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BOUNDED HOMOTOPY EQUIVALENCES

OF HILBERT CUBE MANIFOLDS

BY

C. BRUCE HUGHES

Abstract. Let M and F be Hubert cube manifolds with F compact. The purpose of

this paper is to study homotopy equivalences/: M -» R"' X F which have bounded

control in the Redirection. Roughly, these homotopy equivalences form a semi-sim-

plicial complex #^4(Rm X F), the controlled Whitehead space. Using results about

approximate fibrations, #"^(Rm x F ) is related to the semi-simplicial complex of

bounded concordances on R"' X F. Then the homotopy groups of #^(Rm X F) are

computed in terms of the lower algebraic AT-theoretic functors K_i.

1. Introduction. Let F be a compact Hilbert cube manifold. We are interested in

homotopy equivalences /: M -» Rm X F which are controlled in the Redirection,

where M is also a Hilbert cube manifold. To say / is controlled in the Redirection

means that pf: M -» Rm is an approximate fibration, where p: Rm X F -* Rm is

projection. The collection of all such homotopy equivalences, which are additionally

given to be retractions onto the collared submanifold Rm X F of M, form the vertices

of a semi-simplicial complex ¿TA(Rm X F) (see §2 for the precise definition).

The main result of this paper is the computation of the homotopy groups of

WA(Rm X F) (see Corollary 1 below). In order to do this we relate WA(Rm X F) to

the semi-simplicial complex ^h(Rm X F) of bounded concordances on Rm X F. An

«-simplex of <ëb^Rm X F) is a homeomorphism

«:RmXPx[0,l] xA"-^rxFx[0,l] X A"

such that h is fiber preserving over A", «|(Rm X F X {0} X A") U (Rm X F X [0,1] X

3A") is the identity, and h is bounded (that is, there is a constant L > 0 such that ph

is L-close to/?, wherep is projection to Rm). We can now state our first result.

Theorem 1. There is a group isomorphism a: TrnWA(Rm Xf)-> rrn_xc€b(Rm X F)

for each m > 0, n > 1.

The proof of this theorem (which is given in §5), is based on a sharpened version

of the main result of [24] which shows how to. straighten out certain parameterized

families of approximate fibrations to be nearly like a product family. This sharpened

version is Theorem 2.3 in §2.
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The next result illustrates a further relationship between iTA(Rm X F) and

<#b(Rm X F).

Theorem 2. There is a group isomorphism ß: rrn(ëb(Rm+l X F) -> TrnWA(Rm X F)

for each m > 0, n > 0.

The proof of this theorem (which is given in §6) is based on a familiar method for

finding a Whitehead torsion invariant of a bounded concordance on M X R (see [1,

29 and 30]). In fact, the proof of Theorem 2 is motivated by [1].

Together, Theorems 1 and 2 reduce the study of Trnif/'A(Rm X F) for m > n to the

study of rr01P~A(Rm~" X F). In §4 we reinterpret a result of Chapman [8] to obtain

the following

Theorem 3. There is a group isomorphism

(Kx_m(ZTTx(F))     ifm>l,

TT01TA(Rm X F) = / K0(Zttx(F)) ifm = l,

\wh(ZTTx(F))        if m = 0.

Here Wh denotes the usual algebraically defined Whitehead group functor, K0 is

the reduced projective class group functor, and K_¡ (i > 0) denotes the lower

algebraic ^-theoretic functor of Bass [2] (see also Gersten [19]). As usual, Zttx(F) is

the integral group ring of the fundamental group of F. For calculations of K_¡ see [3,

4, and 5].

Combining Theorems 1, 2 and 3 we get the following corollary which is the main

result of this paper.

Corollary 1. There is a group isomorphism

' Kx^m+n(^i(F))     if0<n^m-2,

.      ¡KJZttJF)) ifn = m-l,
TT„WA(Rm XF»       °\    lV,   \\

|Wh(ZWl(F)) ifn = m,

\irH-m-^(F) ifn > m.

Here ^(F) denotes the semi-simplicial complex of concordances on F. In

addition, we also get the following expected Hilbert cube manifold version of the

Anderson-Hsiang result on bounded concordances [1, Theorem 3].

Corollary 2. There is a group isomorphism

(K2_m + n(Zrrx(F)) ifO < n < m - 3,

K0(Zttx(F)) ifn = m- 2,

Wh(Z77,(P)) ifn = m- 1,

^n-mV(F) ifn > m.

TTnVb(Rm X F) -

In [7 and 8] Chapman has studied controlled homotopy equivalences /: M -> E

from a Hilbert cube manifold M into the total space E of a locally trivial fiber

bundle/»: E -* B with compact Hilbert cube manifold fiber F and polyhedral base
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B. (See related work for finite-dimensional manifolds by Chapman [9] and Quinn

[27, 28].) The main problem is to decide when / can be approximated arbitrarily

closely by a homeomorphism (with the closeness measured in the base B). Theorem

3 of [8] says/can be so approximated provided ttx(F) is "nice enough." It is hoped

that the results of this paper on controlled homotopy equivalences into the trivial

bundle/?: R'xf^R™ can be used to obtain a general answer to this problem.

This paper is organized as follows. §2 contains the definition of iTA(Rm X F),

general preliminaries and the result on parameterized approximate fibrations men-

tioned above. §3 gives a geometric understanding of the homotopy relation in

¿TA(Rm X F). Also in §3, we define the torsion, for certain «-parameter families of

homotopy equivalences to Rm X F with only bounded control in the Redirection,

to be an element of TrnWA(Rm X F). In §4 we discuss the group structure of

TT0ifrA(Rm X F) and prove Theorem 3. The proofs of Theorems 1 and 2 are given in

§§5 and 6, respectively.

The author wishes to express his gratitude to T. A. Chapman for suggesting to him

that the main theorem of [24] could be used to obtain the results of this paper.

2. Preliminaries. In this section the spaces WA(Rm X F) are defined. The key

property of parametrized families of approximation fibrations needed for the

constructions in the sequel is established in Theorem 2.3.

We begin with some notation. The Hilbert cube is denoted by Q and a Hilbert

cube manifold or Q-manifold is a separable metric space which is locally homeomor-

phic to Q. The reader should consult [6] for the basic machinery of g-manifolds

including the notion of Z-sets. Throughout this paper F will denote a compact

ö-manifold, Rm euclidean w-space, and A" the standard «-simplex with combina-

torial boundary 3A" consisting of the faces 30A", StA",... ,3„A". If m or n is 0, then

Rm or A" will denote a point.

We will often encounter fiber preserving (f.p.) maps and almost always these will

be maps which preserve the obvious fibers over A". Specifically, if p: X -» A", a:

7 -» A" and /: X -* 7 are maps, then / is f.p. if of = p. Often the maps p and a will

be understood to be some natural projections. The map p will almost always denote

projection to Rm or Rm X A", depending on the context. The space Rm is given the

metric induced by the norm ||x|| = max{|x1|,...,|xm|}. For fiber preserving, or

sliced, g-manifold results (including the notion of sliced Z-sets) see [12 and 13].

A map is proper if the inverse image of every compact set is compact. To say a

map is a bundle means that the map is the projection map of a locally trivial fiber

bundle.

The maps which will make up the space ifrA{Rm X F) are defined as follows. Let

p: M -* A" be a bundle with g-manifold fiber such that Rm X F X A" is a closed

subset of M and the inclusion Rm X F X A" -* M is f.p. If e > 0 and /: M -> Rm X

F X A" is an f.p. proper retraction, then /is said to be an f.p. p~1(e)-sdr provided

there exists an f.p. homotopy F: M X [0,1] -> M such that F0 = id, Fx = f, Ft\Rm X

F X A" = id for 0 < t < 1, and the diameter of pf{F({x) X [0,1])} is less than e for

each x in M. If/is an f.p. p~x(e)-sdr for some (possibly large) e > 0, then/is an f.p.

bounded sdr.
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The space iTA(Rm X F) is defined as a semi-simplicial complex and the reader is

referred to [26] for information about semi-simplicial topology. A typical «-simplex

of JTA(Rm X F) consists of the equivalence class of a map /: M -> Rm X F X A",

where there is a bundle p: M -* A" with g-manifold fiber, M contains Rm X F X A"

as a sliced Z-set, and / is an f.p. p'1(e)-sdr for every e > 0. Another such map /':

M' -» Rm X F X A" is equivalent to / if there exists an f.p. homeomorphism «:

M — M' such that/'« = /and «|Rm X F X A" = id.

