab, _,y9: (since U satisfies (iv))
= (y,,82,_1) v, (by Result 6, since y,,, 1,, € S\ U)
= (y,,_183,,-2)" v (from equations (2))
=yb_,dy, _,y%;, (byResult6,sincey, 1, € S\U)

=yl _,y'as, _,t5 (since U satisfies (iv))

(Continues)
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=y?_y"(ayn_stn)’ (byResult6,sincey, ,,t, € S\U)

= ¥h-1¥"(a2,_3t,,—1)"  (from equations (2))

= yfy"(ait)’

= y?y’ajt; (by Result 6, sincey,,t, € S\ U)

= yfafyt; (since U satisfies (iv))

= (y,a,)"y% (by Result 6, since y,, t, € S\ U)

= afy?; (from equations (2))

= y'ajt; (since U satisfies (iv))

=y’x* (by Proposition 4.6 and equations (2)),

as required.
So we assume next that x, y € S\ U. By Result 1, we may let (2) be a zigzag for x
of shortest possible length m over U. Then
xPy?=yPal y? (by Proposition 4.6 and equations (2))

= yPy'a3, (by the first part of the proof)
=y2y"(ay,_1t,)° (from equations (2))
=y2y'a3, _,t:, (byResult6,sincey,,t,, € S\U)
= yPa3, _,y:, (by the first part of the proof)
= (y,@s,_1)" v, (byResult6,sincey,, t, € S\U)
= (Y_182m_2)" v, (from equations (2))
=y?_,a3,_,y; (byResult6,sincey, _,,1,€ S\U)
=yP_,y'a5, _,t5, (by the first part of the proof)
=y?_y(aym_at,)’ (byResult6,sincey, _,,t,€ S\ U)

=5 1 (@2m-3tm-1)’ ‘ (from equations (2))

= yfy"(aty)’
= yfy'ait; (by Result 6, sincey,,t; € S\ U)
= yfafy‘; (by the first part of the proof)

(»,8,)"y%; (by Result 6, since y;, 1, € S\ U)

afy’: (from equations (2))
= y'ast; (by the first part of the proof)
= y'x* (by Proposition 4.6 and equations (2)),

as required. This completes the proof of part (iv).
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(v) Assume U satisfies x” = 0 and take any x, y € S; we show that x?y = yx? =
x?.
Case (a). x € S\ U, y € U. Let (2), by Result 1, be a zigzag for x over U of
shortest possible length m. Then
xPy = yPa% y (by Proposition 4.6 and equations (2))
=yPaf  (since U satisfies (v))
= x?.
Similarly yx? = x?, as required.
Case (b). x € U, y € S\ U. Since y € S\ U, we may let (2), by Result 1, be a
zigzag of length m over U with value y. Then
xPy = xPayt; = xPayt; (since U satisfies (v))
= x%a,t, (from equations (2))

= x%a,t, (since U satisfies (v))

= xpaZm - ltm
= x%a,, = x? (since U satisfies (v)).
Similarly yx? = x?, as required.
Case (¢). x, y € S\ U. By Result 1, let (2) be a zigzag for x of shortest possible
length m over U. Then
xPy = yPa? y (by Proposition 4.6 and equations (2))
= yFPab  (from case (b) above)
= x?.
Similarly yx? = x?, are required.
(vi) Assume U satisfies (vi) and take any x, y, z € S; we prove that xPyiz =
zxPy9 = xPyi.
Case (a). x,y € U,z € S\ U. Let (2), by Result 1, be a zigzag of shortest possible
length m over U with value z. Then

xPy9z = xPy9ayt, (from equations (2))

xPyfat, (since U satisfies (vi))

xPy9a,t, (from equations (2))

= x"y%ay, st
= xPy9a,, _,t,, (since U satisfies (vi))
= x?y%a,,, (from equations (2))

= xPy9 (since U satisfies (vi)).

By a similar argument we can show easily that zx?y? = x?y4. Therefore x?y?z =
zxPy9 = xPy9, as required.




EPIMORPHICALLY CLOSED PERMUTATIVE VARIETIES 527

Case (b). y,z€ U, x € S\ U. As x € S\ U, by Result 1, we may let (2) be a
zigzag of shortest possible length m over U with value x. Then

xPy9z = yPaf y%z (by Proposition 4.6 and equations (2))
= yPaf y9 (since U satisfies (vi))
= x?y9 (by Proposition 4.6 and equations (2)).
Also
zx?y9 = zy2a% y? (by Proposition 4.6 and equations (2))
= yPaf y? (from Case (a))
= xPy? (by Proposition 4.6 and equations (2)).

Therefore x?y9z = zx?y9 = xPy9, as required.

Case (¢). x,z € U,y € S\ U. This case is dual to Case (b).

Case (d). z € U, x,y € S\ U. Let (2), by Result 1, be a zigzag of shortest possible
length m over U with value x. Now

x?y9z = yFaf y9z (by Proposition 4.6 and equations (2))

yka®, y? (from Case (c))

xPy? (by Proposition 4.6 and equations (2)).

Since y € S\ U, by Result 1, we may let y = b,z, = s,b,z; be the first two lines
of a zigzag for y with by, b, € U, and s,, z; € S\ U. Now

zxPy? = zyFa¥ bizf (by Proposition 4.6 and equations (2))
= yPab, biz{ (from Case (a))
= x?y? (by Proposition 4.6 and equations (2)).

Therefore x?y9z = zxPy9 = x?y49, as required.

Case (¢). ye U, x,zeS\Uorxe U y,zeS\Uor x,y,z€ S\ U. As
z € S\ U, by Result 1, we may let (2) be a zigzag of length m over U with value z.
Now

x?y9z = x?y9ayt; (from equations (2))
= xPy%a,t, (from Cases (b), (c) and (d))

= x?y%a,t, (from equations (2))

= xPyla,,, it,
= x?yfa,, _,t,, (from Cases (b), (c) and (d))
= xPy‘%a,, (from equations (2))
= x?y? (from Case (d)).
The dual argument shows that zx?y? = x?y9. Therefore

xl’yqz = pryq = xpyq,

as required, thus completing the proof of Theorem 4.7.
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