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THRICE-PUNCTURED SPHERES

IN HYPERBOLIC 3-MANIFOLDS

BY

COLIN C. ADAMS

Abstract. The work of W. Thurston has stimulated much interest in the volumes of

hyperbolic 3-manifolds. In this paper, it is demonstrated that a 3-manifold M'

obtained by cutting open an oriented finite volume hyperbolic 3-manifold M along

an incompressible thrice-punctured sphere S and then reidentifying the two copies of

S by any orientation-preserving homeomorphism of S will also be a hyperbolic

3-manifold with the same hyperbolic volume as M. It follows that an oriented finite

volume hyperbolic 3-manifold containing an incompressible thrice-punctured sphere

shares its volume with a nonhomeomorphic hyperbolic 3-manifold. In addition, it is

shown that two orientable finite volume hyperbolic 3-manifolds Mx and M2 contain-

ing incompressible thrice-punctured spheres Sx and S¿, respectively, can be cut open

along S; and Sj and then glued together along copies of Sx and S2 to yield a

3-manifold which is hyperbolic with volume equal to the sum of the volumes of M1

and M2. Applications to link complements in S3 are included.

1. Introduction. The work of W. Thurston has shown that many 3-manifolds

possess complete hyperbolic structures of finite volume. Although the hyperbolic

volume provides a useful invariant for the study of these manifolds, Wielenberg [6]

demonstrated that for any positive integer N, there are N nonhomeomorphic

hyperbolic 3-manifolds all with the same volume. His method was to cut particular

finite volume hyperbolic 3-manifolds with known fundamental polyhedra open

along totally geodesic thrice-punctured spheres and then reglue the two copies of

each thrice-punctured sphere by a particular isometry yielding nonhomeomorphic

hyperbolic 3-manifolds with the same volume.

In what follows, it is shown that this phenomenon will always hold true. That is,

let S be an incompressible thrice-punctured sphere in an orientable finite volume

hyperbolic 3-manifold M. Let M' be the 3-manifold obtained by cutting M open

along S and then reidentifying the two copies of 5 by an orientation-preserving

homeomorphism of S. Then M' is hyperbolic with the same volume as M.

In addition, we show that one can cut two finite volume hyperbolic 3-manifolds

Mx and M2 open along embedded incompressible thrice-punctured spheres 5, and S2

contained in Mx and M2, respectively, and then glue copies of the thrice-punctured
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spheres together to yield a hyperbolic 3-manifold M with volume equal to the sum of

the volumes of Mx and M2.

To prove both of the above, we first prove that incompressible thrice-punctured

spheres in finite volume hyperbolic 3-manifolds are isotopic to totally geodesic

thrice-punctured spheres. This result was known to A. Marden previous to this

paper. The above stated results are then proved. Finally, we discuss applications to

link complements. These are of particular interest since the above results furnish us

with a means to calculate the hyperbolic volumes of many link complements not

previously known. In addition, both of these results were originally conjectured on

the basis of explicit calculations of hyperbolic volumes for particular link comple-

ments.

This paper is based on work completed in my Ph.D. thesis under James W.

Cannon at the University of Wisconsin.

2. Preliminaries. A finite volume hyperbolic 3-manifold M is a 3-manifold without

boundary that possesses a complete Riemannian metric with finite volume and

constant sectional curvature — 1. This is equivalent to the existence of a covering

map from hyperbolic 3-space to M such that the covering translations act as a

discrete group of isometries on hyperbolic 3-space and any fundamental polyhedron

for the action of the covering translations on hyperbolic 3-space has finite volume.

In this particular paper, all of the finite volume hyperbolic 3-manifolds that we

consider are noncompact and are therefore the interiors of compact 3-manifolds

with nonempty boundaries consisting of tori.

Hyperbolic 3-space is denoted by H3. The corresponding sphere at infinity is

denoted S¿. We denote the orientation-preserving isometries of H3 by Isom+(//3).

If M is a finite volume hyperbolic 3-manifold, we use v(M) to denote its hyperbolic

volume.

A surface embedded in a finite volume hyperbolic 3-manifold M is totally

geodesic if it lifts to the disjoint union of geodesic planes in H3.

