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SINGULAR BEHAVIOR IN NONLINEAR PARABOLIC EQUATIONS

BY

WEI - MING NI1 AND PAUL SACKS2

Abstract. In this paper, we study the well-posedness of the initial-boundary value

problems of some quasilinear parabolic equations, namely, nonlinear heat equations

and the porous medium equation in the fast-diffusion case. We establish nonunique-

ness (local in time) and/or nonregularizing effect of these equations in some critical

cases. The key which leads to the resolution of these problems is to study some

singular solutions of the elliptic counterparts of these parabolic problems (the

so-called M-solutions of the Lane-Emden equations in astrophysics).

Introduction. In this article we are concerned first of all with the existence or

nonexistence of singular solutions of certain semilinear elliptic boundary value

problems, and secondly with the application of these results to the study of some

related parabolic problems.

To begin with, consider the problem

(0.1) A«+/(w) = 0,       x g ß,

u = 0,       x g 3ß,

u > 0,       x g ß,

where ß = unit ball in RN, N > 3, A = L?=x(d2/dxf) and/ g C^W). By a singular

solution of (0.1) we mean a function u g C2(ß \ (0)), u > 0, in ß, u = 0 for x g 3ß

and lim^Q u(x) = oo.

Equations of the type (0.1) arise in a variety of physical problems; for instance, in

astrophysics, equation (0.1) with/(w) = up is known as the Lane-Emden equation.

See Chandrasekhar [10], Joseph and Lundgren [17], and Ni [23]. Singular solutions

have intrinsic interest in some of these problems, and have not been investigated as

thoroughly as classical solutions.

We denote by Xx = X(ß) the first eigenvalue of — A in ß with zero boundary

conditions.

Theorem 1. (i) Suppose

(0.2) 0 < f(s) < sf'(s) < J^-¡f{s),       s > 0,
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(0.3) /'(0) < Xx.

Then (0.1) has infinitely many singular solutions.

(ii) Suppose

(0.4) 0 < yz%M < sf'(s),       s > 0.

Then 0.1 has no singular solutions.

Remark. At the expense of additional technical complications in the proof, one

can allow equality in the right-hand of inequality (0.4). However, we shall not prove

this here.

If we are interested in the case of the exact power law/(j) = sp,p > 1, then (0.2),

(0.3) includes the case p g(1,A//(/V- 2)] while inequality (0.4) includes p g

((N + 2)/(7Y — 2), oo). Actually, if we are willing to make more specific assump-

tions on the nonlinearity/we can include the remaining power law cases (for/) > 1

at least) as well as allowing some x dependence.

Consider, for example, the following problem:

(0.5) Am + X\x\'up = 0,       x G ß,

u = 0,       x g 3ß,

m > 0,       x G ß,

where X > 0, / > 0 and p > 1. This equation arises in the study of rotating stellar

structures; see Hénon [16].

Theorem 2. (i) If 1 < p < (N + 2 + 2l)/(N - 2), then (0.5) has infinitely many

singular solutions.

(ii) If p > (N + 2 + 2l)/(N - 2), then (0.5) has no singular solution which is

radially symmetric.

Remarks, (i) If / = 0 one may show by slight modification of the arguments in

Gidas, Ni and Nirenberg [11] that any singular solution must be radially symmetric,

hence we obtain the nonexistence of any singular solution in this case.

(ii) The nonexistence results in Theorems 1 and 2 correspond to a theorem of

Pohozaev [30] for classical solutions. We do not make any direct use of Pohozaev's

results in studying singular solutions.

(iii) Due to the homogeneity in the equation, the question of existence of solutions

of (0.5) (singular or classical) may be studied via phase plane techniques. See e.g.

Joseph and Lundgren [17], Chandrasekhar [10], and Aviles [2] for some special cases.

However, the methods we use here will work also for more general nonlinearities as

in Theorem 1. See also Lions [22] for some related results.

(iv) The exact behavior of singular solutions near x = 0 has been investigated by

various authors. See, for example, Serrin [31], Gilbarg and Serrin [14], Lions [22],

Gidas and Spruck [13], and Aviles [2].

