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DIFFERENTIAL OPERATORS AND THETA SERIES

BY

SOLOMON FRIEDBERG1

Abstract. Let / be a modular form on a congruence subgroup of SL(2, Z)—not

necessarily holomorphic, but an eigenfunction of the weight k Casimir operator.

Maass introduced differential operators (coming from the complexified universal

enveloping algebra) which raise and lower by 2 the weight of such a form and shift

the eigenvalue. Here we introduce differential operators on hyperbolic 3 space

analogous to the Maass operators. These change by 2 the weight of a modular form

for an imaginary quadratic field.

THEOREM. The Maass operators and the hyperbolic space operators are intertwined

by the imaginary quadratic Doi-Naganuma (base change) lifting. That is, the following

diagram is commutative:

hyperbolic space

F «• F
operators

Lift       I I       Lift.
Maass

f ** f
operators

Using similar techniques for the dual pair (SL(2, R), SO(2,1)), we give a simple

proof that the Shimura correspondences preserve holomorphicity (for weight > 5/2)

and an explanation for this property directly in terms of the theta series (Weil

representation) integral kernel. We also establish similar results for the real quadratic

Doi-Naganuma lifting.

Introduction. Correspondences between automorphic forms on certain groups,

obtained by integrating against theta series, have been much studied. For example,

when one of the groups in question is SL(2, U), various cases have been examined by

Niwa [9] and Shintani [13] (the Shimura correspondence), Kudla [7] (the real

quadratic Doi-Naganuma map), and Asai [1] and myself [3, 4] (the imaginary

quadratic Doi-Naganuma map). In this paper we shall study the interplay between

these correspondences and certain differential operators on spaces of automorphic

forms. This interplay provides a natural explanation for the holomorphicity proper-

ties of the Shimura and real quadratic Doi-Naganuma maps, and, in the imaginary

quadratic Doi-Naganuma case, leads to the study of certain new differential opera-

tors on hyperbolic 3-space, which seem to us to be of independent interest.
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To explain our results and the paper's organization more fully, let us introduce the

following notation. By a modular form of weight k (an integer) and eigenvalue X on a

subgroup T of SL(2, Z), we shall mean a function/from the upper half plane

$= (zeC|Im(z) > 0}

to C such that:

(1) f(yz) = (cz + d)kf(z) for all y = (;*) in Y;

(2) f(z) has (at worst) polynomial growth at each cusp (in the

usual sense); and

(3) ß*'Y=0,

where

(cf. §1). We write the space of such/as {T, k, X}. There are differential operators

D£ and D¿, introduced by Maass [8], which act on [T, k, X), raising and lowering

(respectively) the weight of a modular form by 2, and shifting its eigenvalue. We

shall study the action of these operators on the theta correspondences; first, their

basic properties are given in §1.

Similarly, a modular form on a subgroup of finite index in SL(2, £)K), K an

imaginary quadratic field, is a vector valued function with domain the hyperbolic

upper half space

I?1 = { x + yk quaternions|x eC,0<yeR)

(the homogeneous space of SL(2, C)) satisfying properties analogous to (l)-(3)

above. Since imaginary quadratic modular forms are less widely known, they are

defined more fully and discussed in §2 below.

Our first objective is to write down and study analogues of the Maass operators

for these forms. This is accomplished in §3, which is independent of any theta series

considerations. Namely, we introduce hyperbolic 3-space differential operators %k,

%\, which act on the modular forms for an imaginary quadratic field, raising and

lowering (respectively) their weight k by 2. We give these operators both in terms of

the universal enveloping algebra of the Lie algebra of SL(2, C), and by explicit

formulas; these explicit formulas are more complicated than those for D£ and Dj.,

since the maximal compact SU(2, C) of SL(2, C) is not abelian. Though most of the

properties of our operators are similar to those of the classical Maass operators,

there are certain exceptions; for example, %\ is either injective or identically zero

(k > 2) [for fixed eigenvalues], while for D{ this is not true.

The remaining four sections relate theta series and the differential operators

above. We focus first on the imaginary quadratic Doi-Naganuma (base change)

lifting 8. The construction of this map, which associates to a modular form / in

{T(N), k, X} and a fixed imaginary quadratic field K a modular form 2/for K, is

(0.1)
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outlined in §4. Then, in §5, we show

Theorem. The Maass operators and the hyperbolic upper half space operators are

intertwined by the imaginary quadratic Doi-Naganuma (base change) lifting. More

precisely, iffis a modular form of weight k and eigenvalue X, then

(a) ©5*®5*-a(»/) - »(Di/) fork>l,

(b) ®2*-4®2*-2(S/) = c(*,A)S(D»/)    fork>3,

where c(k, X) is a constant (given below).

In a certain sense, (b) gives the imaginary quadratic analogue to the statement that

holomorphic modular forms lift to holomorphic Hilbert modular forms under the real

quadratic Doi-Naganuma lifting.

We also define a map S _ x pulling modular forms for an imaginary quadratic field

K down to modular forms for Q, and show that it too commutes with the action of

these operators. Schematically, we have the commutativity of the diagram

hyperbolic space

F ~ F
differential operators

--_    ^    V._i \-^3w.__i

Maass operators

/ - /

We give two proofs of this result. One looks at L-series and seems suitable to other

base change contexts; the second studies the theta functions used as integral kernels

to produce the lifting (cf. §4 and [3, 4]). In this second proof, the diagrams are then

consequences of a fundamental identity, which states roughly that the action of

Dj.+2 on the £ X cj1 theta kernel is the same as that of £>2fc®2/v-2- Also, as an

application, we show how to give the Doi-Naganuma lift of a (Maass) form of

weight zero using the theta kernel. This case was previously problematic, since the

kernel must be of weight at least one.

§6 concerns the Shimura correspondence between modular forms of half integral

and integral weight. We establish a result similar to the theorem above: applying one

Maass operator on the half integral side corresponds to applying two to the related

integral weight modular form. A related result may be found in Shimura [12, §2,6].