The face and degeneracy operations in iTA{Rm X F) are induced by the standard

operations on A". It follows immediately from the definitions that these operations

are well defined.

The bundle p: M -> A" and the shced Z-embedding R"xFxi"->M will

always be understood without further mention whenever a representative/: M -» Rm

X F X A" of an «-simplex of WA(Rm X F) is given.

The following lemma gives an alternative way of recognizing when a map

represents an element of ifAÇR1" X F). First we need some more definitions. If a is

an open cover of 7, then a proper map /: X -» 7 is said to be an a-fibration if for all

maps F: Z X [0,1] -> 7 and g: Z -» X for which fg = F0, there is a map G:

Z X [0,1] -» X such that G0 = g and fG is a-close to F If e > 0, then we also use e

to denote the open cover of 7 by balls of diameter e. Thus, we speak of e-fibrations.

A map /: X -* Y between ANRs is an approximate fibration provided it is an

a-fibration for every open cover a of 7 This notion was introduced in [14]. If /:

IxA"^ 7 X A" is an f.p. map, then /is an approximate fibration if and only if/:

XX {r}-> 7 X {r} is an approximate fibration for each t in A". This follows from

[15]. See [23] for the f.p. lifting property of an f.p. approximate fibration.

Lemma 2.1. For every e > 0 there exists a 8 = 8(e, m, «) > 0 such that if p:

M -» A" is an ANR bundle, M contains Rm X F X A", the inclusion R"XFxA"->M

is f.p., f: M^R'XFXA" is an f.p. sdr, and pf: M-^R-xA" is an f.p.

8-fibration, then fis anf.p.p~l(e)-sdr.

Conversely, if' fis an f.p. p~1(e)-sdr, then pf: M -» Rm is an e-fibration for each t in

A".

Proof. If pf were a Hurewicz fibration, then this would follow from Dold's proof

that a fiber preserving homotopy equivalence between two Hurewicz fibrations is a

fiber homotopy equivalence [16]. Just as in [8, Proposition 2.3] we note that Dold's

proof can be adapted to the present situation by using only the approximate lifting

property of pf. Note that 8 depends on m and « as well as e because we need to

deduce that/?/has an f.p. approximate lifting property (see [23, Theorem 2.4]).

The converse is easily verified.   ■

The following corollary follows immediately from Lemma 2.1 and the definition

of iTA(Rm X F).

Corollary 2.2. // p: M -» A" is a bundle with Q-manifold fiber and M comtains

Rm X F X A" as a sliced Z-set, then a map f: M -> Rm X F X A" represents an

n-simplex of itrA(Rm X F) if and only if f is an f.p. sdr and pf: M -» Rm X A" is an

approximate fibration.    ■
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The next theorem is an improvement of the main result of [24] in the special case

when the base is euclidean space. This theorem describes an important property of

parametrized families of approximate fibrations. This property can be summarized

by saying that these families can be straightened out to be nearly like a product

family.

Theorem 2.3. Let M be a Q-manifold, q: M X A" X [0,1] -> Rm X A" X [0,1] an

approximate fibration which is f.p. over A" X [0,1], and let e > 0. Then there exists an

f.p. homeomorphism iî:MxA'X[0,l]->MxA"X[0,l] such that

(i) H\M X A" X {0} = id;

(ii)qH\M X {s) X {t) is e-close to q\M X {s} X {0} for each (s, t) in A" X [0,1].

Moreover, there exists a 8 = 8(e, m, n) > 0 such that if we are additionally given an

f.p. homeomorphism G: M X 3A" X [0,1] -* M X 3A" X [0,1] with the properties that

G\M X 3A" X {0} = id and that gG\M X {s} X {t} is 8-close to q\M X {s} X {0}

for each (s, t) in 3A" X [0,1], then we may additionally conclude that

(ni) H\Mx 3A"X[0,1] = G.

Furthermore, if we are additionally given that M contains Rm X F as a Z-set, q\:

Rm X F X A" X [0,1] -» Rm X A" X [0,1] if projection, and G\Rm X F X 3A" X [0,1]

= id, then we may additionally conclude that

(iv) H\Rm X F X A" X [0,1] = id.

Proof. In order to save space we assume that the reader is familiar with the proof

of the main theorem in [24].

Let g:MxA"^R"xA" be defined by g(x, s) = q(x, s,0). Then g X id[01] is

f.p. homotopic to qrel M X A" X {0}. This homotopy can be approximately lifted in

order to obtain an f.p. map /:MxA"X[0,l]->¥xA*X [0,1] such that f\M X

A" X {0} = id and (g X id)/ is close to q. Moreover, if we have the additional

hypotheses of the theorem, then we can assume that/|Af X 3A" X [0,1] = G~l and

that /|Rm X F X A" X [0,1] = id.

Now the problem is to approximate / by a homeomorphism. Specifically, we show

that / is f.p. homotopic rel(M X A" X {0}) U (M X 3A" X [0,1]) to a homeomor-

phism h: M X A" X [0,1] -» M X A" X [0,1] by a homotopy which is small when

projected to R™ X A" X [0,1] by g X id. By sliced Z-set unknotting we may further

assume that «|Rm X F X A" X [0,1J =/|. Then H = «~x will be the desired homeo-

morphism.

By following the proof of Theorem 3.1 in [24] we-obtain an f.p. map h:

M X A" X [0,1] -» M X A" X [0,1] such that h is a homeomorphism over

g-^B? X A") x[0,l]

and/is f.p. homotopic to hrd(M X A" X {0}) U (M X 3A" X [0,1]) by a homotopy

which is small when projected to Rm X A" X [0,1] by g X id. (>Ve use B™ to denote

the m-cell [-r, r]m in Rm.) It should be noted that the wrapping up construction in

[24] is avoided here since the base is already Rm. Thus we are only using that part of

the proof of Theorem 3.1 in [24] which follows Assertion 3.2.

The final step is to use an infinite expanding trick to produce the homeomorphism

« promised above from the map h. First, notice that by a small modification of h we
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can assume that there is a neighborhood N of (A" X {0}) U (3A" X [0,1]) in A" X

[0,1] such that h: M X N ^> M X N isa homeomorphism.

Let 0: Rm -» Rm be a radially defined homeomorphism such that 0|Pi" = id,

0(P6m) = B2, and 0 is supported on B™. Then 0 induces an f.p. homeomorphism

0: Rm X A" X [0,1]_-» Rm X A" X [0,1] such that 0|(Rm X A" X {0}) U (Rm X 3An

X [0,1]) = id and 0, = 0 for t e (A" X [0,1])\iV. By the parametrized engulfing

theorem in [23, Theorem 4.3] there are f.p. homeomorphisms 0': M X A" X [0,1] -*

M X A" X [0,1] for i = 1, 2 such that 0'|(M X A" X {0}) U (M X 3A" X [0,1]) = id,

q®1 is close to €>q, (g X id)02 is close to 0(g X id),

01 = id    onq-l(B?X A"x[0,l]),

and

02 = id   ong-1(51"xA")x[0,l].

Then

hx = (Ö2)"1*©1: Af X A"X[0,1] -> M X A"x[0,l]

is a homeomorphism over g~l(B™ X A") X [0,1]. Also there is a small (measured in

R" X A* X [0,1]) f.p. homotopy from hx to h which comes from using isotopies

id = 0' for /' = 1, 2 provided by [23, Theorem 4.3]. It is clear that one can continue

this process to obtain a sequence of maps hx, h2,... such that « = limi_J.xhi is the

required homeomorphism. The reader should consult [8, pp. 327, 328] for a similar

construction.   ■

3. Homotopy and torsion in WA(Rm X F). This section begins by showing how to

deform certain controlled homotopy equivalences to maps which represent simplices

of WA(Rm x F). This is contained in Propositions 3.1 and 3.2. Next, Proposition 3.4

gives a geometric way to understand what it means for two «-simplices of

WA(Rm X F)

to represent the same homotopy class in TrnWA(Rm X F). Finally, we define the

torsion of certain controlled homotopy equivalences to be an element of

TT^iTA(Rm X F)

and characterize geometrically what it means for two of these homotopy equiva-

lences to have the same torsion (Proposition 3.6).