(v) For the type of nonlinearities / considered in Theorems 1 and 2 it turns out

always that singular solutions exist exactly when classical solutions exist. Now this is

not the case for general/. Indeed in the case/(w) = X«, X > 0, it is not hard to see
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that there cannot exist both classical and singular solutions of (0.1), although one or

the other may exist, depending on the value of X.

We are also interested in the following two parabolic problems:

u, = Au + up,       x g ß,i > 0,

(0.6) u(x,t) = 0,       xG3ß,r>0,

u(x,0) = u0(x),       x G ß, t = 0;

u, = A(um),       a: G ß, í > 0,

(0.7) u(x,t) = 0,       *G3ß,/>0,

u(x,0) = u0(x),        X G ß.

Consider first the semilinear problem (0.6).. The theory of this problem set in Lq

spaces has been developed by Weissler [33] and others. In particular, it is known that

if u0 g Lq(ü), q > N/2(p - 1) and q > p then (0.6) has a unique solution from

C([0, rj; L9(ß)), for some T > 0. In the marginal case p = q = N(p - l)/2 =

N/(N — 2) one still has a local existence theorem; we show uniqueness fails in this

case.

Theorem 3. If p = N/(N - 2% N > 3, ß = ball in RN, then there exists (infinitely

many) uQ G Lp(ü) such that (0.6) has at least two solutions from C([0, T]; Lp(Q)),for

some T > 0.

Remarks, (i) The existence theorems mentioned above may be found in Weissler

[33]. The uniqueness when q > N(p - l)/2 and q ^ p is proven by a more or less

standard contraction mapping argument, using the regularizing properties of the

semigroup generated by -A. See Baras [3] for details.

(ii) Some related nonuniqueness results have been proved in Haraux and Weissler

[15] and Baras [3]. The exponent p = N/(N — 2) is also a hmiting case in the work

of Baras.

(hi) The nonlinearity up in Theorem 3 could be replaced by f(u), provided /

satisfies (0.2), (0.3),

(0.8) lim  ^Ç- > 0,       p
S-* 00

and

(0.9) f'(s) < Cis"-1 + C2,

We will explain why these hypotheses are sufficient following the proof of Theorem

3.

Next we turn to the problem (0.6) with p ^ (N + 2)/(N — 2). It is well known

that solutions of this problem may blow up in finite time (Kaplan [18], Levine [21]).

On the other hand, any solution which is uniformly bounded for í ^ 0 tends to zero

as t —» oo. Indeed, if tn -» oo then there exists a subsequence tn -» oo such that

u(-, t„ ) converges to a nonnegative steady state solution of (0.6). However, by the

theorem of Pohozaev [30] the only such solution is the zero solution.

N

N - 2'

s > 0.
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in the paper [28] it is shown that there also exist solutions of (0.6) which exist for

all / > 0 but are not uniformly bounded. We are interested in what can be said

about the asymptotic behavior of these solutions.

Theorem 4. Let u be a nonnegative global classical solution of (0.6) with p >

(N + 2)/(/V -2),N> 3, andu0(x) = u0(\x\). Then

(0.10) lim u(x, 0 = 0,       x # 0,
f-*oo

(0.11) lim\\u(-,t)\\LHa) = 0.
t-»oo

The conclusions (0.10) and (0.11) remain valid for a global weak solution u provided

(0.12) u(-,f0) eL°°(ß)   for some t0>0

and

(0.13) u is a monotone increasing limit of classical solutions of (0.6).

Remarks, (i) Here by a weak solution we mean a function u g C([0, T]; Ll(íi)) n

Lp(tix (0, T)) for any T > 0 satisfying

(0.14) f ( («f, + «Af + u"Ç)dxdt =  f u(-,t)S(-,t)dx\l
Js   Ja jq

for any 0 < s < t < T < oo and f g C2(ß X[0, T]) satisfying f(jc, r) = 0 for x g

3ß.
(i) In [28] it is the existence of weak global unbounded solutions which is

demonstrated. The conditions (0.12) and (0.13) are satisfied by the construction

given there. It would, of course, be interesting to know whether these solutions are

classical or not; we suspect that they are, but have not been able to prove this.