As an immediate corollary, we deduce the holomorphicity of the Shimura lift in

weight greater than 3/2 (cf. Shimura [11], Cipra [2]). In §7 we give similar results for

the real quadratic Doi-Naganuma lifting, and a similar corollary.

Using the isogenies

SO(3,C) = SL(2,C),       SO(4,C) = SL(2,C) X SL(2,C),

one may give Shimura type maps and quadratic liftings of imaginary quadratic

modular forms as well (cf. [5]). It is reasonable to ask if results similar to those of

§§6 and 7, but using instead the hyperbolic 3-space differential operators, hold in

these cases. They indeed do; however, we shall postpone the discussion of this to a

future paper.

We remark that theta series correspondences have been studied from the point of

view of representation theory by Howe, Rallis, Waldspurger, and others. Also, the
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existence of raising and lowering operators has been examined in the Hermitian case

by M. Harris [6]. However, his methods do not apply to eg»1, since it is non-Hermi-

tian, nor do they give explicit differential operators formulas. We have chosen to

work in a somewhat classical language—using modular forms instead of automor-

phic representations, and Whittaker functions instead of Whittaker models—so that

we may be fully precise; accordingly, we are able to give exact formulas for the

differential operators, and for their action on the Fourier coefficients of modular

forms. We hope that this approach will be of interest.

1. Modular forms and Maass operators on the upper half plane. In this section we

recall some properties of (nonholomorphic) modular forms and Maass operators.

For a function/(z) on ¿p and a matrix y = (a ¿) in GL+(2, U), we define the weight

k slash operator

(f \[y]k)(z) = (dety)k/2(cz + dykf(yz),

where, as usual, yz = (az + b)(cz + d)~l. The differential operator — ilk'(2k~k )/4,

defined in the introduction, corresponds to the Casimir operator

I/o   l\/0   o\ + l/o   0W0   1\ + Wl     o \2
2 Vo    0/U    0/     2\1    0J\0    0)     4\0     -lj

of the universal enveloping algebra of sl(2, R), and hence fl is invariant: for all y in

GL+(2, U) and twice continuously differentiable/: § -» C,

ak'x(f\[y]k) = (ak*f)\[y]k-

The shape of the Fourier expansion of a modular form/in {T, k, X] is determined

by the differential equation &k,xf = 0. Namely, for e = ±1, y > 0, k, X as above, set

œ=[(k-l)2 + 4X}1/2/2,

y«1-*»/2-"],    w # o,

"<**•X)      \y«-Wloèy,    . = 0,

and

W(ey,k,X)=y-k/2Wek/2j2y),

where Wek/2 u is a Whittaker function (cf. [4]). Also, put

e[w] = exp(277-/H').

Then one has

Proposition 1.1. Let f be in [T(N), k, X). Then f has a Fourier expansion at the

cusp corresponding to A in SL(2,2) given by

/lU-'l.W - c,(o)y«-»/^"i + cW(y. k. a)



DIFFERENTIAL OPERATORS AND THETA SERIES 573

For such an /, and a (fixed) A in SL(2, Z), let

00 00

L+(s,f)= I»)"~s,    L_(s,f)=  \ZcA(-n)n-
n=\ n=\

The Maass operators are defined by the formulas

Oí ~i(*¿+ *-').   Dl--i(^|

(so that in this case the lowering operator is independent of k). Their basic

properties are given by

Proposition 1.2. (1) The Maass operators change weights by 2. That is, for any

continuously differentiablef: $Q -» C and y in GL+(2, U),

(2)     (Di/)|[Y]t+a-DJ(/|[y]t)    and   (D¿/) |[7]*_2 = D>(/|[y]fc).

D[Û*-X = ß*+2'x-*Dj[   and   Dlkük-X - 0*-2,x+*-2D¿.

772î« íAe Maass operators take eigenfunctions of the Casimir operator to eigen}functions.

(3) ß*-A = "2d}+2d; + x-k = t>-2d;_2dI + a.

(4) D£ gives a linear map of {T(N),k,X} into {T(N),k + 2,X-k} which is

bijective for X # k, and takes cusp forms to cusp forms.

Y)k gives a linear map of {T(N), k,X} into {T(N), k — 2, X + k — 2} which is

bijective for X # 0, and takes cusp forms to cusp forms.

(5) The Maass operators shift Dirichlet series. Let f be in {T( N ), k, X}. Then

L+(s,D[f) = [2/N]L+(s-l,f).

L_(s,D[f) = [2(k - X)/N]L_(s - 1,/).

L+(»,D¿/) = [-NX/(2tt2)]l+(s + 1,/).

L_{s,Olf)=[N/(2tr2)]L_(s+l,f).

(6) D£ and Dk take Hecke eigenforms to Hecke eigenforms.

The proofs of the propositions above may be found in Maass [8] and Roelcke [10]

(although with slightly different normalizations of the slash operator).

In addition, let

</,*> = / f(z)gjl)yk-2dxdy
JT(N)\$

denote the Petersson inner product of two functions / and g of weight k on T(N)

(with the usual assumptions on their growth to insure convergence).

Proposition 1.3. Suppose f and g are continuously differentiable functions on §

satisfying f\ [y]k+2 = / and g\ [y]k = g for all y in T(N). Suppose further that fg,

/D^g, and gD]k+2fare rapidly decreasing (in the sense of (2.16) of [12]). Then

(Di+2/,g) = (/,D;g).
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This proposition is a special case of a result in Shimura [12]; it follows alterna-

tively from an application of Green's theorem.

Finally, we recall the various Lie group formulations of D£ and D¿. There is a

one-to-one correspondence between functions /: H -> C satisfying (0.1) (1) and

functions/*: SL(2,R) -» C such that

f*(ygic(0)) = eikef*(g)    forallyer

and

K(0) = (cosö„     sinö.)eSO(2),
\ - sin 6    coso I

given by

f*(g) = (ci + d)-kf(g(i)),

f(z) = (ci + d)kf*(g)   whereg=(^    *)andg(i)

The elements

z.