We begin with some more definitions. If a is an open cover of 7, then a proper

map /: X -> 7 is an a-equivalence provided there is a proper map g: 7 -> X and

proper homotopies gf - id and fg - id limited by f~l(a) ana a, respectively. If X

and 7 are both fibered over a space, then / is an f.p. a-equivalence provided /, g and

the homotopies are all f.p. If 7 = Rm X F, then /: X -» Rm X F is a bounded

homotopy equivalence if it is ap_1(e)-equivalence for some (possibly large) e > 0.

Proposition 3.1. For every e > 0 there exists a 8 = 8(e, m, n) > 0 such that if p:

M -> A" ¿y a bundle with Q-manifold fiber and f: M -» Rm X F X A" is an f.p.

p~l(8)-equivalence, then f is f.p. p'l(e)-homotopic to a map f: M -> Rm X F X A"

which is an f.p. p'1(p)-equivalence for every p > 0.
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Moreover, if it is additionally given that M contains Rm X F X A" as a sliced Z-set

andf\Rm X F X A" = id, then we may additionally conclude that the homotopy from f

to f is relR"1 X F X A".

Furthermore, if it is additionally given that f\: p_1(3A") -* Rm X F X 3A" is an f.p.

p~l(^-equivalence for every p > 0, then we may additionally conclude that the homo-

topy from f to f is rel p_1(3A").

Proof. The f.p. map pf: M -* Rm X A" has the property that pf,: p~\t) -» Rm is a

ô-fibration for each t in A". If 8 is small enough, then it follows from Theorem 7.2

and Remark 7.5 of [23] that/?/is f.p. e-homotopic to a map g: M -> Rm X A" which

is an f.p. approximate fibration. Lift this homotopy to get an f.p. /?"1(£)-homotopy

from/to a map/such that pf = g. Since/is an f.p. homotopy equivalence and pf is

an f.p. approximate fibration, the method of Dold used in the proof of Lemma 2.1

shows that/is an f.p./7_1(ju)-equivalence for every p > 0.

If we have the additional hypotheses of the proposition, then one uses the full

strength of Theorem 7.2 of [23] to make the homotopy from pf to g rel(Rm X F X A")

U p""1(3A"). Then the lifted homotopy from/to/can be required to have this same

property.   ■

The next proposition is the analogue of Proposition 3.1 for bounded equivalences.

Proposition 3.2. If p: M -> A" is a bundle with Q-manifold fiber and f:

M -* Rm X F X A" is an f.p. bounded equivalence, then f is f.p. boundedly homotopic

to a map f: M -* Rm X F X A" which is an f.p. p~1(p)-equivalence for every p > 0.

Moreover, the last two paragraphs of Proposition 3.1 hold verbatim in this situation.

Proof. There exists a c > 0 such that/»/: p_1(0 -» Rm is a c-fibration for each / in

A". Choose K > 0 large and let y: Rm -» Rm be the homeomorphism defined by

y(x) = x/K. Then each ypft: p~\t) -» Rm is a S-fibration, where 8 > 0 is small. As

in the proof of Proposition 3.1 we can find a small f.p. homotopy of (y X id)pf to an

f.p. approximate fibration g: M -» Rm X A". Then (y_1 X id)g is still an f.p.

approximate fibration and it is f.p. boundedly homotopic to pf. Now lift this

bounded homotopy as in the proof of Proposition 3.1 in order to obtain the desired

map/.

If the additional hypotheses of the proposition are given, then one only has to

replace the homeomorphism y X id: Rm X A" -» Rm X A" by an f.p. homeomor-

phism y which has the property that y|Rm X 3A" = id.    ■

Since WAtR"1 X F) satisfies the Kan extension condition, it makes sense to talk

about the homotopy groups of iTA(Rm X F). The nth homotopy group is based at

the «-simplex of irA(Rm X F) which is represented by the projection map Rm X F

X [0,1] X A" -* Rm X F X A", where the sliced Z-embedding of Rm X F X A" into

Rm X F X [0,1] X A" is given by inclusion into the 0-level. If /: M -* Rm X F X A"

represents an «-simplex of iVA(Rm X F) which determines a class in rrni(rA(Rm X F),

then that class is denoted by [/]. Such a map has the property that/|: p_1(3,A") -*

Rm X F X 3,A" is equivalent to the "base (n - l)-simplex" of iTA(Rm X F) for each

/ ■* 0,1,..., n. The following lemma will be useful in analyzing these maps.
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Lemma 3.3. Suppose that f: M -* Rm X F X A" represents a class [/] in

TTnWA(Rm X F).

Then there exists an f.p. homeomorphism j: Rm X F X [0,1] X 3A" -» p_1(3A") such

that ;|Rm X F X {0} X 3A" = id and fj: Rm X F X [0,1] X 3A" -> Rm X F X 3A" is

projection.

Proof. Since / represents a class of TrnifrA(Rm X F), it follows that there are f.p.

homeomorphisms g,: Rm X F X [0,1] X 3,A" -» p~l(d,An) for i = 0,1,...,« such that

g,|Rm X F X {0} X 3,A" = id and /g, is projection. For each z = 1,2,...,« let C,

denote the subset of the boundary of 3,A" which meets \J'k~J0 3^A". The g,'s will now

be modified so that they agree on their common domain.

We will inductively define f.p. homeomorphisms g0 = g0, g\, • • • ,g„ = j, where

gi:RmXFx[0,l]xl LJ3,A" Up"1    IJ 3,A"  .

These are defined so that gi+x extends g„ g,|Rm X F X {0} X (\Jk_0 dkA") = id, and

fg¡ is projection. Assuming i > 1 and that gi_1 has been defined, proceed to define g,

on Rm X F X [0,1] X 3,A". To this end consider

g-%_x\: Rm X F X [0,1] X C; -+ Rm X F X [0,1] X Ç.

This is a homeomorphism whose restriction to Rm X F X {0} X C, is the identity. In

addition, this homeomorphism affects only the [0, Incoordinate of any point. It

follows that g,rlg, _ij extends to a homeomorphism

g: Rm X F X [0,1] X 3,A" ̂  Rm X F X [0,1] X 3,A"

such that g|Rm X F X {0} X 3,A" = id and g affects only the [0, Incoordinate of any

point. Define g,|Rm X F X [0,1] X 3,.A" to be g,g.   ■

The next result shows how to detect the equivalence of elements in Trr¡if/~A(Rm X F).

Two maps f,g: M -* Rm X F X A" are said to be boundedly close if there exists a

constant L > 0 such that pf is L-close topg, where p denotes projection to Rm.

Proposition 3.4. Let f: M -* Rm X F X A" andf: M' -> Rm X F X A" represent

the elements [/] and [/'] of irnifrA(Rm X F), respectively. Then the following are

equivalent:

(i) [/] = [/'];

(ii) for every e > 0 there exists an f.p. homeomorphism h: M —> M' such that

«|Rm X F X A" = id, /'/¡Ip-^SA") = flp-^dA"), andf'h is f.p. p-\e)-homotopic to f
rel(Rm X F X A") U p-\dAn);

(iii) there exists on f.p. homeomorphism h: M -> M' such that h\Rm X F X A" = id,

f'h\p-l(dAn) = f\p-\dA"), andf'h is boundedly close tof.

Proof. It is first shown that condition (i) implies condition (ii). Since [/] = [/']

there is a bundle p: M -> A" X I with g-manifold fiber and an f.p. (over A" X /)

map /: M -* Rm X F X A" X I representing an (« + l)-simplex of 1VA(Rm X F)

such that /|p_1(A" X {0}) represents [/], /|p_1(A" X {1}) represents [/'], and

/|p-1(3,A" X /) represents the "base «-simplex" of iTA(Rm X F) for all i.
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By (the proof of) Lemma 3.3 there is f.p. homeomorphism j: Rm X F X [0,1] X

3A" X / -» p-\dAn X I) such thaty'|Rm X F X {0} X 3A" X / = id and fj is projec-

tion.

Using the fact that p is trivial and sliced Z-set unknotting, one can construct an

f.p. homeomorphism h: Rm X F X [0,1] X A" X / -> M such that «|Rm X F X {0}

X A" X / = id (see Lemma 5.1).

Let/0 =/'|Rm X F X [0,1] X A" X {0} and let «0 = h\Rm X F X [0,1] X A" X {0}.