We will assume the following facts, proofs for which can be found in Thurston [5]:

(i) A finite volume hyperbolic 3-manifold decomposes into a compact piece and

a finite set of cusps, each of which is topologically the product of a torus with an

open interval and each of which is covered by the disjoint union of horoballs in H3.

(ii) Hyperbolic volume is a topological invariant for finite volume hyperbolic

3-manifolds.

(iii) Elements of the fundamental group of a finite volume hyperbolic 3-manifold

that are conjugate to elements in the cusp subgroups are exactly the parabolic

isometries when the fundamental group acts on H3.

3. Straightening thrice-punctured spheres. In this section we prove the following

Theorem 3.1. Let M be a compact orientable 3-manifold such that M is a finite

volume hyperbolic 3-manifold. Let S be an incompressible thrice-punctured sphere

properly embedded in M. Then S is isotopic to a thrice-punctured sphere S' properly

embedded in M such that 5" is totally geodesic in the hyperbolic structures on M.
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Proof. Choose a basepoint xQ on S. Since M is a hyperbolic 3-manifold, we can

choose a covering map p: H3 -* M and basepoint jc0 e p~1(x0) which induce a

monomorphism <j>: ttx(M, x0) -* lsom+(H3). We will denote the covering transla-

tion d>([ct]) by Ta.

Since each cusp of M inherits a product structure from H3, we can isotope S so

that S is totally geodesic in the cusps.

Choose simple closed curves a, ß and y on S, each based at x0, such that each is

homotopic to a different boundary component of S and such that [a] ■ [ß] = [y] in

ttx(S, x0). Since [a], [ß] and [y] all he in subgroups of ttx(M, x0) corresponding to

cusps, Ta, Tß and Ty are all parabolic isometries. Using the Upper Half-Space model

for H3, where we choose {00} to correspond to the fixed point of Ta, we can let

a    b
[c    d.

for some w =t 0, a, b, c, d e C, where a + d = 2 and ad - be = 1. Then

a + cw    b + dw

c d

is parabolic so a + cw + d = +2. Thus either c = 0 or c = - 4/w.

If c = 0, then Ta and Tß commute and im(iTx(S, x0)) is abelian, where /': S -» M is

the inclusion map. However, since S is incompressible, imTrx(S, x0) = Z* Z.

Thus c = -4/w. The fixed point of Tß, denoted xß, is then given by w(d - a)/8.

The fixed point of Ty, denoted xy, is given by w(d - a)/8 + w/2.

Note that Ta preserves the circle C = {w(d - a)/8 + tw: t e R) u {00}. Tß also

preserves C since

Tß(oo) = -wa/4 = w(d - a)/i - w/4 e C,

Tß(xy) = T^(xy) = w(d - a)/% - w/2 e C,

Tß(xß) = xß.

Hence d)(TTx(S, x0)) preserves the circle C.

Let P' be the hyperbohc plane with limit set C. A fundamental domain for the

action of the group à>(rrx(S, x0)) on P' is shown in Figure 1.

We need the following

Lemma 3.2. If[\] e ttx(M, x0), then TX(P') F\ P' = 0 or P'.

Proof. Since S is incompressible, p~l(S) is the disjoint union of not necessarily

geodesic planes in H3. If S is not totally geodesic let P be the nongeodesic plane in

/>_1(S) containing Jc0. Note that <p(<rrx(S, x0)) must preserve P.

Since S is not compact, a fundamental domain for the action of 4>(ttx(S, x0)) on P

must contain limit points on S¿. Let y be such a limit point. Since <p(ttx(S, x0))

preserves the limit set of P, denoted L(P), T£(y) e L(P) for all integers «. But

Ta(y) approaches xa on S¿ as « approaches 00, hence xa e L(P). Similarly, xß and

xy e L(P). Consequently, since the images of xa, xß and xy under <j>(rrx(S, x0)) are

dense in C, C Q L(P).

T =
1    w

0     1.
Tß

T =
Y

Tß-
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Figure 1

In fact, C = L(P) as if not, let x g L(P), x £ C. Let {x¡)JLx be a sequence of

points on P converging to x.