,1(1     i\   and   Tr-Ui I

2\i     -1) 2\-i     -1,

of sl(2, C), the complexification of the (real) Lie algebra sl(2, U), satisfy

AdK(e)X=e2'eX,       AdK(6)Y=e-2WY.

A short computation then shows that, regarded as differential operators in the usual

way (cf. also §2), the actions of X and Y on a function/* give ( — it times) the actions

of D£ and D[ on the corresponding /, respectively. Equivalently, let V be an

(sl(2, U), SO(2))-module with weight vector v of weight k with respect to the action

of k0 ( = skew symmetric elements of sl(2, U)). Complexify to get an sl(2, C)-module.

Then, when it is nonzero, Xv (respectively Yv) is a weight vector of weight k + 2

(respectively k — 2).

2. Modular forms on an imaginary quadratic field. Let K be an imaginary quadratic

field. The notion of a modular form on K is based upon the action of SL(2, C) on ip1

by linear fractional transformation, taking representations of SU(2, C) into account.

In this section we give these representations and the corresponding invariant Casimir

operators explicitly, define modular forms on K, and describe their Fourier expan-

sions. For proofs of the results here, see Friedberg [4].

For n > 1, let

<<■ »).-'((!)«■ (;)■-» - (:)*■)•

where ' denotes the transpose. Define the «-fold symmetric power representation,

an(g\ for g in SL(2,C), by

((«   b)<g)n = on(g)(a   b)„.

Equivalently, an(g) =Vn('g) where

(a   b):=l(a"   a"~lb    ■■■    b")    and    ((a   b) lg)*„ = r„(g)(a   b)*„.



DIFFERENTIAL OPERATORS AND THETA SERIES 575

The an(g) give irreducible (n + l)-dimensional representations of SU(2, C), and

nnr.(:)T*'W(!r.t!r.-.(:n
is unitary for each k in SU(2,C). In addition, we set o0(g) = 1 and E„ = the n X n

identity.

Further, denote by p the additive and multiplicative representation of the quatern-

ions given by

p(x+Jk) = (; 7)

for x, y in C, and for g = (acd) in SL(2,C), z in £\ put J(g, z) = p(cz + d).

Consider F: &1 -* Ck+1 (k > 0) a vector valued function on the hyperbolic upper

half space, and y in SL(2, C). Then we define a slash operator of weight k by

(F\\[y]k)(z) = ok(j(y,z))-1F(yz).

Let T c SL(2, C) be a group. Similarly to the SL(2, R) case, we have

Proposition 2.1. There is a one-to-one correspondence between

{F: C1 -» Ck + 1\F\\[y]k = F for ally <= Y)

and

{F*:  SL(2,C) -» C* + 1|F*(Ygrc) = ok(\)F*(g) for ally e V, k e SU(2,C)}

gi'ue« (by

F(z) = at(./(g,k)).F*(g)    w«eregk = z,

F*(g) = ok(j(g,k)ylF(gk).

To define a modular form it is necessary to introduce slash-invariant differential

operators analogous to ß. Write z in §x as z = x + yk (x in C,y > 0 in R). We set

vj//

/2/t- 1

0^ 1

+ H 2*

k(k-2)

+
(k-l)(k-3)
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and obtain 4rk from ^k by replacing (x, x) by ( — x, —x) and then conjugating by

ok(xl). Also, recall that an element A of sl(2,C) gives rise to two differential

operators LA, L'A:

(LAf)(g) ^f(gexp(tA)) j.f(gexv(tA)),    (L'Af)(g) =
i /—o

We have

Proposition 2.2. (1) Let F: &1 -» Ck+1 be twice continuously differentiable. Then

(*kF)\\[g)k = *k(F\\[g]k),       {*kF)\\[g]k-*k(F\\[g]k)

for all g in SL(2,C).

(2) ty and y are the differential operators in the center of the universal enveloping

algebra o/sl(2, C) arising via L, L' (respectively) from

i/o i)/o o\ + i(o 0\f0 1\ + 1(1  o
2 Vo O/ll 0       2 1 O/lo 0       4lo  -1

(0    l\/0    0

lo   o/u   0
(using the correspondence of Proposition 2.1), and they generate this center.

Thus it is reasonable to make (compare Weil [14])

Definition 2.3. A generalized Hilbert modular form for K of weight k and

eigenvalues (X, X') on a group T c SL(2, £sK) is a real analytic function F: íq1 —> C* + 1

satisfying:

(l)F\\[y]k = FforallyinT;

(2) F has (at worst) polynomial growth at each cusp;
(3)ykF=XF,ykF= X'F.

We write the space of such forms {{T, k,(X, X')}}.

Note. In contrast to the SL(2, R) case described in §1, we take the eigenvalues here

to be precisely those for the Casimir operators—there is no shift by (2k — k2)/4.

Let / be an ideal of K, D%: be the inverse different, and

r°(/)={(c     J)eSL(2,Oj|*<E/

(more generally, we could use any subgroup of SL(2, €>K) of finite index).

Proposition 2.4. Let F be a modular form of weight k and eigenvalues (A, A') on a

group T°(I). Then the Fourier expansion ofF(z) = x(Fk(z),.. .,F0(z)) is given by

Fj{') = I        ( A)'c(r)ô7(4^|r|, X, \')e[tr(rx)]
re(/DK)-'-0Vn;

+ C1Jy^^/2 + C2Jq(y,j,\)

with

y-,-<4A + i)^     X*-l/4,
q{y, j, a) = ,

l/-ylog^, \=-l/4

The Fourier expansion has a similar shape at the other cusps.
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Here the Qj(y, X, X') are sums of A'-Bessel functions which can be computed by

using the methods of [4]; for example,

(2.1)

Q0(y,X,X')=yK,

Qx(y, X, X') = -i(kyK' + {k2/2 + 2(X - X')}k),

QAy,Kr)=-(k2){yK''+(k + 4-^l-i)K'

+y-^{^^-^r^-2(X'-X)2+(X'-X)(k2-2k + 2)\

where K = K^r^(y). (We shall find these exphcit formulas for the first three

components useful in the computations below.) We also set

L(s,F,j) = zZ(^¡)JC(r)(rr)-\

the twisted Dirichlet series for F, withy in Z.