By Theorem 2.3 there is an f.p. homeomorphism

H: Rm X F X [0,1] X A" X / -» Rm X F X [0,1] X A" X /

with the following properties:

(1) H\Rm X F X [0,1] X A" X {0} = id;

(2) H\Rm X F X [0,1] X 3A" X / = «-1 o j o(y-i x idr)o(h0 X id7)|;

(3) H\Rm X F X {0} X A" X I = id;

(4)pfhH\Rm X FX [0,1] X {s} X {t} ise-closetopfh\Rm X Fx [0,1] X {s} X

{0} for each (s, t) in A" x /.

Since f\p~1(A" X {0}) represents [/], there is an f.p. homeomorphism a: M -»

p_1(A" X {0}) such that fa = f and a|Rm X F X A" = id. Likewise, there is an f.p.

homeomorphism ß: M' -> p^A" X {1}) such that/8 = /' and /3|Rm X F X A" = id.

Now the required homeomorphism h: M -» M' can be described by the composi-

tion

M A p-^A" x {0}) -i Rm x Fx[0,l] x A"x{0}

^Rm X FX[0,1] X A" X{1} Jr"1 X FX[0,1] X A" X{1}

h\ ß-1

4p-1(A'*x{l})^M'.

The homotopy from/to/'« is given at time t by the composition

M ^p-\An x{0)) -^Rmx Fx[0,l] X A" x{0)

^ Rm X F X [0,1] X A" X {t} J Rm X F X [0,1] X A" X {t}

-i p_1(A" X {t}) f-l Rm X F X A" X {t} = Rm X F X A".

This proves that (i) implies (ii).

Since (ii) obviously implies (iii), it remains to show that (iii) implies (i). The

following assertion first shows how to replace / by a map which has a particularly

standard form over 3A".

Assertion 3.4.1./is f.p. boundedly homotopic rel(Rm X F X A") U p_1(3A") to a

map /which has the property that there is an f.p. homotopy G: idM — f re\Rm X F

X A" such that/G is a bounded homotopy and/G|p_1(3A") is a stationary homotopy.

Proof. By Lemma 3.3 there is an f.p. homeomorphism/: Rm X F x [0,1] X 3A"

-» p"x(3A") such that 7'|Rm X F X {0} X 3A" = id and fj is projection. Since p is

trivial there is an f.p. homeomorphism h: Rm X F X [0,1] X A" -» M. By sliced Z-set
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unknotting it is also possible to assume that h\Rm X F X {0} X A" = id and h\Rm X

F X [0,1] X 3„A" =j\ (see Lemma 5.1). By Theorem 2.3 there is an f.p. homeomor-

phism H: Rm X F X [0,1] X A" -» Rm X F X [0,1] X A" such that H\Rm X F X {0}

X A" = id, H\Rm X F X [0,1] X 3„A" = id, and pfhH: Rm X F X [0,1] x A" -> Rm

X A" is close to projection.

We want to extend y over a neighborhood of 3A" as follows. Let 3A" X [0,1] be a

closed collar of 3A" in A" so that 3A" X {0} is identified with 3A". Define /:

Rm x F x [0,1] x 3A" x [0,1] -* p-\dA" x [0,1]) by j = «//[(i/-1«"1/) x id[01]].

Note that/ extends/ that/|Rm X F X {0} X 3A" X [0,1] = id, and that pfj is close

toproj[//_1«"V X id].

Now define an f.p. homotopy G on M by defining Ga: M -» M, 0 < a < 1, as

follows. First

Ga|p-1(A"\(3A"x[0,l])) = id   for0«a< 1.

Then for (x, f, s, t, u) in Rm X F X [0,1] X 3A" X [0,1] set GJ(x, f, s, t, u) =

j(x, f, (1 — a)s + aus, t, u). Note that fG is a bounded homotopy and that fG is

rel(Rm X F X A") U p-\i)An).

Define/: M -» Rm X F X A" by setting/= fGx. It remains to show that G exists.

To this end let K: idM- fbz an f.p. homotopy relRm X F X A" such that fK is a

bounded homotopy. Define G by setting

G  =\G2a for0<a <i,

\Kia-i°Gi    for£<a<l.

This completes the proof of Assertion 3.4.1.   ■

The following assertion shows the existence of a homotopy from/to/'«.

Assertion 3.4.2.    / is f.p. boundedly homotopic to f'h rel(Rm X F X A") U
p-x(3A").

Proof. Let fG: f = f and G: idM = /be the homotopies defined in the proof of

Assertion 3.4.1. Then the desired homotopy L: f = f'h is defined by setting

L    _ i/G2« for0<a< \,

"     \f'hG2_2a    fori<a<l.   ■

To complete the proof of the proposition, define L: MxI->RmXFxA"XI

by setting L(x, a) = (La(x), a) for (x, a) in M X I, where La is defined in the proof

of Assertion 3.4.2. Then L is an f.p. bounded sdr. And by Proposition 3.2, L is f.p.

boundedly homotopic rel(Rm X F X A" X /) u (p_1(3A") X I) to L which is an f.p.

p-1(p)-equivalence for every p > 0. This L defines an (« + l)-simplex in

■WA(Rm X F)

showing that [/] = [f'h] in TrnWA(Rm X F). Since /' is equivalent to f'h in

WA(Rm X F), this completes the proof.   ■

The remainder of this section is devoted to defining and studying the torsion of

certain homotopy equivalences to Rm X F X A".
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Consider the following data:

(I) a bundle p: M -* A" with g-manifold fiber;

(II) a sliced Z-embedding Rm X F X 3A" c p-\dA");

(III) an f.p. bounded homotopy equivalence /: M -> Rm X F X A" such that each

(« - l)-face of/, f\: p'^A") -+ Rm X F X 3,.A" for i - 0,1,...,«, is equivalent to

the "base (« - l)-simplex" of ir~A(Rm X F).

When this data is given we will define the torsion of /. The immediate goal is to

find an f.p. bounded homotopy rel p_1(3A") of/to a map which represents a class in

TTni(rA(Rm X F). To this end let g: Rm X F X A" -» M be an f.p. bounded homotopy

inverse for /. We may assume that g is a sliced Z-embedding and that g|Rm X F X

3A" = id by sliced Z-set unknotting. Identify Rm X F X A" with its image under g

and regard g as an inclusion map.

Now / is f.p. boundedly homotopic rel p_1(3A") to a map /: M->RmXFxA"

which is an f.p. bounded strong deformation retraction. This follows from the usual

method of turning a weak deformation retraction into a strong deformation retrac-

tion (see [32, p. 31]).

By Proposition 3.2,/is f.p. boundedly homotopic rel(Rm X F X A") U p_1(3An) to

a map /: M->R™XFxA" which is an f.p. p~l(e)-sdr for every e > 0. Then /

represents a class [/] in TrnWA(Rm X F) and we define the torsion t(/) of / by

r(f) = [/]•

Proposition 3.5. t(/) is well defined.

Proof. Suppose g': Rm X F X A" -» M is another f.p. bounded homotopy inverse

for/such that g' is a sliced Z-embedding and g'|R X F X 3A = id. Then g' gives rise

to another class [/'] in TrnWrA(Rm X F). Here /' is f.p. boundedly homotopic

rel p_1(9A") to/. We must show [/] = [/'].

Note that g is f.p. homotopic to g' by a homotopy which is bounded when

projected to Rm X F X A" by /. By sliced Z-set unknotting there exists an f.p.

homeomorphism «: M -* M such that «g = g' and fh is boundedly close to/. Since

the homotopy from g to g' can be chosen to be rel R"1 X F X 3A", it can be assumed

that «|p_1(3A") = id. That [/] = [/'] now follows from Proposition 3.4.   ■

Observe that if [/] is in irnifrA(Rm X F), then rr(f) = [/]. The next proposition

shows how to decide if two torsions are equal.

Proposition 3.6. Let f: M -> Rm X F X A"andf: M' -+ Rm X F X A" be maps

for which r(f) and t(/') are defined. Then r(f) = t(/') if and only if there is an f.p.

homeomorphism h: M -* M' such that h\Rm X F X 3A" = id, f'h\p-lÇdAn) =

/|p_1(3A"), and f'h is f.p. boundedly homotopic rel p'1(dA") tof.

Proof. If t(/) = r(f'), then the definition of torsion and Proposition 3.4

immediately imply the existence of «.