Suppose {p(Xj)}°°=1 is contained in a compact submanifold of S. Thenp(x¡) —> y

G S. Lifting a neighborhood of y in S to P yields g,(x,) -» j for some g, g

^(^(S, x0)). Hence g~l(y) -* x. But the limit points corresponding to the action of

<b(TTx(S, x0)) on any point in H3 all lie in C.

Thus {p(xj)}'*Lx is not contained in any compact submanifold of S. Hence there

is a subsequence, still denoted {p(xi)}°°=x, that goes out a particular cusp of M.

There exists a horoball B about one of xa, xß and xy that projects to this cusp.

Without loss of generality, suppose it is xa.

Then there is a sequence of elements { g,}f=x in $(77,(M, x0)) such that {g¡(x¡)}flx

is contained in B, with g¡(x¡) -» xa. Since g,(*,) must lie on a copy of P and the

only copies of P intersecting B do so in geodesic planes with limit sets containing xa,

there exist group elements {p¡}^Lx in the cusp subgroup such that jt^g,/.*,) g P.

Since such an element ft, preserves horospheres about xa and since as / increases,

gj(Xj) must lie in horospheres of shrinking radii, ju,g,(.x,) -* xa.

However, p,g, g <¡>(ttx(S, x0)) as it sends a point in P back to P. Hence x is in the

limit set of dj(Trx(S, x0)) acting on the horoball about xa. But that limit set is C,

contradicting the fact x £ C.

Thus, for any [\]e irx(M, x0), TX(P') has the same limit set as one of the

nongeodesic planes covering S, namely TX(P). Since any two of the nongeodesic

planes are disjoint, their limit sets are either identical or intersect in at most a point,

in which case the limit circles are tangent. Hence TX(C) D C = 0, C or one point,

and TX(P') n P' = 0 or P'.   D

Thus, p~1(p(P')) is the disjoint union of totally geodesic hyperbolic planes.

Suppose TX(P') n P' = P' for some Tx contained in <¡>ttx(M, x0) but not in

(bTTx(S, x0). Then TX(C) = C. Since C is the limit set of P, xa can only be identified

to images of itself under the action of <f>irx(S, x0). Hence Tx(xa) = T^xJ for some

Tß G <¡>ttx(S, x0). Then T~lTx(xa) = xa implying T~lTx is in the cusp subgroup
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corresponding to xa. Since T~lTx preserves C, T~lTx must equal T£ for some

integer «. This imphes Tx g <pTrx(S, x0), contradicting our choice of Tx.

Thus, P' projects to the interior of a thrice-punctured sphere 5' in M. Note that

each of the boundary components of S and 5' which lie on the same boundary

component of M are isotopic simple closed curves since both correspond to the same

element of the fundamental group of that boundary component of M.

We now complete the proof of Theorem 3.1 by showing that S is isotopic to 5' in

M.

Isotope S into general position with respect to 5'. We will first isotope S to be

disjoint from 5'. Since 35 can be isotoped to be disjoint from 35', all the intersection

curves are simple closed curves.

Choose an innermost trivial intersection curve on S (or 5'). If it is also trivial on

S' (or S), we can remove the intersection by the irreducibility of M. If it is nontrivial

on S' (or S), it is isotopic on 5' (or S) to a boundary component of 5' (or S).

Hence, there is a simple closed curve in dM which is nontrivial in dM but bounds a

disk in M. This contradicts the injection of the cusp subgroups in a finite volume

hyperbolic 3-manifold.

Now all remaining intersection curves are both isotopic on S to a boundary

component of S and isotopic on S' to a boundary component of S'. Let a be such an

intersection curve which is the nearest intersection curve to 35" on 5'.

Let Ax be the annulus on S' bounded by a and the one component of 35". LetA2

be the annulus on S bounded by a and one component of 35. Let A = Ax U A2.

Since a hyperbolic 3-manifold does not contain any incompressible, 3-incom-

pressible annuli, A must 3-compress. By irreducibility, this implies there is an

annulus A' in dM such that A U A' bounds a solid torus V in M, where the dA curves

are (p, 1) curves on dV. Consequently, we can isotope A2 to Ax through V,

eliminating the intersection.