(iii) Again, exact homogeneity in the nonlinearity is not necessary. The conclusion

of Theorem 4 remains valid with up replaced by /(«) where / satisfies (0.3), (0.4),

and / is convex.

Finally, consider the "fast diffusion" problem (0.7) with m g (0,1) (see e.g.

Berryman and Holland [6] or Peletier [29].) It is known from Veron [32] or Bénilan

[4] that if m > (N - 2q)/N and w0 e Lq(ü), q > 1, then «(■, t) g L°°(ß) for all

t > 0. For q = 1 the cut-off exponent has recently been shown to be sharp. Namely,

it follows from the results in Brézis and Friedman [7] that if m < (N - 2)/N and

/0 > 0 there exists u0 g Lx(ß) such that u(-,t0) £ L°°(ß).

Using Theorem 2 and looking for separable solutions of (0.7) we obtain further

counterexamples to this regularizing effect.

Theorem 5. Let q &[1,2N/(N + 2)), m g ((N - 2)/(N + 2), (N - 2q)/N)

and t0 > 0. Then there exists a solution of (0.1) with u0 £ L«(!i) and u( ■, t0) Í L°°(ß).

If q = 1 we may allow m = (N — 2)/N.

Remark. By the use of comparison arguments one sees that if there is no L°°

regularizing effect in the case that ß is a ball in R", then there cannot be regularizing

for any other domain.
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The organization of this paper is as follows. §1 contains some auxiliary results

related to problems (0.1) and (0.5). In §2 we give the proofs of Theorems 1 and 2.

Finally, in §3 we give the proofs of Theorems ?, 4 and 5.

1. In this section we prove or recall some preliminary results.

Lemma 1.1. Let u g C2(ß \ {0}) be a nonnegative function satisfying

(1.1) Au+f(x,u) = 0,        XGß\{0},

withf>0,fe C\Q x[0, oo)). Then:

(i)f(x, u(x)) G L\Q).

(ii) If\x\mui(x) G L\ti) for some q > (N + m)/(N - 2), then

(1.2) Au+f(x, u) = 0   /«^'(ß).

Corollary 1.2. Let u g C2(ß \ {0}) be a nonnegative function satisfying

Au+f(x,u) = 0,       xGß\{0},

withf> 0,/ G C\Ü X [0, oo)) and

n i\ v       ■ t f(x>s) ^ n    / s. N -Y m
(1.3) hm   inf       m       > 0   for some q 5= -

5—»a

Then

■ wv N~2'

Au-Yf(x,u) = 0   in@'(Q).

Remarks, (i) Lemma 1.1 is a slight generalization of Proposition 3.1 in Gidas, Ni

and Nirenberg [12]. For the reader's convenience we sketch the proof here. The

result of part (i) is also contained in Theorem 1 of Brézis and Lions [8].

(ii) The conclusion of the corollary is false in general if (1.3) does not hold. For

example, if f(x, u) — \x\'up, 1 < p < (N + l)/(N - 2), then it may be shown as in

Lions [22] that any singular solution of (1.1) must satisfy

Au+\x\'up = a80   in^'(ß)

for some a < 0, where S0 denotes the Dirac mass at x = 0.

Proof of Lemma 1.1. (i) As in Brézis and Lions [8] we choose cut-off functions

Çe(x) in the form

$e(x) = $(e/\x\N~2),

where $ g C°°(R+) is convex, $(0) = 1 and $(/) = 0 for t > 1. Then f£(x) = 0 for

\x\ < e, 0 < ft(x) < 1, Çe(x) -» 1 as £ -> 0 for x * 0 and AfE > 0 in ß. Multiplica-

tion of the equation by f e and integration over ß yields

( f(x, u(x))Se(x)dx^  f       (uÇer-teur)dr.

The right-hand side is bounded independently of e, hence we obtain the conclusion

from Fatou's lemma.