On the other hand, suppose the homeomorphism « is given. To define the torsion

t(/) choose a sliced Z-embedding g: RmXFxA"-»M such that g is an f.p.

bounded homotopy inverse for / and g|Rm X F X 3A" = id. It follows that «g:

Rm X F X A" -* M' is an f.p. bounded homotopy inverse for /'. Now Proposition

3.4 can be used to conclude that t(/) = r(f').   ■
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The next proposition is a version of Proposition 3.6 when the bounded homotopy

equivalences have small 8 control.

Proposition 3.7. For every e > 0 there exists a 8 = 8(e, m, «) > 0 such that iff:

M -> Rm X F X A" andf: M -> Rm X F X A" are f.p. p-\8)-equivalences and r(f)

andr(f') are defined, then t(/) = r(f') if and only if there is an f.p. homeomorphism

h:M -> M' such that h\Rm X F X 3A" = id,f'h\p-l(dA") = f\p'\dùr), and f'h is f.p.

p'1(s)-homotopic rel p~1(dA") tof.

Proof. The proof is completely analogous to the proof of Proposition 3.6. One

simply keeps track of the control at each step of the proof. The key observation is

that if t(/) is defined to be [/], then one may assume that/is f.p.p_1(e)-homotopic

rel p_1(3A") to/.    ■

4. Proof of Theorem 3. The purpose of this section is to compute TT0WA(Rm X F)

by reinterpreting a result of Chapman [8, Theorem 2]. It is first shown how to define

addition so that Tr0irA(Rm X F) becomes an abelian group.

Let /: M -> Rm X F and /': M' -> Rm X F represent elements [/] and [/'] of

Tr0WA(Rm X F). Let N be the g-manifold obtained by gluing M and M' together

along their common copy of Rm X F Define g: N -> Rm X F by g\M = f and

g\M' = /'. Of course Rm X F is not a Z-set in N, but g is a p'1(e)-sdr for every

e > 0. Define [/] + [/'] to be r(g) in Tr0ifrA(Rm X F). That this addition operation

is well defined follows directly from Propositions 3.4 and 3.6. Existence of inverses

for this addition follows from the usual geometric construction [13, p. 21] with

control [8, p. 320]. Alternatively, one may note that in what follows we show that

TT0^rA(Rm X F) is monoid-isomorphic to an abelian group. Inverses then exist

automatically and Tr0i(rA(Rm X F) is an abelian group. Note that the identity

element is represented by the projection map R*XFX [0,1] -» Rm X F.

In [8] Chapman defines ¿^b(Rm X F) to be the set of equivalence classes of the

form [/], where /: M -» Rm X F is a bounded homotopy equivalence and M is a

g-manifold. Another such map, /': M' -* Rm X F, is defined to be equivalent to /

provided that there is a homeomorphism h: M -* M' for which f'h is boundedly

homotopic to/.

Proposition 4.1.  There is a one-to-one correspondence y:  TT0irA(Rm XF)->

yb(Rm x F).

Proof. If / represents a class [/] in <rr0ifA(Rm X F), then / represents a class in

Sfb(Rm X F), also denoted [/]. Define y([f]) = [/]. It follows from Proposition 3.4

that y is well defined. Now define t: ^b(Rm X F) -» TT0WA(Rm X F) by t([/]) =

t(/), the torsion of /in TT0WA(Rm X F). It follows from Proposition 3.6 that t is

well defined.

It is clear that t ° y = id. And it follows from the definition of torsion that

y ° t = id. Thus, y is a one-to-one correspondence.   ■

Let K;(F) denote WhiZ^F) for i = 1, K0(ZttxF) for i = 0, and K¡(ZttxF) for

i < 0. In [8, §8] Chapman defines a one-to-one correspondence a*: yb(Rm XF)->
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Proposition 4.2. The composition o-*y: Tr0WA(Rm X F) -> Kx^m(F) is a group

isomorphism.

Proof. It suffices to show that that a*y is a group homomorphism. For this one

needs to examine Chapman's definition of a*. Let [/] be an element of

TT0^A(Rm X F)   for i = 1,2.

By a wrapping-up procedure Chapman constructs a homotopy equivalence /:

M¡ -> Tm X F with small control in the redirection for i = 1, 2. Using a relative

version of this wrapping-up procedure as developed in [23] one may assume that M¡

contains Tm X F as a Z-set and f\Tm X F = id for /' = 1, 2. Chapman shows that

t(/) lies in the subgroup Wh(F) e L™,x(j)Kx_i(F) of Wh(Fm X F) and defines

a*([/]) to De tne component of t(/) in Kx_m(F). By our choice of M¡ we see that

a*y([/J + [/2D = o-*YÜ7il) + a,y([/2]).    ■

5. Proof of Theorem 1. In this section we define an isomorphism

a: TT„irA(Rm X F) -> Trn_x^b(Rm X F).

The key ingredient which allows us to construct bounded concordances from

elements of rrnWA(Rm X F) is Theorem 2.3.

To define a let/: M -> Rm X F X A" represent an element [/] of Tr„WA(Rm X F).

By Lemma 3.3 there is an f.p. homeomorphism/: Rm X F X [0,1] X 3A" -» p_1(3A")

such that j\Rm X F X {0} X 3A" = id and fj is projection. The following lemma

establishes a particularly useful trivialization of p.

Lemma 5.1. There exists an f.p. homeomorphism h: Rm X F X [0,1] X A" -* M

such that «|Rm X F X {0} X A" = id a«á«|Rm X F X [0,1] X 3„A" = j\.

Proof. Since p: M -* A" is a trivial bundle, one can construct an f.p. homeomor-

phism «': Rm X F X [0,1] X A" -+ M such that h'\Rm X F X [0,1] X 3„A" =/|. It

follows that h'\Rm X F X {0} X A" is f.p. homotopic relRm X F X {0} X 3„A" to the

identity. The existence of « now follows from sliced Z-set unknotting.    ■

With the homeomorphisms / and « in hand, consider the «-parameter family of

approximate fibrationsp/Ti: R*XFX [0,1] X A" -> R™ X A". Note that

pfi\(Rm X F X[0,1] X 3„A") U(R"XFX {0} X A")

is projection. It follows from Theorem 2.3 that there is an f.p. homeomorphism H:

Rm X F X [0,1] X A" -> Rm X F X [0,1] X A" such that i/|(Rm X F X [0,1] X 3„A")

U (R X F X {0} X A") = id and the compositionpfhH is e-close to projection. Here,

e is chosen small enough for the proof of Proposition 5.2 to work.

Let J"-l denote the (« - l)-cell 3A" \ int(3„A"). Consider the composition

h:Rm X FX[0,1] xr'^R-x FX[0,1] XJnl

-I p-l(J"-l)U^ RmXFx[0,l] Xjn~\
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If one considers the (« - l)-simplices of ^(R"1 X F) to be parametrized by J" l

(instead of A""1), then it follows that h determines a class [«] in rrn_x'$b(Rm X F).

Define «([/]) = [«].

Proposition 5.2. a is well defined.

Proof. If /: M -» Rm X F X A" represents [/] in irnWA(Rm X F), we first show

that the definition of a([f]) is independent of the choices for the homeomorphisms/

« and H. So suppose that alternative choices/', «' and H' have been made.

Consider the f.p. homeomorphism (/)"V: Rm X F X [0,1] X 3A" -» Rm X F X

[0,1] X 3A". Note that (j'ylj\Rm X F X {0} X 3A" = id and that (/)-/ affects only

the [0, Incoordinate of any point. Then (j')~lj can be thought of as defining a

parametrized family of homeomorphisms on [0,1] which are fixed on {0,1}. It

therefore follows from an Alexander trick that there is a homeomorphism

j: Rm x F x [0,1] x 3A" x / -» Rm x F x [0,1] x 3A" x I

such that:

(i)j affects only the [0, Incoordinate of any point;

(ii)/|Rm X F X {0} X 3A" X I = id;

(iii)/|Rm X F X [0,1] X 3A" X {0} = (/)"V;
(iv)/|Rm X F X [0,1] X 3A" X {1} = id.

Define/: Rm X F X [0,1] X 3A" X / -> p_1(3A") X / by setting/ = (/ X id)/.