We now have 5 n 5' = 0. Lifting 5 and 5" to H3, we find P' n Tß(P) = 0 for

all 7^ g <¡>ttx(M, x0). Hence P' U P bounds an open 3-cell Win H3 such that

IW      ifT^$TTx(S,Xs),
wn T (w) = <

\0     if T^ <= 4>rrx(M,x0) but T^Z <t>TTx(S, x0).

Let p': H3 -> H3/<¡>ttx(S, x0) and M' = p'(W). M' is contained in a compact

manifold M" which is homeomorphic to a compact submanifold of M' obtained by

removing the images under p' of small open horoballs about xa, xß and xy.

Let F' be the thrice-punctured sphere in dM" such that P' projects to F'. Note

that /*: ttx(F') -* ttx(M") is an isomorphism.

By Hempel [2, Theorem 10.2], M" is homeomorphic to F' X I by a homeomor-

phism taking F' to F' X 0. Corresponding to the projection of P, there is a

thrice-punctured sphere Pin dM" such that F' U F = dM' and F' U F U (J3=x A,■ =

dM", where each A¡ is an annulus in dM" bounded by a component of dF and a

component of dF'. Hence F can be isotoped through M" to F'.

This isotopy lifts to yield an isotopy of P to P' through W which is equivariant

with respect to (pir^S, x0). Since W n TW = 0 for 7^ £ ^^(5, x0), this isotopy is
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actually equivariant with respect to <j>ttx(M, x0) and therefore projects to an isotopy

of S to 5" through M. This isotopy extends to the boundaries.   D

4. Statement and proof of the main results. Let 5 be a properly embedded

incompressible thrice-punctured sphere in a compact oriented 3-manifold M. Let

M' = M — N(S), where N(S) is a regular neighborhood of 5 in M. Let 50 and 5j be

the two copies of 5 in dM'.

Let u: 50 -> 5, be the identification map that would give us M back again, and let

X: 5, -» Sx be any orientation preserving homeomorphism. Let M" be the 3-mani-

fold obtained from M' by identifying 50 and Sx by the identification map X ° p.

Theorem 4.1. If M is a finite volume hyperbolic 3-manifold, then so is M" and

v(M) = v(M").

Proof. By Theorem 3.1, we can assume 5 is totally geodesic. Since any orienta-

tion-preserving homeomorphism of Sx is the composite of orientation-preserving

homeomorphisms that preserve one boundary component of 5, and switch the other

two, it is enough to prove the theorem for homeomorphisms of this type. Without

loss of generality, we will assume X switches the 3-components of Sx corresponding

to [a] and [ß] while preserving the 3-component corresponding to [y], where [a], [ß]

and [y] are defined as in the proof of Theorem 3.1.

Let P be the hyperbolic plane in H3 which projects to 5 when <¡>ttx(S, x0) acts on

it. Let D be the fundamental domain for the action of 4>ttx(S, x0) on P as in Figure

1. Let x0 be the intersection of the geodesic g, running from xß to xa in D and the

geodesic g2 running from xy to Tß(xy) in D.

Define a fundamental domain ß for <pTrx(M, x0) as follows:

ß = [x G H3: d(x,x0) < d(x,Tlí(x0)) for all T^ g ^>ttx(S, x0)

andd(x, P) < d(x,Te(P)) for all Te e <í>ttx(M, x0)).

It is not difficult to check that ß is a fundamental domain for §ttx(M, x0).

Lemma 4.2. Let C be any compact set in H3. Then only finitely many images o/ß by

elements in <prrx(M, x0) intersect C.

Proof. Suppose {Tj)°°_x is an infinite set of elements in <$>(ttx(M, x0)) such that

r)(ß) intersects C. Then, after replacing {T¡}fLx with a subsequence if necessary,

there exists x G C such that d(x, P¿(^)) < !/'•

By the definition of F,(ß), it follows that

(1) d(x, Tt(x0)) < d(x, 7;Tr(x0)) + 2/Ï for all Ty g <j>(ttx(S, x0)),

(2) d(x, T¿P)) < d(x, T^P)) + 2/i for all ^ g <p(ttx(M, x0)).