(ii) Choose t G C°°(0, oo), r(r) = 0 for 0 < r < 1, r(r) = 1 for r > 2, 0 < t < 1

and re(r) = r(r/e). It suffices to show that

(1.4) lim f Te(MAf +f(x,u)S)dx = 0
e^O ¿Si

for any f g C™(C¡); note that u G L}(Q) under the stated hypotheses.
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Integrating by parts and using the equation for u, one sees that it is enough to

have

(1.5) lim ( ÇuArdx = 0
e->0-/S2

and

(1.6) lim f m Vf • Vredx = 0.
£->0-'

We may write u(x) = hx/\x)/\x\m/i with « g L\Q) and q > (N + m)/(N - 2).

Since |At£| < Ce-2 we obtain the following estimate for the integral in (1.5) using

Holder's inequality;

r   „.     ,        C r          «1/g   J
/   uÇAr.dx < — / -— dx

c^li        hdx\/q[( dx     V'     ± + ± = 1
* e2\L\<2e        X \L\<Ze   \x\m^/9J        '       1        a'

u   káxrif   _^
\J\x\<2e j       \J\X\<2e   \x\m^

:( f      hdx)
\J\x\<2e j

,1/?

<C|/ hdx]       em-l/<,)-m/g-2

and the right-hand side tends to zero with e by virtue of the assumptions made. The

proof of (1.6) is similar.   ■

Lemma 1.3. Let u g C2(ß\{0}) be a nonnegative radially symmetric function

satisfying

Au + X\x\'u» = 0,       *Gß\{0},

with X > 0,1 > 0 andp > 1. Then

(1.7) u(x) < C/I^r2^1',       *Gß\{0}.

Remark. The estimate (1.7) is not sharp in all cases; see [2, 8, 22]. We will need

this lemma only for p <= ((N -Y l)/(N - 2), (N -Y 2 -Y 2l)/(N - 2)), in which case

(1.7) is proved in Gidas and Spruck [13] where no assumption of radial symmetry is

made. As the proofs there are somewhat complicated, we prefer to give a simple

derivation for the case at hand.

Proof.   Assume   first   that   p e(l, (N + 2 + 2l)/(N - 2)].   Let   v(r) =

rii+2)/(p-i)u(ry^ we nee(j t0 show that v g L°°(0,1). Making the further change of

variable w(s) = v(sl/(2~N)) we need w g L°°(l, oo). The equation for w is

(1.8) w"+^w'+-L(p-l)+ -^— w"-'\ = 0,
s2\ (N-2)2 j

where u = (/ + 2)/((p - 1)(N - 2)) > \.

We first claim that if w is monotonically increasing on (s0, oo) for some s0 > 1

then
' N _ 2\2Ap-1)

lim w(s) <   ;
J—» oo V 2X2
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Otherwise, we would have (X/(N - 2))wp~1(s) > \ for some^ > s0, and we derive

a contradiction using a Sturm comparison type argument. Indeed, for a > \

solutions of

«" + 2ph'/s +(u(ju - 1) + a)h/s2 = 0

are oscillatory, hence a solution of (1.8) cannot have constant sign on (sx, oo).

We deduce that if w is not bounded on (1, oo) there must exist a sequence tn -» oo

such that w'(tn) = 0 and w(t„) -» oo. To see that this is impossible also, we multiply

the equation (1.8) by s2w' and integrate from 1 to tn. Integration by parts yields

(2u - 1) f"s(wf ds +

In particular, since p > \,

VJV-1)™2 + _*_wP+i
(p-Yl)(N-2)

2

W'(lf

p(p-l)w2(t„) Xwp+1(t„)
—-4—^-^ + -V "'    , < constant,

2 (p + l)(N-2)2

which is inconsistent with w(tn) -» oo.

If p g ((iV + 2 + 2l)/(N - 2), oo) the arguments are similar except that one

makes the change of variable w(s) = v(sy) where

l/y = 2-N + 2((l + 2)/(p-l)).   m

Another important ingredient in the proofs of Theorems 1 and 2 is the following

uniqueness result. Denote by ßÄ the annulus {x g R^: R < \x\ < 1).