Since 3„A" is a strong deformation retract of A", there is a homotopy ru: A" -» A",

0 < u < 1, such that r0 = id, ru\dnA" = id, and rx(A") = 3„A". Define a homeomor-

phism

h: Rm X F X [0,1] X A" X / -► Rm X F X [0,1] X A" X /

by setting

h(x, f, s, t, u) = (prir1«'^, /, s, rx_u(t)), t, u),

where pr denotes projection from R"xFX [0,1] X A" to Rm X F X [0,1]. Note

that « has the following properties:

(i) h\Rm X F X {0} X A" X / = id;

(ii) h\Rm X F X [0,1] X A" X {0} affects only the [0, l]-coordinate of any point;

(iii) h\Rm X F X [0,1] X A" X {1} = «-1«';

(iv) «|Rm x F x [0,1] x 3„A" x I**j-}j'\ x id.

Now « extends to a homeomorphism «: Rm X F X [0,1] X A" X [-1,1]^R"XF

x [0,1J x A" x [-1,1] such that:
(i) Â|Rm x F x {0} x A" x [-1,1] = id;

(ii) h\Rm X F X [0,1] X A" X [-1,0] affects only the [0, l]-coordinate of any point;

(iii) «|Rm X F X [0,1] X A" X {-1} = id.

To return to the parameter space / instead of [-1,1], define

h* : Rm X F X [0,1] X A" X / -> Rm X F X [0,1] X A" X /

by setting

h*(x, f,s,t,u) = h(x, f, s,t,2u - 1).
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Consider the parametrized family of approximate fibrations

q=p(fx id)(« Xid)«*(/7xid):RmXFx[0,l] X A" X I -> Rm X A" X I.

Note that:

(i) <7|Rm X F X {0} X A" X / is projection;

(ii) q\Rm X F X [0,1] X A" X {0} = pfhH;

(iii) <?|Rm X F X [0,1] X A" X {1} = pfh'H;

(iv) q^Lm X F X [0,1] X 3„A" X lis projection.

By Theorem 2.3 there is an f.p. homeomorphism iî:RmXFx[0,l]xA"X/^

ROT X F X [0,1] X A" X / such that:

(i) qH is close to projection;

(ii) H\Rm X F X {0} X A" X / = id;

(iii) H\Rm x F x [0,1] x 3„A" x / = id;

(iv) H\Rm X F X [0,1] X A" X {0} = id;

(v) H\Rm X F X [0,1] X A" X {1} = H-XH'.

(The reader should beware that we must " reparametrize" the (« + l)-cell A" X I so

that the wording of Theorem 2.3 will apply.)

Now consider the composition
_

G:Rmx Fx[0,l] XJ"-1 X/^RmxFx[0,l] XJ"'1 XI

(hxid)h*(Hxid)\ (fa"1
-      ^(y'jx/^R-xFxto.ilxy^x/.

Then G is a bounded concordance (parametrized over J"~l X I) such that:

(i) G\Rm X F X [0,1] X J"-1 X {0} = «;
(ü) G|Rm X F X [0,1] X J"-1 X {1} = «';

(iii) G|Rm X F X [0,1] X 3/""1 X / affects only the [0, l]-coordinate of any point.

Here « and «' are the two concordances which determine the definition of a([f])

depending on whether/, h and H or/, «' and H' are used.

Finally, one modifies G (by an Alexander trick again) to get a bounded concor-

dance

G: Rm X FX[0,1] XJ"-1 X /-> Rm X Fx[0,l] XJ"'1 X I

parametrized over J"-1 X I such that:

(i)G|RwxFx[0,l]xy-1 X 37= G\;

(ii) G|Rm x F X [0,1] X 3/""1 X I = id.

Then G shows that [«] = [«'] in Trn_x^b(Rm X F).

To complete the proof of the proposition we must show that the definition of

<*([/]) does not depend on the choice of a representative of the equivalence class [/].

To this end let/': M' -► Rm X F X A" be a map such that [/] = [/'] in

TTnWA(Rm X F).

By Proposition 3.4 there is an f.p. homeomorphism g: M -» M' such that g|Rm X F

x A" = id, f'g\p-\dA") = /|, and f'g is close to /. It follows that if/, « and H are

homeomorphisms used to define cx([f]), then gj, gh and H are acceptable choices of
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homeomorphisms which can be used to define a([f']) = [h'], where

h':Rm X FX[0,1] XJ"'1 ->Rm X Fx[0,l] Xj"~l

(gh)\.     ._■,. ,.(g/\)~l r        , .
-> (p')   (J"-1)   -*  RmXFx[0,l]xJ"-1.

Now note that «' = «, where [«] = a([f]).   ■

Proposition 5.3. a is a group homomorphism.

Proof. We only treat the case n = 1, where a: TrxWA(Rm xF)-> w0^fc(Rm X F).

The case « > 1 is similar but easier; it follows more directly from the definitions.

Recall that the group operation on Trxfëb(Rm X F) is induced by the composition of

concordances.

Let [/], [/'] g TTxi^A(Rm X F). The first step is to define explicitly a map/so that

[/] + [/'] = [/] in TTxWA(Rm X F). We may assume that/,/': Rm X F X [0,1] X A1

-* Rm X F X A1, that/,/'|Rm X F X {0} X A1 = id, and that/,/'|Rm X F X [0,1] X

3, A1 are projections. Moreover, there are homeomorphisms y',/': Rm X F X [0,1] -»

R"XFX [0,1] X SqA1 such thatj,j'\Rm X F X {0} = id and.// and/'/ are projec-

tions. When convenient we will think of/ and/ as being defined on Rm X F X [0,1]

X d0A\

Let pr: Rm X F X A1 -» Rm X F denote projection and define /: Rm X F X [0,1]

X A1 -» Rm X F X A1 by

f(prf(x,f,s,2t),t) for0<i<i,

*'     ~ \ (pr/'(y-l(*, /, 5, l),2r -l),t)    for § < r < 1.

Here A1 = [0,1]. Then [/] + [/'] = [/].

Now a([/]) and a([f']) are defined by finding f.p. homeomorphisms H, H'\

Rm X F X [0,1] X A1 -» Rm X F X [0,1] X A1 such that H, H'\Rm X F X {0} X A1 =

id, H, 7F|Rm X F X [0,1] X dxAx = id, and pfH and pf'H' are close to projection.

Then a([/]) = [«], where « is the composition

«: Rm X F X [0,1] X SqA1 ̂ Rm X F X [0,1] X SqA1

j'1
^RmXFx[0,l] X\A\

Similariy, «([/']) = [«'].
Let pr: RmXFx[0,l]xA1-»R"xFX[0,l] denote projection and define H:

Rm X F X [0,1] X A1 -> Rm X F X [0,1] X A1 by

x      \i^rH(x,f,s,2t),t) for0<i<i,
H(x, f,s, 0 = { /   — x

( (/pr H'{j~lH(x, f, s, l),2t -l),t)     for i < r < 1.
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Thenpf H is close to projection and a([/]) = [«], where « is the composition

h: Rm X F X [0,1] X SqA1 -^ Rm X F X [0,1] X SqA1

\  Rmx Fx[0,l] xd0A\

To complete the proof observe that « = «'«.   ■

Proposition 5.4. a is injective.

Proof. Let [/] e <rrnirA(Rm X F) such that a([/]) = 0. To define a([/]) we are

given homeomorphisms/, « and H as above. Then a([f]) = [«], where « =j'1hH\Rm

X F X [0,1] X J"-\ If [«] = 0 in TTn_x<$b(Rm X F), there exists a bounded homeo-

morphism

G: RmX FX[0,1] xy-1 X/^R"XFX[0,1] XJ"'1 X I

which is f.p. over J"-1 X I, G\Rm X F X [0,1] X J"'1 X {0} = h, and G is the

identity on Rm X F X {0} X J"'1 X I, on Rm X F X [0,1] X S/""1 X I, and on

R"XFX [0,1] XJ"-1 X (1).

Let

r: [0,1] xA"x/- ({0} X A" X/) u([0,1] X 3(A" X/))

be a retraction. Let pr: Rm X F X [0,1] X A" X J -> Rm X F X A" X / denote pro-

jection. Define D: Rm X F X [0,1] X A" X I -* Rm X F X A" X I by

(x,f,t,u)    if r(s,t,u)<= ({0} X A" X I)

U([0,1] X A" X{1}) U([0,1] X 3„A" X /),

prG(x,f,r(s,t,u))    if r(s,t,u) e [0,1] XJ"1 X I,

(fhH(x,f,r(s,t,u)),l)    if r(s, t, u)^ [0,1] X A" X{1}.