Let D = {y: d(x, y) < d(x, Tx(xQ)) -Y 2). Suppose there exists a subsequence

{7J}°1, such that all of the TJ's are in the same left coset of <¡>rrx(S, x0) in

4>ttx(M, x0). Assuming Tx is in the coset, (1) implies Tf(x0) is in D for all j,

contradicting discreteness. Hence, by again taking a subsequence, we can assume all

the T¡ 's are in distinct left cosets.

Condition (2) then implies each Tt(P) intersects D by taking 7^ = P,"17,1. Hence

by taking another subsequence, there exists j> g D such that d(T/1(y), P) < l/i.
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For each T~\y), choose T[ g $ttx(S, x0) such that

d{T¡Tr\y), x0) < d(T¡Tr\y), Ty(x0))

for all Ty g <pTTx(S, x0). We are merely choosing T[ so that T[T~l(y) lies in that

fundamental domain of «^(5, x0) defined by this condition. Because all the F,'s are

in distinct cosets of <¡>ttx(S, x0), all the 777p1's are distinct.

Since <pTTx(M, x0) is discrete, the sequence {T¡T~l(y)}fLx must approach 5¿. But

since the sequence stays in a fundamental domain for <¡>ttx(S, x0) centered about Jc0

and approaches the plane P, a subsequence must approach one of the four points

where the fundamental domain intersected with P touches 5¿ (either xa, xß, xy or

Tß(xy) in Figure 1).

However, far enough out toward one of these points on 5¿, <¡>ttx(M, x0) will only

identify points in the same horosphere. Since T[ leaves P invariant and

d(T-\y), P) < 1/i we know T¡T-\y) stays within 1/i of P. Thus {T¡Tr\y)}

cannot all he on the same horosphere for all /' greater than some 7Y, hence we have a

contradiction.    D

Lemma 4.3. ß is finite-sided.

Proof. In [3, §4.4], Marden points out that whenever our manifold has a finite

volume hyperbolic structure a fundamental polyhedron R is finite-sided provided:

(i) R has the appropriate face-pairing properties.

(ii) A finite number of images of R under the group G intersect any given

compact set in H3.

(iii) If p g R is a parabolic fixed point, then R is contained in a finite number of

images of Cp(0') under Mp for some O' g H3, where M is the maximal parabolic

subgroup of G fixing p and Cp(0') = {x g H3: d(x, O') < d(x, T(0')) for all

T^Mp).

Condition (i) means the pairs of faces of R should be identified by elements of the

group and each face should lie in a hyperbolic plane. This is certainly true of ß.

ß also satisfies (ii) by Lemma 4.2.

To check (iii), putp at {oo} in the Upper Half-Space model. Note ß c C'(x0),

where Cp(5c0) = {x: d(x, x0) ^ d(x, T(x0)) for all T e Mp (~) <j>(ttx(S, xQ)) and

d(x, P) < d(x, Q(P)) for all Q g Mp).

But since Mp is isomorphic to Z ffi Z for any finite volume hyperbolic 3-manifold,

cp(x0) = D X (0, oo) for some polygon D c R2. Cp(x0) = D' X (0, oo) for some

polygon D' c R2. Hence, finitely many images of Cp(x0) under Mp will cover

Cp(x0). This completes the proof of Lemma 4.3 since ß c Cp(x0).   D

Since for all 7^ g $ttx(M, x0) but 7^ £ <j>ttx(S, x0) we have T^P) nP = 0, it

follows that P n ß = {x g P: d(x, x0) < d(x, Te(x0)) for all Te g <¡>ttx(S, x0)}.

This is again the fundamental domain for the action of <i>77,(5, x0) on P pictured in

Figure 1.

We can cut ß open along P Ci Q, obtaining two components ßx and ß2. Since a

thrice-punctured sphere cannot separate an oriented 3-manifold with toral boundary
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components, there exists a face on ß2 which is identified to a face on Qx. Let Tx be

the identifying isometry.

Let ß' = ßj U PA(ß2). Let Fx be the copy of P n ß on 3ßt and P2 = TX(FX). ß' is

a new fundamental domain for <brrx(M, x0) containing Fx and P2 on its boundary.

Note that all the edges on 3F, and 3F2 correspond to dihedral angles 77/2 in ß'.

