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AN APPLICATION OF FLOWS TO TIME SHIFT

AND TIME REVERSAL IN STOCHASTIC PROCESSES1

BY

E. B. DYNKIN

Abstract. A simple proposition (Theorem 1) on flows allows the investigation of

random time shift and time reversal in Markov processes without assuming any

regularity of paths. Theorem 5 is a generalization of Nagasawa's time reversal

theorem and Theorem 4 generalizes a recent result of Getoor and Glover.

1. Flows.

1.1. We consider a flow in a measurable space (fi, &) that is a family of

transformations 8t, t g R, such that Oß, = 6s+t for all s,(eR and {(t, w): 6tu G A)

g â?R x 38 for all A g &(3äR is the Borel a-algebra in R).

We put (0,Y)(u) = Y(0,u), for every function 7 and

(P6l)(A) = p(e,-1A),       A&áF,

P= f P6,dt,

for every measure P. We denote by sí the collection of all sets A g & such that

6/lA = A for all t g R. A function 7 is measurable with respect to the a-algebra j/if

and only if it is .^measurable and invariant under all transformations 6r Obviously

P(A) = 0 or + oo for all A es/. Nevertheless we prove

Theorem 1. If P is o-finite (over &), it determines uniquely the values P(A) for all

A G j*'.

1.2. As a tool we use stationary times. A stationary time t is a measurable mapping

from ñ to the extended real line [ — oo, + oo] such that 6,r = r — t for all t g R.

Suppose that ^"coincides with its completion with respect to the class of all

probability measures. Then the first hitting time of a set A g 3F,

tZ =inf{r:0,w eA),

and the last exit time from A,

Tj = sup{ t: 0,u g A}

are stationary times2 (the measurability follows from [5, Chapter 3, §1]).
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In general, every stationary time t is the first hitting time of { t < 0} and it is the

last exit time from { t > 0}.

We denote the indicator function for the set { t g R} by kt. Let p be a positive

Borel function on R such that fp(t) dt = 1. We put p(- oo) = p( + oo) = 0. We

note that 0,p(t) = p(r — t). Hence

Kr = fp(T-t)dt = fetP(r)dt

and, for every j/-measurable 7,

(1.1) PktY = PYJ e,p(r) dt = j Pe,(Yp(r)) = Pp(r)Y.

1.3. Suppose that there exists a strictly positive function F such that

/s e,Fdt   is P-integrable for some i g R.
-oo

Put

ra = uif{s: Fs> a),       a > 0.

Note that P{ra = - oo} = 0 and {ra = + oo} = {Fx < a). Hence KTa = lFx>a TI

P-a.s. asa|0. By (1.1),

(1.3) PY= lim PYp(ra).
alO

The restriction of measure P to s/can be recovered from P by formula (1.3). An

analogous formula can be written if

/ + 00
e,Fdt   is P-integrable for some 5 g R.

Both conditions (1.2) and (1.4) are satisfied if P is a-fini te.

1.4. Let t be a stationary time. For every function Z(u>) we denote by 0TZ the

function 7(co) defined by the formula

y(to) = |Z(W»)    ifT(«)eR,
10 otherwise.

It is clear that 7 is invariant and therefore formulas (1.1) and (1.3) are applicable to

7. We conclude

If Px and P2 are two measures on (Q, &) and if Px = P2 is a a-finite measure, then

PX6T = P20Tfor all stationary times t.

1.5. The definition of the measure P makes sense if an arbitrary locally compact

group G acts on (ß, J^) (the Lebesgue measure on R should be replaced by a left- or

right-invariant measure on G). Formula (1.1) and its proof remain valid if t is a

G-valued function defined on an invariant set ßT such that Ogr(u>) = r(to)g~1 for all

g g G. (We put kt = la and we set o(t) = 0 if t(ío) is not defined.)

However the construction in subsection 1.3 is not applicable if G # R. It remains

an open problem for which groups G Theorem 1 is true.
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2. Random time shift in Markov processes.

2.1. Let p(s, x; t, B) be a Markov transition function in (E, $). We put

pT,'(B) = / p(dx)p(s, x; t, B);        T/f(x) = f p(s, x; t, dy)f(y).

Suppose that a a-finite measure v, is given for every t g R. We say that v = { vt} is

an entrance rule if, for all B G S,

vsT,s(B) < v,(B)    and    v,Tt'(B)î p,(B)    assV-

v is an entrance rule at time r if vt = 0 for t < r and vsTts = vt for r < s < t.3 In an

analogous way, we define an entrance rule at time - oo. Every entrance rule has a

representation

(2.1) v= [ vra(dr)
•'[-oo, +00]

where vr is an entrance rule at time r. We note that a{ — oo} = 0if and only if

vsTts 10 as / T oo for some s (see [1, Formula (5.5)]).

A family h = {h', t G R} of positive ^-measurable functions is called an exit rule

if

T,sh'^hs   and    Tfh"\ hs   ast[s.