Theorem 1.4. (!) Let p > 1, I > 0 and X > 0. Then the problem (0.5) has at most

one radially symmetric classical solution.

(ii) The same is true if SI is replaced by ßÄ, R > 0.

(iii) Assume (0.2) holds. Then the problem (0.1) has at most one classical solution.

(iv) Assume (0.2) holds. Then the problem (0.1) in QR, R > 0, has at most one

radially symmetric classical solution.

Remarks, (i) Parts (ii), (iii), (iv) here have been proved in Ni and Nussbaum [26],

with some special cases proved previously in Ni [25]. The proof of part (i) is by a

simple scaling argument, as in Gidas, Ni and Nirenberg, p. 224 [11]. In part (iii) no

assumption of radial symmetry was necessary since this is a necessary consequence

of Theorem 1 of [11]; similarly in part (i) this.need not be assumed if / = 0. In the

case of the annulus there may exist nonradial as well as radial solutions; cf. Brézis

and Nirenberg [9].

2. In this section we give the proofs of Theorems 1 and 2. The techniques used

here are closely related to those used in Ni [25], and Ni and Nussbaum [26].

We begin with the existence assertions. We look for singular solutions which are

radially symmetric, u(x) = u(r), r = \x\. Letting s = r2~N, v(s) = u(r), the equa-

tion and side conditions to be satisfied are

v" + g(s, v) = 0,       s.> 1,

(2J) o(l) = 0,     limi;(i)=oo,
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where

g(s,v)=f(v)/(N-2)2s2 + 2AN-V

in the case of Theorem 1, and

g(s, v) = Xv"/(N - 2)V+<'+2>/("-2>

in the case of Theorem 2.

Consider the associated initial value problem

w" + g(s,w) = 0,       s > 1,

w(l) = 0,    w'(l) = a

with a g (0, oo ) and denote the solution by wa insofar as it exists.

Under the hypotheses of part (i) of either Theorem 1 or 2, the problem (0.1) or

(0.5) has exactly one radially symmetric classical solution. The existence of this

solution for (0.1), or (0.5) in case 1=0 follows, for example, from Ambrosetti and

Rabinowitz [1]; one then has radial symmetry from Theorem 1 of Gidas, Ni and

Nirenberg [11] and uniqueness of radial solutions from Theorem 1.4. The problem

(0.5) with / > 0 is investigated in Ni [24] where it is shown that there exists a radially

symmetric solution from //¿(ß). Furthermore, it is also shown in [24] that if

u g Hl(Qi) and is radially symmetric then

l«(')l < C\\u\\Hl(a/-^2.

It follows that \x\'up~l g Lq(Q) for some q > N/2, whence u must be a classical

solution of (0.5), by elliptic regularity theory [20]. Uniqueness within the radial class

again follows from Theorem 1.4.

Observe next that if a is such that lims_^w^s) = L for some L g[0, oo) then

reversing the earlier change of variables we obtain a solution u of (0.1) or (0.5) in

ß\ {0} with u g L°°(fi). By Lemma 1.1 and elhptic regularity arguments again, u

must be a classical solution in ß. We conclude that under the stated hypotheses there

exists exactly one number a0 > 0 such that hms_00wa  = L for some L g (0, oo).

Now consider

T(a) = sup{s: wa(s) > 0on(l,i)}

and

I - domain of T = {a g (0, oo): T(a) < oo}.

From considerations of continuous dependence it is not hard to see that I is open, T

is continuous on I, and T is unbounded on any component of I. On the other hand,

T is one-to-one by Theorem 1.4, and I + (0, oo) since a0 <£ I. It follows that the

complement of I contains an interval. Since clearly either T(a) < oo or else

hms_œwa(s) = oo, a =£ a0, we obtain the existence of a continuum of singular

solutions.    ■

Remark. In Ni [25] or Ni and Nussbaum [26] it is actually shown that T(a) is

monotone decreasing. Thus it is not hard to see that I = (ß, oo) for some ß > 0.