Let g be the geodesic intersecting the hyperbolic plane containing F2 at Tx(x0)

and perpendicular to that plane. Let Q be the elliptic isometry corresponding to

180° rotation about g. Note Q(F2) = F2 by our choice of Jc0.

Define a new set of identifications on ß' to be the old identifications on all pairs

of faces except Fx and F2, and to identify Fx with F2 by Q ° Tx. Since any

homeomorphism of a thrice-punctured sphere is isotopic to a unique isometry in the

hyperbolic structure on that thrice-punctured sphere, performing these identifica-

tions on ß' will yield a manifold homeomorphic to M".

By Maskit [4], all the conditions for this to be the fundamental polyhedron of a

discrete hyperbolic group are satisfied with the possible exception of the edge and

completeness conditions.

Since ß' with the original identifications is a fundamental polyhedron for

<P(ttx(M, x0)), the edge and completeness conditions for edges and cusps that do not

involve F, and F2 will still be satisfied under the new identifications. In the original

identifications, the eight edges on 3F, U 3P2 consisted of two classes of four edges

each, where all edges in the same class were identified to a single edge in the final

manifold. Our change in the identification of F, and F2 just switches two edges in

one class for two edges in the other. Since all the dihedral angles for these edges are

tt/2, the condition that the sum of the angles around an edge in the final manifold

must be 2 tt is still satisfied.

We still need to satisfy the cycle condition on edges; that is, if we form a product

of identifying isometries which preserves an edge on 3P, or 3P2, we need to know

that the product is the identity on the edge.

Up to conjugacy and inverse, the only two such products involving edges from 3P,

and 3P2 are

(QTxV\TxTßTxl)(QTx)Ta   and    (QTx)\TxTJxl)(QTx)Tß.

Using the fact QTxTaTxlQ = TxTßTxl, both of these products are immediately seen

to be the identity. Hence, all we have left to check is completeness for each of the

cusps on which 5 has a boundary component.

Maskit points out that it is enough to check that each tangency vertex transforma-

tion is parabolic. (A tangency vertex transformation is a product of face-identifying

isometries that fixes a point on 5¿ in the fundamental polyhedron.) In fact, in our

case we need only check that one tangency vertex transformation for each cusp is

parabolic, since the cusp subgroups are abelian and therefore any other tangency

vertex transformation corresponding to this cusp is conjugate to an element that

commutes with this parabolic element and is therefore parabolic itself.

However, if we take that element of the cusp subgroup corresponding to the

boundary component of 5, it is unaffected by the change in identifications and
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hence remains parabolic. Consequently, our fundamental polyhedron with the new

identifications does correspond to a discrete hyperbolic group with the same volume

as the original group.    D

Corollary 4.4. Let M be an oriented 3-manifold such that M is a finite volume

hyperbolic 3-manifold. Then if M contains a properly embedded incompressible thrice-

punctured sphere S, there exists an orientable 3-manifold M' which is not homeomor-

phic to M such that M' is a hyperbolic 3-manifold with the same volume as M.

Proof. Cut M open along 5. If the boundary components of 5 do not all he on

the same boundary component of M, choose a homeomorphism <p of 5 which

interchanges two boundary components of 5 lying on distinct boundary components

of M while fixing the third. Then reidentifying the two copies of 5 by $ will yield a

3-manifold such that its interior is hyperbolic with the same volume but with one

less cusp.

If all three of the boundary components of 5 lie on the same boundary component

Q' of M, then one of the three components Q of Q' - 35 intersects both sides of 5.

Choose a homeomorphism <#> of 5 which interchanges the two boundary components

of 5 which bound Q while fixing the third. Then reidentifying the two copies of 5 by

<p will again yield a 3-manifold such that its interior is hyperbolic with the same

volume but with an additional cusp.   D

Let Sx and 52 be incompressible thrice-punctured spheres properly embedded in

compact orientable 3-manifolds Mx and M2, respectively. Let M'¡ = M¡ - N(S¡). Let

5,° and 5/ be the two copies of 5, in 3M,.

Let X0: 5° -» 52° and Xx: 5j -* 52 be any two homeomorphisms that either both

preserve orientations or both reverse orientations. Let M be the 3-manifold obtained

from Mx and M2 by identifying Sx° and 52° using X0 and identifying 5j and 52 using

K

Theorem 4.5. If Mx and M2 are finite volume hyperbolic 3-manifolds, then so is M

andv(M) = v(Mx) + v(M2).