All concepts related to entrance rules have natural analogs for exit rules.

The following result is due to Kuznetsov [4]. Suppose that (E, <S) is a standard

Borel space and let an entrance rule ju and an exit rule h satisfy the condition

(2.2) V-t(h'= +oo) = 0   for allí.

Then there exists a stochastic process (A",, P£) on a random time interval (et, ß) such

that, for every t g R,

(2.3) Pï(cx <t,Xt<= dy, t<ß) = pt(dy)h'(y),

and for all tx < ■■■ < tn g R,

(2.4)
= Vh(dyi)p(ti, yx; t2, dy2) ■ ■ ■ p(tn_x, y„_x; tn, dy„)h'-(yn).

The measure P* is a-finite.

2.2. Suppose that a transition function p is stationary. Excessive measures and

functions can be characterized as entrance and exit rules independent of /. Let p be

an entrance rule. If the measure

p= ( p,dt
•'r

is a-finite, it is excessive. To every exit rule h there corresponds an excessive function

h= f h'dt.
•"o

3 In the literature, entrance rules at time 0 are called entrance laws.
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We assume that the process X,(u) can be chosen in such a way that there exists a

flow 0t, t G R, with the properties: 6,a = a - t,0,ß = ß - t and 9,XU = Xu+l.4

A random time shift of the process X, is defined on the space ßT={w: -oo<t

< + oo } by the formula

(2-5) Xt(u) = *T(w)+,(«).

Suppose that an entrance rule p and an exit rule h satisfy the conditions

(2.6) jü is a-finite and h < oo    jü-a.e.

Then the conditions of Kuznetsov's theorem are satisfied for three pairs (p, h),

(p, h) and (p,h) and therefore, the measures P£, P£ and P* are defined and a-finite.

We note that

ph  _   ph  _  ph
ß f ß '

By applying Theorem 1 and subsection 1.4, we get the following result:

Theorem 2. Measures P¿ and P* coincide on all invariant sets. If t is a stationary

time, then

(2.1) p¿eT = pfr.

The shift Xt of Xt defined by formula (2.5) has identical laws under P~ and P*.

3. Backward transition functions and duality. Theorem of Nagasawa and theorem of

Getoor and Glover.

3.1. Along with forward transition functions p(s, x; t, dy) we consider backward

transition functions q(s, dx; t, y). We say that a forward transition function/? and a

backward transition function q are m-related if

(3.1) ms(dx)p(s, x; t, dy) = q(s, dx; t, y)mt(dy)    forall.s<i.

It follows from this relation that m is an entrance rule for both p and q.

If g = {gt} is an exit rule for q, then (g ° m),(dx) = g,(x)m,(dx) is an entrance

rule for p, and all entrance rules for p which are absolutely continuous with respect

to m can be represented in this form.

To every statement on forward transition functions there corresponds a statement

on backward transition functions. The "backward" version of Kuznetsov's theorem

is as follows. Let v = {V} be an entrance rule and g = {g,} be an exit rule for a

backward transition function q. If

(3.2) v'(g,= +oo) = 0    for allí,

then there exists a stochastic process (Xt, Q"g) on a random time interval (a, ß) such

that, for every í g R,

(3.3) Qg(a <t,X,e dy, t < ß) = gt(y)v'(dy)

4(The o-algebra& in ß is generated by the sets {X, e B), t = R, B e é'.) Counterexamples show that

Theorems 2 through 5 are not true without this assumption.
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and, for all rx < ■ • • < i„ g R,

Qg(a<tx,Xiiedyx,...,Xlnedyn,tn<ß)

(3.4)
= gh(yi)<l(h> dyx; t2, y2) ■ ■ ■ q(t„_x, dyn_x; t„, y„)v'-(dyn).

The measure Q"g is a-finite.

Suppose that p and q are m-related and that h is an exit rule for p and g is an exit

rule for q. It follows from (3.3) and (3.4) that

(3-5) P^m = Qhg°m.

3.2. If a backward transition function q is stationary, then we write

qt(dx, y) = q(t, dx; 0, y),       t < 0.

If p and q are both stationary and if m, = m for all /, then the condition (3.1) can be

rewritten as follows

(3.6) m(dx)p,(x, dy) = q^,(dx, y)m(dy).

Suppose that ju. is an entrance rule for p, v is an entrance rule for q and let p and v

be a-finite and absolutely continuous with respect to m. The densities u = dp/dm

and v = dv/dm can be chosen to be ^-excessive and ^-excessive respectively. By

(3.5),

pv  _   pv _   pv        __  r\v°m _  r\v _   r\v

and Theorem 1 and subsection 1.4 imply

Theorem 3. Measures P¡¿ and Q"u coincide on all invariant sets. For every stationary

time t, P^6T = Q"U6T. The shifted process Xt = Xr+¡ has identical laws under P£ and

Ql-

We write (X„ P) = (X'n P') if stochastic processes (X„ P) and (X'„ P') have

identical laws (i.e., if they have the same finite-dimensional distributions).