We turn now to the proof of part (ii) of Theorem 1. As remarked earlier, any

singular solution is necessarily radially symmetric.
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Set 0 = \(N + 2)/(N - 2), y = 20 and H(t) = ryf(t)/(N - 2)2; note that the

condition (0.4) implies that H'(t) > 0 on (0, oo). The equation satisfied by z(s) =

s-1/2u(s1Ä2-N))maybcwutten

(2.2) (sz')' + Llzy~1H(v^z~)-^\ = 0,       s>l.

It is sufficient to show that if z(l) = 0 and z'(l) > 0, then z(T) = 0 for some

T G (1,00).

We claim first that z cannot be monotone nondecreasing on (1, oo). To see this,

suppose z is increasing on (1, oo) and let L = lims_xz(s). If both L and Hx =

lim^^H^) are finite, then clearly we must have Ly~lHx > \ since otherwise

sz'(s) > z'(l) > 0 which contradicts L < oo. Thus, in any case, there must exist

sx > 1 and e > 0 such that

zy~1(s)H(^z(s)) -*>■«

for j > sv

Letting h(s) denote the solution of

(sh')'-Y eh/s = 0,       h(sx) = z(sx),       h'(sx) = z'(sx),

h(s) is oscillatory, and by an oscillation comparison argument it follows that z must

change sign on (sx, oo), a contradiction.

Next we claim that z' cannot have an accumulation point of zeros (this is

immediate if/is analytic). To see this, set

g(J,z) = f(z-177(v^z)-i).

If it were true that z' had an accumulation point of zeros at a point s = a with

z(a) = L > 0, it would follow that

(2.3) ^rg(s,z) = 0
s = a
z=L

for every positive integer k. However, using (2.3) with k = 0 and k = 1 and doing

some fairly straightforward manipulations, one obtains tf'(t) = yf(t) for t = {aL,

contradicting (0.4).

Next we claim that z cannot have a positive local minimum in (1, oo). Otherwise,

by the previous remark there is a first such local minimum at s = £, and we may find

t) g (1, |) such that z(tj) = z(£), z(s) > z(£) for s g (tj, |). Also there exists f G

(tj, £) such that z is increasing on (t/, f ) and decreasing on (f, £). Multiplying the

equation (2.2) by sz' and integrating from tj to £ yields

(2.4) J   zyH(y/s~z)z'ds>0.

To derive a contradiction we write this integral as the sum of the integrals from tj to

f and f to £. On each of these two intervals we make the change of variable a = z(s).

Let a = z(tj) = z(£), b = z(f ) and í,(o) and s2(o) be the functions inverse to z with
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ranges in (tj, f ) and (f, £), respectively. Then (2.4) may be written

0 < jb ay[H^sx(a)a) - 7/(^2(a)a)) do.

Since H is strictly increasing and s2(o) > sx(o) for a g (a, b), this is a contradic-

tion.

If then z(s) > 0 on (1, oo) the only remaining possibility is that there exists

s0 g (1, oo) such that z is increasing on (1, s0), decreasing on (s0, oo), and

hms_xz(s) = L for some L > 0. Note that we cannot have lim^^^líz^í)! > 0

since otherwise z(s) -* - oo as s -* oo. There must therefore exist sequences £m -» oo

and T)m, T)m+1 < i)m < s0 < im < im+x such that tmz'(im) -* 0, z(r,m) = z(£m), z(s)

> z(Çm)fors<=(r,m, £J.

Again multiplying the equation by sz' and integrating from T/m to £m we get

(sz'f U
+  i     zyH(}fsz)z'ds = 0.

Changing variables as before gives

ÇbOy{H[{s^o)-H[fiJÔ)o))do> - <*"*'(*"■»  ,

where bm = z(£m). Letting m -» oo we obtain the nonnegativity of the left-hand

integral with lower limit replaced by L, which is again a contradiction. This

completes the proof of Theorem 1.

The proof of Theorem 2(h) in the case p > (N + 2 + 21)/(N — 2) is similar

except slightly simpler. The critical case p = (N -Y 2 -Y 2 -Y l)/(N - 2) must be

handled slightly differently; it is done essentially in Ni [23, Appendix]. We refer the

interested reader to this source.