Proof. Exactly as in the proof of Theorem 4.1, we find fundamental polyhedra ßx

and ß2 for M, and M2 such that there is a pair of faces 7*)°, Fj1 in 3M( corresponding

to the thrice-punctured sphere 5,. Let Q¡: F° -» F)1 be the homeomorphism that

would again yield M¡.

Note that it is enough to prove the theorem for any particular pair of homeomor-

phisms X0 and Xx by Theorem 4.1. There exists an orientation-preserving isometry T

of hyperbolic space sending F,° to F2 such that T(üx) n ß2 = F2. This is true since

we can take three of the four points where F,° intersects 5¿ to any other three points

on 5¿ by some orientation-preserving hyperbolic isometry. The fourth point will go

to the right place by the symmetry of F,° and F2.

Let ß = F(ßi) U ß2. Conjugating the identifying isometries for ßx gives us the

identifications for faces of T(QX) with the exception of T(FX). The original

identifying isometries for faces of ß2 give us the identifications for faces of ß coming

from ß2, with the exception of F2°. Identify T(FX) to F¿ by Q2TQxlT~l. Exactly as
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in the proof of Theorem 4.1, we check that the edge and completeness conditions are

satisfied.   D

5. Applications to link complements. Many link complements containing thrice-

punctured spheres are known to be hyperbolic (see, for instance, [1]). Hyperbolicity

of the link complements imply the thrice-punctured spheres are incompressible.

Restricting the homeomorphisms used to identify copies of the thrice-punctured

spheres, Theorems 4.1 and 4.5 yield the following corollaries.

Corollary 5.1. Let L be a link in S3 such that S3 — L is hyperbolic and L has a

projection for which some part appears as in Figure 2(a). Let L' be the link obtained by

replacing that part of the projection of L appearing in Figure 2(a) with that appearing

in Figure 2(b). Then S3 — L' is hyperbolic with the same volume as S3 — L.

CO

(a) (b)

Figure 2

Note that 53 — L' is obtained by cutting S3 - L open along the twice-punctured

disk bounded by the trivial component shown in Figure 2(a), twisting a half twist

and reidentifying. A full twist would have yielded a manifold homeomorphic to

S3 - L.

Corollary 5.2. Let Lx and L2 be links in S3 such that S3 - Lx and S3 - L2 are

hyperbolic and Lx and L2 have projections as in Figure 3(a). Let L be the link with

projection as in Figure 3(b). Then S3 — L is hyperbolic and v(S3 — L) = v(S3 — Lx)

-Y v(S3 - L2).

CÜ>

(a)

Figure 3

Volume = 3.6638...

Figure 4
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OooO dpo
Volume = 5.3349..

(a)

Cgp       &=&
Volume = 7.32772.

(b)

S •  \

Volume = 10.14942.

(c)

Figure 5

Figure 6

We call a link L formed out of two links Lx and L2 as in Corollary 5.2, the belted

sum of Lx and L2. In each of the Figures 4, 5 and 6, two dots in the projection plane

denote a trivial component of the link intersecting the projection plane in only these

dots. This trivial component bounds a thrice-punctured disk as in Figure 2(a). For

example, Figure 4 denotes the Whitehead link.
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Note that the Borromean rings are the belted sum of two copies of the Whitehead

link and hence have volume equal to 7.32772... . Utilizing Corollary 5.1 and

calculations of volumes from Thurston [5], some volumes of link complements are

given in Figure 5.

Thus for example, the link appearing in Figure 6, working from top to bottom, is

the belted sum of a Whitehead link with a link as in Figure 5(a), a link as in Figure

5(b), a twisted strand which contributes no volume by Corollary 5.1 and a link which

is itself the belted sum of a link as in Figure 5(a) and a link as in Figure 5(c). Hence

the volume of the complement of this link is given by

3.6638... +5.3349... +7.3277... + 0 + (5.3349... +10.1494...) = 31.8107 ....

Similarly, many of the volumes of link complements in the tables can be easily

computed.
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