3.3. Formula

(3.7) p,(x,dy) = q_,(dy,x)

determines a stationary forward transition function which is in weak duality with

p,(x, dy) in the sense of Getoor and Sharpe [3]. We note that (X_„ Q"*.) = (Xt, Pvu)

where an entrance rule v for p and an entrance rule v* for q are related by the

formula (v*)' = v_t. Analogously, (u*)t = u~'. We can assume without any substan-

tial loss of generality that there exists a measurable transformation r of the space

(fi, JÊ") such that Xt(ru) = X_,(o)). If t is a stationary time, then so is t*(«) =

— t(io). Theorem 3 implies

Theorem 4. Let stationary transition functions p andp be in weak duality relative to

m. Let p be an entrance rule for p and v be an entrance rule for p. Suppose that p. and v

are a-finite and absolutely continuous with respect to m. Let u and v be excessive

functions (for p and p respectively) such that p = u° m, v = v ° m. Then, for every

stationary time r, (Xr_„ P¿) = (XT, + t, >„").
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This is a generalization of a theorem of Getoor and Glover (see [2, Theorem (6.5)])

who have considered the situation when t = ß,

p, = p0Pt for t > 0,

v, = v0P, for t > 0,

H, = r, = 0    for t < 0.

In this situation ß* = a = 0 P„"-a.s. and (Xß_„ Pft = (X„ />„")• Moreover

u = d(p0G)/dm,       v = d(v0G)/dm

where

G = JT,dt,       G = jf,dt.

(Actually, in [2] the process X(ß_t)+ rather than Xß_t is considered and therefore

certain regularity conditions for paths are required.)

3.4. We say that a random time t is a renewal time for a Markov process (X„ P) if

(X,, P) where X, is defined by formula (2.5) has the same transition function as

(Xt, P). If (Xt, P) is a strong Markov process with a stationary transition function,

then every optional time is a renewal time.

Markov process (Xt, P") corresponding by Kuznetsov's theorem to a stationary

transition function p, an entrance rule v and an excessive function u has the

stationary transition function

p"(x, dy) = u(x)    p,(x,dy)u(y)    for 0 < u(x) < oo,

p"(x, B) = lB(x)    for u(x) = 0 or oo.

We call/?" the «-transform of p.

The following result is an immediate implication of Theorem 4:

Theorem 5. Let p, p, p, v, u, v have the same meaning as in Theorem 4. // a

stationary time t is a renewal time for (X„ P") then (XT_„ P") is a Markov process

with a stationary transition function p" (the v-transform ofp).

Theorem 5 is a generalization of Nagasawa's theorem [6].

4. A property of invariant measures.

4.1. Let P be an invariant measure for a flow 6,. For every positive measurable 7

we put

Y - f e,Ydt.
JR

We note that if t is a stationary time, then

(4.1) PktY = PYJ 6iP(t) dt = j P0,(0_Mt)) dt

= pf e_M^dt = PYP(T)

(cf. (1.1)).
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4.2. An invariant measure P is called dissipative if 7 < oo P-a.e. for every positive

P-integrable 7, and it is called conservative if 7 = 0 or oo P-a.e. for every positive

measurable 7. It is well known (see, e.g., [7, §V.5]) that every a-finite invariant

measure P can be represented as the sum of a dissipative measure Pd and a

conservative measure Pc which are mutually singular.

Theorem 6. Let P be a dissipative invariant measure. If Yx = Y2 P-a.e., then

PYX = PY2.

Indeed, let F be a strictly positive P-integrable function. Since F < oo P-a.e., the

condition (1.2) is satisfied and there exist stationary times ra such that kt î 1 as a |0.

By (4.1),

PYk = hmPYiP(Ta),       i = 1,2.
aj,0

4.3. Let P be an arbitrary a-finite invariant measure. There exists a partition of fi

into disjoint sets ßc and Ud such that Pc(®d) = P¿(^c) = 0. Let F be a P-integrable

function which is strictly positive on Qc and equal to 0 on üd. We have F = 0 or oo

Pc-a.e., F = 0 Pj-a-e. and therefore F = IF P-a.e. On the other hand, P(F) * P(2F)

if Pc # 0. Therefore the statement of Theorem 6 is true only if P is dissipative.

Remark. It follows from subsections 4.2 and 4.3 that a a-finite invariant measure

P is dissipative if and only if it satisfies condition (1.2) (or (1.4)).

4.4. A measure P^ corresponding, by Kuznetsov's theorem, to a stationary

transition function p, an excessive measure m and the exit rule h = 1 is invariant

with respect to the flow 0r It is dissipative if and only if Gf < oo, m-a.e. where G is

defined in subsection 3.3.
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