3. In this section we give the proofs of Theorems 3, 4, and 5.

Proof of Theorem 3. It follows from Theorem 1 of Weissler [33] that for any

u0 <= Lp(£l), p = N/(N - 2), the problem (0.6) has a solution

u g C([0, T]; LP(Q)) n L°°((t, T) X Q)

for some T > 0 and any t g (0, T).

On the other hand, if we take / = 0 we obtain from Theorem 2 infinitely many

singular solutions of the steady state equation (0.5), each of which also satisfies (0.5)

in ^'(fi) by Corollary 1.2. Since by Lemma 1.1 these solutions belong to LP(Q),

they are then also solutions of (0.6) from C([0, T]; LP(Q)) for any T > 0 and clearly

must be different from the solution given by Weissler's theorem.   ■

Remark. As mentioned earlier, the nonlinearity up may be replaced by f(u),

satisfying (0.2), (0.3), (0.8) and (0.9). Indeed, due to (0.9) we may obtain from

Theorem 3 of Weissler [33] a solution of (0.6) which belongs to L°°(ß) for / > 0;

(0.2) and (0.3) guarantee the existence of an unbounded steady state singular

solution by Theorem 1; and, finally, singular solutions are distributional solutions by

Corollary 1.2 since (0.8) holds.
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Proof of Theorem 4. Let m be a nonnegative global classical solution of (0.6)

with p >(N + 2)/(N -2),N> 3, and u0(x) = u0(\x\). By Theorem 1 of Ni and

Sacks [27] there exists T* > 0 depending on w0 such that ur(r, t) < 0 for t > T* and

r g [0,1]. Thus replacing u(x, t) by u(x, t + T*) if necessary, we may suppose that

u( ■, t) is radially decreasing for every / > 0.

Let Xj and \px denote the first eigenvalue and eigenfunction of -A in ß with zero

boundary conditions; then \px > 0 and we may take jadjldx = 1. Multiplying the

equation by \[>1 and integrating gives

(3.1) -r I u\pxdx =  I  up\pxdx — Xx I  u\pxdx
dt J Jsi Jri

(3.2) >iju\Pxdx\   -XxfujXdx.

Thus, since u exists for all / > 0 by hypothesis we must have

(3.3) ( u(-,t)^xdx^Xy<p-V

for all t > 0. Moreover, it is clear that there exists a constant C = C(ß) such that

(3.4) f hdx^cf h^xdx

if « is any radially decreasing function on ß. Thus we have

(3-5) ||«(-,0lhfl)<C>

for all / > 0 for some C0 < oo depending only on ß and p.

Next if \x| = R > Othen

(3.6) u(x, t) < jafw<R u(y, t) dy<-^lü u(y, t)dy<-^,

using again the fact that u( ■, t) is radially decreasing. In particular,

u GL°°((0,oo) XßR)

for any R > 0 (recall ßÄ = {x g R": R > \x\ < 1}).

Using parabolic regularity theory [19] and the fact that u is uniformly bounded on

(0, oo) X ßR/2 we obtain a bound for u, u„ ux, uxx as in Ca'a/2((0, oo) X ßR) for

any R > 0 and a g (0,1). Here Ca'a/2 denotes the space of Holder continuous

functions with exponent a in x and a/2 in /.

We claim now that w,(-, t) -> 0 in L2(QR) as t -* oo, for any R > 0. To see this,

multiply the equation by u, and integrate to obtain

(3.7) [' ( u2dxdt + J(u(-,t)) = J(u0)

where

(3-8) j(v)=\j\Vv?dx-^-jvP+i dx.
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The fact that u is globally defined implies that J(u(-, t)) > 0 for all t > 0; see e.g.

Levine [21]. Therefore

(3.9) f     (   u2dxdt < C < oo.

Since t -» Ja ujdx is uniformly continuous, by the uniform Holder estimate on ut,

we must have

(3.10) lim   f   u2(-,t)dx = 0.

To prove (0.10) it is enough to show that if tn -* oo there is a subsequence

tn  -* oo such that «(x, i„ ) -> 0, x + 0.