Lastly, given F: 3?1 -» C*+1, we define an operator ik by

(tkF)(z) = ok[\    I)f(-z).

Proposition 2.5. ik is a bijective involution from the space of modular forms of

weight k and eigenvalues (X, X') on r°(7) to the space of modular forms of weight k

and eigenvalues (X', X) on r°(7), and takes cusp forms to cusp forms.

3. Differential operators on hyperbolic 3-space. With the notation continuing as

above, we can now give the definition and basic properties of the hyperbolic raising

and lowering operators.

Definition 3.1. The hyperbolic raising operator of weight k > 0, ®j¿, is the

(k + 3) X (k + 1) matrix differential operator with entries

(2>£)i
1

2W-1
3r + ky~\

A'

= 7,

= 7 + 1,

= 7 + 2

(/ = l,...,k + 3;j = l,...,k + 1) and all other entries zero.

The hyperbolic lowering operator of weight k > 2, ®J., is the (k — 1) X (k + 1)

matrix differential operator with entries

^-^k

k-2\(   k

Ï-1/1/-1
i

y%,

(y\-y\

\ (*:i)U\r>^
(i = l,...,k - l;j = l,...,k + 1) and all other entries zero.

i =J,

'=7-2
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The binomial coefficients arise in the definition of 35 ¿ because ak is not unitary.

Let T be a subgroup of SL(2, D^) (of finite index). Put

Then we have

Proposition 3.2. (1) The hyperbolic differential operators change weights by 2. That

is, for any continuously differentiable F: ¿p1 -> Ck + 1 and y in SL(2,C),

(2) (®kf)\\[y]k+2 = ®rk(f\\[y]k),     (®y)\\[y]k-2 = ®i(f\\[y]k).

35^* = ¥*+235£   ana7   ©£** = **+235£.

FAus ¡Ae hyperbolic differential operators take eigenfunctions of the Casimir operators

to eigenfunctions.

(3) 25£_235i = Ci>, **,¥*),       35i+2S5£ = Ci> + 2,**,**).

7« particular, when F is in {{T, k, (X, X')}}, 35£_235^F and %\+2%kF are multiples

ofF.
(4) 35£ g/'ues a //«ear map o/ {{T, A:, (X, X')}} into {{T, k + 2, (X, A')}} which is

infective for k > 0, has as kernel only the constant functions when k = 0, is surjective

when C(k + 2, A, X') =£ 0, and takes cusp forms to cusp forms.

35¿ gwes a //hear map of {{T, k, (A, A')}} into {{T, k - 2, (A, A')}} wA/cA is

infective and surjective when C(k, A, A') # 0, zero wAe« C(/c, A, A') = 0 (except when

k = 2, A = A' = 0, wAe« its image is contained in C), and takes cusp forms to cusp

forms.

In particular,

dimc{{r,A,(A,A')}}=dimc{{r,/c + 2,(A,A')}}

when C(k + 2, A, A') # 0.

(5) Let F be in {{T, k, (X, X')}}. Then, with the notation of Proposition 2.4, if F has

Fourier coefficients C(r), then 35 £ F has Fourier coefficients C(r)f, and 35 J. F has

Fourier coefficients C(k, A, A')C(r)/r. Thus

L(s,%lF,j) = L(s-\,F,j-l),

L{s, ®kF, j) = C(k, A, X')L(s + \, F, j + 1),

and the L-series at other cusps are similarly shifted.

(6) 35 £ and 35 J. take Hecke eigenforms to Hecke eigenforms.

(7) »t + 2®*-®*«*. **-2*>* - *>*«*•

Proof. It is sufficient to check (1) on the generators

(j .)• (; .-.)■ - (ï v)
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of SL(2, C), since (F ||[Yi]*) IUY2]* = F ll[riV2J*- ̂ 0T tne ^Ist two tyPes °f genera-

tors, the statement is easily verified. As for the (x ~¿) case, observe that for any/:

MA-*"1))
3,(/(---1))

= a2(-z"1)

/-(3,/)(-^1)'

(3,/K-z-1)

(3,/K-z-1)

The desired result then follows from an explicit computation.

The equalities of parts (2) and (3) may be verified by straightforward calculations.

As for (4), the injectivity of 35k, k > 0, and its 'almost injectivity' when k = 0, is

visible from its definition. The rest of the assertions there are then easily deduced

from (1), (2), and (3). Alternatively, we may prove that %\ is either injective or zero

(or into C in the one special case) as follows. Given F in {{T, k, (A, A')}}, we

calculate the bottom entry in the column vector 35kF, using the explicit determina-

tion (2.1) of the Qj of Proposition 2.4 for/ = 0,1,2. One sees that

(3.1) y yQo(y) -(j) 1yQi(y) + j{Qi(y) -yQ[(y)} /(A,)2

C(k,X,X')Q0(y).

Since 35 [ F is zero if (and only if) any component is zero, this gives the result.

Part (5) is similar. To find the Fourier coefficients of 35\F and 35kF, one

computes the Fourier expansions of their bottom entries; the result for 35k then

follows at once from its definition, and that for 35 J. from (3.1). Next, if L(s, F, j)

has an Euler product, so do its shifts by +1/2; this implies (6). Alternatively, (6)

follows from (1). And lastly, (7) is a consequence of the precise shapes of 35 £ and 35 \

—replacing x by — x and then conjugating by ak(x ¿) leaves them unchanged.

Remark. In comparing Propositions 1.2 and 3.2, the reader will note slight

differences in the behavior of the Casimir eigenvalues under the differential opera-

tors. This is accounted for by the shift in eigenvalue built into the definition of ß,

but not into ^ and ^ (cf. Note, §2).