Note that pD is boundedly close to projection. Thus Proposition 3.1 implies that

there is an f.p. map D: Rm X F X [0,1] X A" X I -> Rm X F X A" X I such that

D\Rm X F X {0} X A" X / = id, D\Rm X F X [0,1] X 3(A" X /) = id, and pD is an

approximate fibration.

Then D provides a homotopy showing that [fhH] = 0 in Trn^/'A(Rm X F). Since

[/] = [ßH] we have shown ker(a) = 0.    ■

Proposition 5.5. a is surjective.

Proof. Let [G] g Trn_x^b(Rm X F). Then G is an f.p. bounded homeomorphism

G: Rmx FX[0,1] X A""1 -^ Rm X Fx[0,l] X A"1

such that

G|(Rmx FX{0} xA"-1)u(RmXFx[0,l] X 3A""1) = id.

The straight line homotopy from the projection Rm X F X [0,1] X A""1 -» Rm X

A"-1 to pG is bounded, f.p., and rel(Rm X F X {0} X A"^1) U (Rm X F X [0,1] X

3A""1). This homotopy induces an f.p. map g:RmxFx[0,l]xr1X/->R"'X

A""1 X /suchthat:

(i) g|Rm x F x {0} x A""1 x / = id;

D(x,f,s, t,u) =
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(ii) g|(Rm X F X [0,1] X 3A""1 X /) U (Rm X F X [0,1] X A""1 X {0}) is projec-

tion;
(iii)g|Rm X FX [0,1] X A""1 X {1} =pG;

(iv) g is boundedly close to projection.

As in Proposition 5.4, using the fact that

({0} X A""1 X /) u([0,l] X 3(A"-1 X /))

is a retract of [0,1] X A""1 X /, we can find an f.p. map g: Rm X F X [0,1] X A""1

XZ-tR-xFx A""1 X / such that:

(i) g|Rm x F x {0} x A""1 x / = id;

(ü) g|(Rm X F X [0,1] X 3A""1 X /) u (Rm X F X [0,1] X 3A""1 X {0}) is pro-

jection;

(iii) g|Rm X F X [0,1] X A""1 X {1} = pr G (where pr: R"XFX [0,1] X A"-1 -»

Rm X F X A"-1 is projection);

(iv)pg = g-

By Proposition 3.2 there is an f.p. map g:R™xFx[0,l]xA""1x/->RBxF

x A""1 x /  such  that  g|Rm x F x {0} x A""1 x / = id,   g|Rm x F x [0,1] x

3(A"_1x/) = g|, andpg is an approximate fibration.

Identify A" with A""1 X I in such a way that 3„A" is identified with (A""1 X {0})

U (3A""1 X /). Then g determines a class [g] in TTni^A(Rm X F) and one checks that

a([g]) = [G].   M

6. Proof of Theorem 2. In this section we define an isomorphism

ß: TTn<é'b(Rm+1 xF)-> TrnWA(Rm x F).

The construction is similar to that in [1, §8].

In order to define ß, let [«] be an element of Trß'b(Rm+1 X F). Thus « is an f.p.

bounded homeomorphism «: Rm + 1 X F X [0,1] X A" -» Rm + 1 X F X [0,1] x A"

such that h\(Rm + 1 X F X {0} X A") U (Rm + 1 X F X [0,1] X 3A") = id. Let L be a

positive number such that ph is (L/4)-close to projection. Write Rm+1 as Rm X R

and define M to be

h(Rm x(-oo,L] XFX[0,1] xA")\(Rm x(-oo,0) X F X [0,1] X A").

Since M is a subset of Rm +1 X F X [0,1] X A", the projection to A" restricts to a map

p:M -» A".
Note that Rm X {0} X F X [0,1] X A" is a sliced Z-set in M. Define/: M -* Rm X

(0) X F X [0,1] X A" to be the restriction of the projection. We now show that / is

an f.p. bounded sdr. Let r:R"+lXFX [0,1] X A" -» Rm X (-oo, L]xFx [0,1] X

A" be the obvious retraction which affects only the R-coordinate of any point. Let st:

Rm+1 XFX[0,l]xA"-> Rm+1 X F X [0,1] X A", 0 < * < 1, be the homotopy such

that st multiplies the R-coordinate of any point by t and does not affect the other

coordinates. (By the R-coordinate we mean the last coordinate of a point in

Rm + 1 = Rm X R.) Finally, define /: M -> M, 0 « t < 1, by / = hrh~lsr Then

fx = id and /0 = /. This homotopy shows that / is an f.p. bounded sdr.

Lemma 6.1. The map p: M -* A" is a bundle with Q-manifold fibers.
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Proof. It is clear that p is a submersion with noncompact g-manifold fibers.

There are two alternative ways to show that p is, in fact, a bundle. The author's

original method was to follow the proof of the Technical Bundle Theorem in [25],

constructing by hand the radial engulfing isotopies. (It is necessary here to appeal to

the ö-manifold versions of the submersion theorem and the isotopy extension

theorem in [17 and 31].)

The following quicker method was pointed out by the referee. Note that there is

an f.p. proper retraction R: Rm X [0,2L] X F X [0, l]xA"->M defined by suitably

restricting hrh'1. Thus, p is a so-called proper fibration and one simply invokes

Theorem 2 of [10] to conclude that p is a bundle.   ■

Since p_1(3A") = Rm X [0, L] X F X [0,1] X 3A" and f\p~\d A") is projection, we

may take the torsion of / to obtain an element t(/) in irni(rA(Rm X F X [0,1]). A

homeomorphism k: F X [0,1] -» F induces an isomorphism

fc„: TTniTA(Rm X Fx[0,l]) -> Tr„WA(Rm X F).

Now define ß([h]) = k*(r(f)).

Proposition 6.2. ß is well defined.

Proof. We need to show that ß([h]) does not depend on the choices for k, L, or

the concordance representing [«]. First, it is clear that kif(r(f)) is independent of

the homeomorphism fcFx[0,l]^F.

Second, suppose L' > L is another number. This yields

M' = «(Rmx(-oo,L'] XFX[0,1] xA")\Rmx(-oo,0) xFx[0,l] X A"

and an f.p. bounded sdr /': M,->R"lx{0}xFx [0,1] X A" which is the restric-

tion of the projection. Let y: Rm X (-co , L] X F X [0,1] X A" -» Rm X (-00 , L']

X F X [0,1] X A" be the homeomorphism induced by the homeomorphism (-co , L]

-» (-co , L'] which is the identity on (-co , L/2] and takes [L/2, L] linearly onto

[L/2, L']. Define a homeomorphism y: M —* M' by y = hyh~l\M. Then y satisfies

the hypothesis of Proposition 3.6 showing t(/) = r(f').

Finally, let «' be a concordance such that [«'] = [«] in Trn<tfb(Rm + x X F). Then

there is an f.p. bounded homeomorphism H: Rm+1 X F X [0,1] X A" X / -* Rm+1

X F X [0,1] X A" X / such that ¿7|(Rm+1 X F X {0} X A" X /) U (Rm + 1 X F X

[0,1] X 3A" X /) = id, /Y|Rm+1 X F X [0,1] X A" X {0} = h, and H\Rm+1 XFX

[0,1] X A" X {1} = «'. Let L > 0 be chosen such that pH is (L/4)-close to projec-

tion. Then as was done above we obtain

M= H(Rm X(-oo,L] xFx[0,l] xA"X/)\(Rm X(-oo,0) X F X [0,1] X A" X /),

a bundle p: M -► A" X I, and an f.p. bounded sdr/: M->RmX{0}XFx [0,1] X

A" X I which gives rise to a homotopy in iTA(Rm X F X [0,1]) showing that

ß([h]) = ß([h']).   M

Proposition 6.3. ß is a group homomorphism.
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Proof. This follows almost immediately from the definitions.   ■

The following simple variation of Alexander's trick will be useful in the next

proposition.

Lemma 6.4. Let h: Rm + 1 X F X [0,1] X A" ̂  Rm + 1 X F X [0,1] X A" be a bounded

homeomorphism such that h = id on (Rm X (-co , 0] X F X [0,1] X A") U (Rm + 1 X F

X {0} X A") U (Rm+1 X F X [0,1] X 3A"). Then « is f.p. boundedly isotopic to the
identity rel(Rm X (-00 , 0] X F X [0,1] X A") U (Rm+1 X F X {0} X A") U (Rm + 1 X

F X [0,1] X 3A").