As a first application of the raising and lowering operators, we see from part (5)

above that the L-series L(s, F, j), multiplied by suitable gamma factors, has a

meromorphic continuation and functional equation, for each j < k in Z (and for

/ > k as well, when the lowering operators are nonzero), whose behavior can be read

off directly from the Fourier expansion of F. In particular, this gives a simple

alternate way to get the properties of the Dirichlet series <&a(s) of Asai [1, §3.6] for

all a.

Next, to define the Petersson inner product on $*, let Mk be the (k + 1) X (k + 1)

diagonal matrix

*-M(snr-"(ir
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(Mk is needed because ak is not unitary). Then given two functions F, G: §x -» C* + 1

of weight k with respect to the group T (i.e., satisfying Definition 2.3(1), (2)), one a

cusp form, we put

((F,G))= [       xF(z)MkG(z)yk^dxdxdy.
yr\§1

This is well defined, for, as one can easily verify, y~3 dx dx dy is an invariant volume

element, and, for any y = (ac d) in T,

2 A
lF(yz)MkG(yz) = \cz + d\    lF(z)MkG(z) .

Proposition 3.3. Let F and G be functions of weights k + 2 and k, respectively,

with respect to the group T. Suppose that at least one of F, G vanishes exponentially at

each cusp ofT\ÍQl. Then

((35'+2F,G» = ((F,®^>>.

Proof. This follows from the Divergence Theorem, for the integrals over pieces of

the boundary of T \ ¿p1 which are T-equivalent cancel. The estimates needed because

of cusps are similar to those in Shimura [12, §2].

Recall that given X = (q¿) in sl(2,C), there are differential operators Lx, L'x on

C°°(SL(2,C)), and similarly for Y = (? °), H = (\_°) (see §2). We define the matrix

differential operators (35[)*, (35J.)*, of dimensions (k + 3) X (k + 1), (k - 1) X (k

+ 1), respectively, by the formulas

Lv,

((*>i)V
1

27r/:rT

' =7,

i-j + 1,

i =7 + 2,

■(?-"?)(

((®L)f)..—M

k-2
i- 1

k
i- 1

i

k
i + 1

T '^X>

'-'Hi

i =7>

«' =7 1,

L'Y,     i=j-2,

where /' and/ run through the same values as in Definition 3.1 and all other entries

are zero.

Proposition 3.4. (35£)* and (35^)* are the differential operators on functions F*:

SL(2,C) -» C*""1 which correspond to 35£, 35[ on F: g1 -» C* + 1 via Proposition 2.1.

That is,

(35^F)S=(350S(F*),        (3)lF)tt=(3)>)*(F*).

Proof. One sees this by a straightforward calculation, whose details we omit.

Next, we note that, in terms of the f-types of a representation, an SL(2, C) raising

operator is natural. This was pointed out to me by Professor S. Kudla, and I thank
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him warmly for it. Let (ir,V) be a representation of SL(2,C). The induced

representation ff * of g0 = sl(2, C) extends to a representation of the complexified hie

algebra

8 = 0o®rC = 0o® JGo-

Here g0 ffi Jq0 is the complexification of a Cartan decomposition; J reflects the

integrable complex structure of the underlying manifold SL(2, C). Set A = X + Y,

B = X - Y,h= JH, S = A - UB, and take a highest weight vector v in V of weight

n with respect to

i = (Mh + UJA + UB) ®RC.

Then an easy computation shows that 7t^(S)v is a highest weight vector of weight

n + 2 with respect to f. In fact, this construction goes through more generally—in

any representation of the complexification of a real semisimple Lie algebra of

compact type considered as a real Lie algebra, there will be raising operators on the

f-types.

We close this section with the remark that we can define modular forms and

raising and lowering operators for negative weight in hyperbolic space as well.

Observe that in the SL(2, R) case, f(z) is in {A, k, X}, A c SL(2, Z), if and only if

ykf( — z) is in { A, —k, X - k). In our case it is natural to consider an F: ¿p1 -+ C*+1,

such that

F(yz) = ak(tJ(y,z))~1F(z)    for all y in T(c SL(2, DK)),

with appropriate growth conditions and differential equations, to be a modular form

of weight — k ( < 0) on T. With this notion, one sees that given G of weight k on T, k

any integer, then

(invfcG)(z)=A|*|(j     _°1)ö(-z)

is of weight —k. As for raising and lowering operators, we give them on forms F of

weight — k < 0 by

%lk(F) = inv,_2(35i(inv_,F))        (-k < -l),

35L,(F) = inv,+2(35Uinv_,F));

this is analogous to the SL(2, R) case. The results above then carry over to negative

weights as well with the obvious modifications.

4. The imaginary quadratic Doi-Naganuma lifting. Fix an imaginary quadratic field

K. In this section we describe the Doi-Naganuma (base change) map ß for the

extension K/Q, taking modular forms for Q to forms for K, and also the map ß_,

pulling forms for K down to those for Q. We give S and C_, explicitly as integration

against an ^ X §: theta series, which is constructed using an (indefinite) quadratic

form of type (3,1) naturally attached to K. This construction of the lifting Ö, which

is discussed in full detail in Friedberg [4], will be used in the next section in our

proof of Theorem 5.1; an alternative construction, using the trace formula, may be

found in the works of Saito, Shintani, and Langlands.
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Let 33 denote the real 4-dimensional vector space

33 = {Xe M(2,C)\lX= X},

and let Q be the quadratic form of type (3,1) on 33 defined by

Q[X] = -2detA-.

SL(2, C) acts on 33 via Xs = lgXg. The majorants of Q are the positive definite

quadratic forms

RnX] = ti{(X*)2)

for g in SL(2, C). Q and Rg will enter into the definition of the theta series. Next, we

fix an ideal I of K and nonzero integers M, P, and consider the lattice

S = {(7    ¿)eSB|"»eJliZ,/>ePZ,rejJ.