Proof. Define ®s: R -» R for 0 < s < 1 by 0s(i) = t - s/(s - 1). Then ®s

induces 0,: Rm+1 X F X [0,1] X A" -» Rm+1 X F X [0,1] X A" defined by 0, = id

X8,X id. Define hs: Rm+1 X F X [0,1] X A" -» Rm+1 X F X [0,1] X A" by hs =

®~1hs®s for 0 < s < 1 and hx = id. Then hs: h = id, 0 < s < 1, is the desired

isotopy.   ■

Proposition 6.5. ß is injective.

Proof. Let [A] e ^(R"+1 X F) such that ß([h]) = 0. Suppose ß([h]) =

k*(r(f)) is defined as above. Thus, we have an f.p. bounded sdr/: M -» Rm X {0}

X F X [0,1] X A" such that t(/) = 0.

As a representative of 0 in Trni(rA(Rm X F X [0,1]) we use the projection pr:

Rm X [0, L] X F X [0,1] X A" -* Rm X F X [0,1] X A". By Proposition 3.6 there is

an f.p. homeomorphism H: M -* Rm X [0, L] X F X [0,1] X A" such that pr H is

boundedly homotopic to/rel p_1(3A") and H\Rm X {0} X F X [0,1] X A" = id. (This

latter statement is somewhat stronger than Proposition 3.6. We are actually using the

fact that / is a sdr, the definition of torsion, and Proposition 3.4.) By sliced Z-set

unknotting we may also assume that Ff*|(Rm X [0, L] X F X {0} X A") U (Rm X

[0, L] X F X [0,1] X 3A") U (Rm X {L} X F X [0,1] X A") is the identity. The ho-

motopies needed to apply sliced Z-set unknotting come from pushing along the

[0, L] and [0,1] factors.

Now define a hybrid concordance «: Rm + 1 X F X [0,1] X A" -» Rm + 1 X F X

[0,1] X A" by

I h onr X[L, +00) XFX[0,1] X A",

h=¡H-1    onr X[0, L] XFX[0,1] X A",

(id       onRmx(-oo,0] XFX[0,1] X A".

Apply Lemma 6.4 to see that h h and h are both f.p. boundedly isotopic to the

identity rel(Rm + 1 X F X {0} X A") U (Rm + 1 X F X [0,1] X 3A"). This shows that

[«] = [«] = [id] in TTnVb(Rm+1 X F). Thus, [«] = 0 and the kernel of ß is 0.   ■

Proposition 6.6. ß is surjective.

Proof. It will be shown that k+lß: Trn<&b(Rm+l X F) -* Trn1TA(Rm X F X [0,1]) is

surjective. We treat the two cases « = 0 and « 3* 1 separately. For the « = 0 case let

t e TT^A(Rm x F X [0,1]). Using the method of [11, p. 200] we will construct a

bounded concordance «: Rm+1 X F X [0,1] -» Rm + 1 X F X [0,1] such that

k~M[h]) = r.
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We first need a decomposition Mt U N¡ = Rm X [i, i + 1]X Fx [0,1] for every

integer i, where

(i) M¡ and N¡ are g-manifolds,

(ii) M, n N¡ = P¡ is a (¿-manifold collared in both M¡ and iV,,

(iii) Rm X {i} X F X [0,1] c int M,. and Rm X {/ + 1} X F X [0,1] C int A/„

(iv) M,. n (Rm X [i, i + 1] X F X {0}) = Rm X [/, i+iJxFx {0} and Nt n (Rm

X [/, / + 1] X F X {0}) = Rm X [/ + \, i + 1] X F X {0),

(v) the projections Af,. -> Rm X {/} X F X [0,1] and N,. -» Rm X {/ + 1} X F X

[0,1] are bounded sdr's with torsions t and -t, respectively,

(vi) there is a homeomorphism g,: Rm X F X [0,1] -» P, such that g, is boundedly

homotopic in M, to the inclusion Rm X F X [0,1] -» Rm X (¡}XFX[0,1], and in

N¡ to the inclusion Rm X F X [0,1] -» Rm X {i + 1} X F X [0,1]. Also, g,|: Rm X F

X {0} -» Rm X {\} X F X {0} is the identity.

To get such a decomposition (say for i = 0), let R""X[0,l]XFx [0,1] and

Rmx[|,l]xFx[0,l] be contained as Z-sets in the g-manifolds M and TV,

respectively. Let /„: M - Rm X [0, £] X F X [0,1] and /,: N -* Rm X [§, 1] X F X

[0,1] be bounded sdr's such that / followed by projection to Rm X {/} X F X [0,1]

for/ = 0, 1 represents t or -t, respectively. Let M be the union of M and N along

Rm X {¿} X F X [0,1] and define /: M -> Rm X {0} X F X [0,1] to be /„ U /, fol-

lowed by projection. Then t(/) = 0.

Therefore, one can construct a homeomorphism H: M -* Rm X [0,1] X F X [0,1]

such that //|(Rm X {0,1} X F X [0,1]) U (Rm X [0,1] X F X {0}) = id and H fol-

lowed by projection is boundedly homotopic to /. Then set M0 = H(M) and

N0 = H(N).

Now one defines a bounded homeomorphism «,: Rm X [/ - \,i -Y \] X F X [0,1]

-» Ni_x U M, so that «,|Rm k [f - §, i + ^] X F X {0} = id. By using Z-set un-

knotting we can assume «¿|Rm X [i -Y \) X F X [0,1] ** hi+x\. Then the «,'s piece

together to define «.

For the case « > 1 let t e TrnWrA(Rm X F X [0,1]) be given. Let a(r) = [«] e

^-^(R"" X F X [0,1]), where «: Rm X F X [0,1] X [0,1] X A""1 -> Rm X F X

[0,1] X [0,1] X A""1 is a bounded homeomorphism f.p. over A""1 such that h\Rm X

F X [0,1] X {0} X A"-1 = id and «|Rm X F X [0,1] X [0,1] X SA"-1 = id. By sliced

Z-set unknotting we may assume that «|Rm X F X {0,1} X [0,1] X A"-1 = id.

By a familiar construction (see [1, 20, 21 and 22]), we will show there is an element

[h] G TTn1íb(Rm + 1 X F) such that akllß([h]) = [«]. Since a is injective, we will have

k~Mh]) = t.
To construct «, let o: (0,1) -» R be an increasing homeomorphism such that

a(i) = 0. For 0 < m < 1, define Tu: Rm X F X R X [0,1] X A""1 -* Rm X F X R X

[0,1] X A""1 by Tu(x, f, y, s, t) = (x, f, y + o(u), s, t). Define h: Rm X F X R X

[0,1] X A""1 -* Rm X F X R X [0,1] X A""1 by extending « via the identity. Recall

/ = [0,1]. Now define h: Rm X F X R X [0,1] X A""1 X/-»R"XFXRX[0,1]

X A"-1 X /by

u     . t    y.      \{T^hTu(x,f,y,s,t),u)     for0<ii<l,
h(x,f,y,s,t,u)=r

\(x,f,y,s,t,u) fort/ = 0,1.
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Identify A""1 X / with A" in such a way that A""1 X {1} is identified with J"'1.

Then [À] e i/j(R"+1 X F) and we claim ak?ß([h]) = [«]. First recall how

k~*ß([h]) is defined. Choose L > 0 large and set

M = h(tC x Fx(-oo,Z.] X[0,1] x A""1 x /)\(Rm x Fx(-oo,0) x[0,l] x A""1 X /).

Maps p: M -» A""1 X / and /: M -> Rm X F X {0} X [0,1] X A""1 X / are defined

to be the restrictions of the projections. Then kllß([h]) = t(/).

To define a(r(f)) we need a trivializing homeomorphism H for p: M -» A""1 X 7.

Define #: Rm X F X [0, L] X [0,1] X A"-1 X / -> M by

|(Â(jc,/, y, s, t),u) for£-<u<l,

£T(x, /, y, 5, r, h) - | (r^Är^*, /, y, s, t), u)     for 0 < u < \,

\(x,f,y,s,t,u) forw = 0.

Note that pjH is boundedly close to projection.

It follows that a(r(f)) is represented by H\Rm X F X [0, L] X [0,1] X A""1 X {1}

(after [0, L] is identified with [0,1]). This is clearly the class of «. Thus ak*lß([h]) =

[h] as desired.   ■
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