Following Asai [1], we introduce the spherical harmonic polynomials of degree

ik- 1,

(4.1) n*..((7    ;)) = (/c-l)!l(« + iS)!-1y!-12-^«L<«>(2rr)i/y(m-p),

where a runs over integers with |a| < k - 1, L and H are Laguerre and Hermite

polynomials, respectively (normalized as in [4, p. 487]), and the sum is over

nonnegative integers ß  and y  such that a + 2ß + y = k — 1  and  a + ß > 0.

Finally, pick Fin g*, the g-dual of g.

Then the theta function of concern is defined by

(4.2) 0kJz,V,g,%)=yV2 L **,„((*- V)g)e[±(xQ + iyR')[X- V]],

e(k)(z,v,g,\})=í(0kil.k,...,ek¡k_1)

with z = x + iy in § and g in SL(2,C). Set -7) = discrim(Ä:), Nx = Nx(%) =

l.c.m.(MP, D ■ Norm(7)), X-o(«) = (~L>/n), where ( — ) is the Kronecker symbol,

and

G(S)= {geSL(2,C)|gs=g}.

The properties of this theta series are summarized in

Proposition 4.1. (1) For alia = (acd) in T0(NX),

«*.«(*> àV, g)\[o]k = x-D(d)6kJz, V, g).

(2) For all k in SU(2, C) and y in G( g),

6(k)(z, V, ygK) = a2k_2(\)6(k)(z, V, g).

(3) *9kJz, V, g) = WkJz, V, g) = -Sik^-^/\Jz, V, g).

(We have dropped the g to shorten the notation.) For the proofs, see Friedberg [3,

41.
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We define S and 2_x by integrating against 0(ky First, though, we sum over

choices of the translation variable V. Let <¡>' be a character of some subgroup G'(g)

of (finite index in) G(g), S a finite subset of g* such that S mod g is fixed (as a set)

by G'(g), and <t>: S mod g -» C be such that

W) = <t>'(y-l)<t>(V)

for all FinSandyin(?'(g).

Example. Let

*-((: 5))-«-<*>•
where x is a Dirichlet character mod MP (not necessarily primitive), and

G'(S) - {(*    bd) e G(g)|6 e P/} = G(g) n r°(P7).

Then if we set

*-{(•/' ;)l.(«/i«)"} -♦((■/' °))=xx-»,

the above conditions hold.

Put

(4.3) 0w(z, g, g, S, *) =  £ *(K)0(/t)(z, g, F, g).

(Mercifully, we shall often shorten the notation to 0(k)(z, g) below.) Note that

*<*)(*• 8'g) = *'(*')«<*)(*. g)    for all g' in G'(g).

Finally, let / be a modular form of weight k ^ 1 and eigenvalue A on a group

r(7V), a cusp form if k = 1. Pick g, 5, <f> as above, so that #(jt)(z, g, g, 5, <¡» is T(N)

slash-invariant (for example, A^g) | N is sufficient, but weaker conditions may do).

Definition 4.2. FAe Doi-Naganuma lift off is given by the Petersson inner product

off with 6:

(S/)Ï(S) = <W*. S.S. $.*)>/(*)>>    (o/),-t((8/)î-*.-..(8/)î-i)-

The Petersson inner product makes sense here by Proposition 4.1(1). As above, we

let S/be the function on $x corresponding to (S/)* on SL(2,C) by Propositions 2.1

and 4.1(2).

Theorem 4.3. ß/ is a modular form for K of weight 2k — 2, and eigenvalue

X + (k2 - 2k)/4 with respect to both * and 4% on the group G'(g) 3 TSL(2C ¿N).

More precisely,

(8/) ll[rk-2 = *'(y)(S/)   for ally in G'(g).

Proof. This follows at once from Propositions 4.1(2) and (3), 1.2(3) and 1.3, and

some computations.

Remark. We shall extend the lift to the case of weight less than or equal to zero in

§5 below.
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The actual computation of the integral which gives the lift is discussed in detail in

Friedberg [3, 4]. For simplicity in stating the answer, we give here only the case

corresponding to the example above. Then we have

Theorem 4.4. Let f be a cusp form of weight k on T0(N) with character \ and

eigenvalue X. Then the Doi-Naganuma lift, corresponding to the lattice g with P = 1,

M = N, is given by

(X) /    -   \ a

(üf)a(x+yk)=Y,tk-2(xx_D)(t)        E £     Irf'b^-rr)
'=i r€rV-o11 "

■qH(t\r\y, A)e[tr(rtx)]

vvAere

= X>(«)W(2<nny, k, X)e[nx],

XX-D " a (not necessarily primitive) character mod N, and qw is a certain sum of

K-Bessel functions.

In particular, if f is a Hecke eigenform, so is ß/, and one Dirichlet series for the

lifted form is (up to a constant)

L(s, ß/, k - 1) = I WJn^zZ ~blyJx-D(n)n-s.

(Here, to get this Dirichlet series, we must sum over ideal classes if the class

number of K is greater than 1; see [4] for details.)

Lastly, we define in a similar way the map ß_l5 given a modular form F(zx) for K

of weight 2 k — 2 and eigenvalues both X + (k2 — 2k)/A on a group G'(g) as

above, with F a cusp form (cf. [4, Definition 2.4]) if k = 1. Let 0(k)(z, zx) be the

function on § X §' induced from 0(k)(z, g) by Proposition 2.1.

Definition 4.5. The pull down of F to a modular form for Q is given by

(Q_xF)(z)=((e(k)(z,zx),F(zx))).

This is analogous to the map studied by Shintani for the dual pair (SL(2, R),

SO(2,1)) in [13].

Proposition 4.6. ß_xF is a modular form of weight k and eigenvalue X on T(N).

The proof is similar to that of Theorem 4.3.

In the case of the example above, if

F\\[y]2k-2=(xX-D)(d'd7)F   forallY=(",'    J)inG'(g),

then

(ß-i^)|[°L = x(</)(ß-iP)    for alia =(»    *} in T0(NX).

0
N
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5. Differential operators and the imaginary quadratic Doi-Naganuma lifting. Fix a

choice of lattice g, and S, o> as in §4 above, and modular forms/for Q and F for K

of the appropriate levels. Also, let

c(k, X) = (-lo*2)-1!2*" 2)~\2k2 4)"1(* - 1)2(* - 2)2<4X + 2k - 3)-

In this section we prove

Theorem 5.1. (1) Let f be a cusp form for Q of weight k and eigenvalue X. Then

(a) ©5*®2*-2(»/) - »(!>{/) fork>l,

(b) 352,_4352yt_2(ß/) = c(/c,A)ß(D[/)    fork > 3.

(2) Let F be a cusp form for K of weight 2 k — 2 and eigenvalues X +

(k2 -2k)/A for both *, *. Then

(a) ß_,(352*352,_2F) = c(A: + 2,X-A:)D;(ß-iF)    for k > 1,

(b) ß-i(®12jt-4®2jt-2^) = Di(2-i^) fork ^3.

In fact, these equalities hold for non cusp forms as well, as long as the integrals

defining both sides converge.

Notice that, as an immediate consequence of (l)(b) and the injectivity of ß on

Hecke eigenforms, c(k, X) is never zero (for A in the discrete spectrum). By contrast,

when A = 0, both sides of (l)(b) are identically zero (cf. Proposition 3.2 and

Theorem 4.4).

First proof of part 1 (for cusp forms). This part follows from the computa-

tion of the lift ß given in Theorem 4.4, and the calculation of the actions of the

differential operators given in Propositions 1.2(5) and 3.2(5) (in the case of a more

general lattice and form than that treated by Theorem 4.4, we must use Theorem 4.1

of [4] instead). The key observation here is that the operators Dr and D1 shift

Dirichlet series by 1, while 35r and 3)1 shift by 1/2 (in a suitable sense). Since the

Dirichlet series before and after lift are related, this gives the theorem. We can thus

expect a similar result in any GL(2) base change situation. We omit the details of

this calculation.

Second proof (parts 1 and 2). We shall obtain Theorem 5.1 by looking directly

at the theta kernel. Philosophically speaking, properties of the Doi-Naganuma lifting

ought to be fully explicable in terms of this theta kernel without needing to make the

computation whose result is expressed by Theorem 4.4. The desired explanation is

provided by

Theorem 5.2.

(a) D>+20(,+2)(z, g) = (352J*(S)2,_2)*Ö(,)(z, g),

(b) (352,+2)V2)(z, g) = ¿^2 (®2*-2)*D£0(/t)(z, g)

for all integers k > 1.
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Observe that part (a) implies parts (l)(a) and (2)(b) of Theorem 5.1 at once, by the

adjointness properties given in Propositions 1.3 and 3.3. Parts (l)(b) and (2)(a)

follow by applying (352A)* to both sides of (b), for the raising and lowering

operators combine to give invariant differential operators which act as constants on

ß(D]./) and F We shall give a similar explanation for the commutativity of the

differential operators with the Shimura and real quadratic Doi-Naganuma lifts

below.

Proof of Theorem 5.2. We must do an explicit calculation, using (4.1). The

action of the Maass operators on the theta kernel is easy to compute. As for (35£)*

and (35i)*, pick X in 33, and embed C°°(33) in C°°(SL(2,C)) by associating to h in

C°°(33) the function hx(g) = h(Xg). Then using Proposition 3.4, one sees that the

operator (35^)* induces an operator (35^)*: C°°(33)*+1 -» C°°(33)k+i such that

[Q>l)$ah)x{8)-(S>l)*(hx(g))

for each Xin 33 and A in C°°(93)*+1; with the usual parametrization

33 =
m     r

f     Pi)

(35^)* is given by

((®Oo),

I    I    9 3
U87 + r8p/'

1

' =7,

3 3 3 3        .     .     ,
m--r—+ r—-p —,     i=j + l,

2H- 3m        dr        dr     r dp

d   x.     3
[dm ór

i-j + 2.

An operator (35k)*: Cco('i8)k+1 -> C00^)^1, given by

k-2\l    k
i- 1   \i- 1

11     3 3

m-7— + r

3 3
dm        or        dr        dp J(<»*»«-i^r (î:î)(îr ;

dp)'

d

I =J,

i-7-1,

«=7-2,

is similarly defined. However, ö(/t)(z, g) is in the sum over A' in g* of the spaces

CXC^)2X~1. Thus, we can calculate both sides of (5.1) (a) and (b) directly from (4.1)

by using the formulas above. Comparing these calculations completes the proof

[notice that it suffices to check equality for only one component in each equation, by

the irreducibility of ak].

This proof may be summarized by saying that the spherical functions t]k a are built

out of the action of the differential operators; in essence, this is true because all

objects in (5.1) are canonical.

Remark. One can also derive part (b) of Theorem 5.2 from part (a) by applying

D£(352Ar+2)* to both sides, and then using Propositions 1.2, 3.2, and 4.1.
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We close this section by noting an application of the differential operators and

Theorem 5.1.

Application 5.3. We can use the theta kernel to lift modular forms/of weight 0,

even though 6,k) is defined only for weight k > 1. Namely, we must apply D¿,

raising the weight to 2, lift (by integrating against 0(2)), and then reduce the weight

twice, using 35 J,352, to get a form of weight -2. Note that the L-series before and

after lift will thus correspond in the usual base change way. (In fact, weights 2 and

— 2 are equivalent, as indicated in §3.) By Theorem 5.1, if we apply D2D¿ before

lifting, to get a form of weight 4, integrate against 0(4), and then apply 35Ô35235435g,

we get (up to a constant) the same answer for the lifted form as by the procedure

above, and similarly if we raise more than twice before lifting. This procedure also

allows us to lift noncusp forms of weight one.

6. Differential operators and the Shimura correspondence. We consider next the

Shimura correspondence (Shimura [11], Shintani [13]), which gives a map between

modular forms of weight k/2 (k > 1 odd) and forms of weight k — 1. For conveni-

ence, we shall treat modular forms only over Q; the extension to forms over an

arbitrary totally real field is immediate. Our results are (a) theorems analogous to

those of §5 and, as an immediate corollary of these, (b) a simple proof that, for

k > 3, holomorphic forms go to holomorphic forms under the Shimura maps. This

corollary thus gives an easy alternative to the growth estimate and Poincaré series

methods of Niwa [9] and Cipra [2], previously used to prove holomorphicity.

First, we briefly recall the theta kernel approach to the Shimura correspondence,

based upon the reductive dual pair (SL(2, R), SO(2,1)) (see Niwa [9], Shintani [13]).

Let

be a real 3-dimensional vector space, with SL(2, R) action given by Xg = fgXg. Then,

using the quadratic form of type (2,1) on 330,

Q[X] = -2det X,

with majorants given for g in SL(2, R) by

Rg[X] = ti{(X*)2),

and a suitable spherical function, (2i(xx + ix2 - x3))(K~1)/2, analogous to {t)k,a},

one can form a theta kernel 0(K/2)(z, z') on § X §, of weight k/2 in the first

variable, and k — 1 in the second variable. This construction is similar to (4.2), (4.3)

above. Taking the Petersson inner product with 6 in one of the variables gives the

Shimura correspondences, with L-series before and after lift related (cf. Shimura

[11], Shintani [13]). We denote these maps by <S (k/2 to k - 1) and <S_X (k - 1 to

23.=     X =
x2/2

x2/2
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k/2). Put CjXk/2, A) = Att-2(3 - k - 4Ä). Then, with / and F forms of the ap-

propriate levels, we have

Theorem 6.1. (1) Let f be a cusp form of weight k/2 and eigenvalue X. Then

(a) D;+1D;_1(@/) = @(DKr/2/)   forK>l.

(b) D'_3D^_1(@/) = c1(k/2,A)@(d>/2/)   forK>3.

(2) Let F be a cusp form of weight k — 1 and eigenvalue AX. Then

(a) @_1(Dr+1DKr_1F) = c1(K/2 + 2,Ä-K/2)DKr/2(@_1F)   forK>l.

(b) @_1(D^_3D^1F) = D'/2(S_1F)   /0rK>3.

As with Theorem 5.1, the result holds for non cusp forms too, provided both sides

are defined.
As an immediate corollary, we get

Corollary 6.2. FAe Shimura correspondences @, @_1 take holomorphic forms to

holomorphic forms (k > 3).

Proof. This follows from parts (l)(b) and (2)(b) of Theorem 6.1, since the

lowering operator D1 annihilates holomorphic forms.

We remark that this result can be extended to the case k = 3 as well. It is false for

k = 1 (Cipra [2]).

Lastly, we give two theta kernel identities from which Theorem 6.1 may be

immediately deduced. For convenience, let us write differential operators on the

second variable with primes.

Theorem 6.3. Let k be an odd positive integer. Then

(1) D¿/2+20(1(/2+2)(z, z') = {Hl+x)'(WK_x)'eiK/2)(z, z').

(2) 16n-2D'K/2Q'^-^%/2)(z, z') = {Dl+x)'(Dl+l)'d,K/2 + 2)(z, z').

The proof is similar to that of Theorem 5.2. We suppress the details, except to

note that on C°°(330) the raising operator (Dr)' (resp. the lowering operator (D1)')

corresponds to the action of

(6.1) - \TT

_3_ _     _3_ .   ■(      ,      \JLi.ííl íj_     J_
Xl dxx     *3 3x3 + 'Ul + X'} 3x2       2\ dxx + 3x3

(resp.  the complex conjugate of (6.1)),  under  the embedding of  C°°(a30) in

C°°(SL(2, R)) given by hx(g) = h(X*).

7. Differential operators and the real quadratic Doi-Naganuma lifting. Using a

quadratic form of type (2,2), one can construct a theta series 6,k^(z, zx, z2) on

§ X § X ip, similar to those above, which gives the real quadratic Doi-Naganuma

lifting ßh. ßh assigns to a modular form/of weight k and eigenvalue A and a real

quadratic field K a Hilbert modular form ßR/ of weight (k, k) and eigenvalues

(A,X) for K (cf. Kudla [7] for the holomorphic case); there is also a map ß"1;

similar to ß _ x of §4. In this context, theorems like those of §§5 and 6 hold. Namely,

denote differential operators on the z, and z2 variables with superscripts (1) and <2).
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Then we have

Theorem 7.1. (1) Let f be a cusp form of weight k and eigenvalue X. Then

(a) (d;)(1)(D;)(2)(8R/) = ßR(D;/) fork > 0.

(b) (D>)(1)(ßR/) = (D[_2)(2)ß«(Di/)    fork>2.

(c) (Dlf(ßR/) = (DI_2)(1)ßR(D>/)    fork ^2.

(2) Let F be a Hilbert modular form of weight (k, k) and eigenvalues (X, X). Then

(a) ß«1((D^)(1)(Di)(2)F) = ^D^(ßR1F)    fork>0.
Tt

(b) S^^DíHdI^f) = Di(ß^P) fork > 2.

Corollary 7.2. FAe real quadratic Doi-Naganuma correspondences ßR, ßRx take

holomorphic forms to holomorphic forms (k > 2).

Theorem 7.3. Let k be a nonnegative integer. Then

(1)    &k+20(k+2)(z, zx, z2) = (DO(1)(D^)(2)í7(ít)(z, zx, z2).

(2)  {n\+2)me(k+2)(z, zx, z2) = (Dk)(2)Dkeik)(z, zx, z2).

(3)    (D¿+2)%+2)(*, zx, z2) = (D£)(1)D#fc)(z, zx, z2).

The proofs of these results are similar to those given above.
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