Let ?„ -» oo. First of all {«(-, t„)} is uniformly bounded in C2 + a(ßR) for any

fixed R > 0 and a g (0,1). Thus we may find a subsequence tn -» oo and h> g

C2(ßR) such that w(-, r„ ) -> w in C2(ßR). Furthermore, since u,(-, tn ) -> 0 in

L2(ßR) we must have

(3.11) Aw-Y wp = 0,       x g ßÄ.

By the use of a diagonalization argument we may find a further subsequence, again

denoted t  , and w g C2(ß \ {0}) such that

(3.12) Aw + wp = 0,       xGß\{0},

and u(x, tn ) -» w(x) for x # 0. Clearly w satisfies the boundary condition w(x) = 0

for x g 3ß*

If wí L°°(ß) then w is a radially symmetric nonnegative singular solution of

(0.5), and this contradicts Theorem 2. Therefore we must have w g L°°(ß). By

Lemma 1.1 and elliptic regularity [20], w must, in fact, be a classical solution of (0.5).

But then Pohozaev's theorem [30] implies w = 0. This completes the proof of (0.10).

Next we prove (0.11); suppose to the contrary that there exists t„ such that

(3-13) \\u(-,t„)ym>e>0.

By (3.4) it follows that

(3.14) f u(-,tMi,dx>l= ± >0.

Now from (3.2) we obtain easily that

and so thare exists 8 > 0 such that for s g (tn, tn + 8)

(3.16) f u(-,s)^xdx> |.

Next, integrating (3.1) from /„ to tn-Y 8 gives

(3.17)

f'" + S [ up(-,t)^x,dxdt^  (u(-,tn + 8)xPxdx + Xxf'n + S [ u(-,t)^xdxdt
Jt„      jq Jn Jt„      Ja

<Ai/o>-i)(l + Xfi),
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using (3.3). By the mean value theorem there must exist s„ g (tn + 8) such that

r     ,      „            ^'-"(l + Xx8)
(3.18) f^up(-,sMidx<--S-—•

We have therefore found a sequence sn -» oo such that u(-, sn)\px -* 0 pointwise

a.e. and \\u(-, s„)4/x\\LP^a) is uniformly bounded. It follows immediately that

w( ■, sn)*px -» 0 in L\ü), which conflicts with (3.16).

This completes the proof of Theorem 4 in the case that u is classical. If, instead, u

is a weak solution satisfying (0.12) and (0.13) it is only necessary to make some of

the above arguments more carefully, and to use approximation at appropriate

points.

Suppose un(x,t)1u(x,t) for each (x, t) where each un is a global classical

solution of (0.6). By (0.13) we may assume u0 g Cr](ß). From the proof of Theorem

1 in [27] it follows that there exists T* < oo independent of n such that u„(-, t) is

radially decreasing for t > T*; hence the same is true of u. The estimates (3.3) and

(3.5) remain valid for u by approximation (alternatively these inequalities can be

derived directly for weak solutions). We have (3.9) holding with u replaced by un and

constant C independent of «; by lower semicontinuity (3.9) is valid for u itself. For

the remainder of the proof of (0.10) the arguments take place away from x = 0, i.e.

where the weak solution u is actually classical.

In proving (0.11) one has instead of (3.15) the integrated form

t > s, from which (3.16) again follows. The estimate (3.17) is still valid by the

defintion of weak solution, and, instead of using the mean value theorem to derive

(3.18), we have from (3.17)

(                       */■',<»                \      X\Ap~l)(l + X,ô)
meas|íG (tn,tn + 8): j u"(-, s)+xdx > k\ < -*-j-1—L,

and the right-hand side is less than 8 for k > X1/(/'~1)(l + Xx8)/8. Clearly one then

has (3.18) with a slightly larger constant on the right-hand side.

With these changes the proof of Theorem 4 for weak solutions is complete.   ■

Proof of Theorem 5. The problem (0.7) has solutions in the form

u(x,t)= [C-(l-m)l]+1A1-m)wp(x)

for C> 0, p = l/«i and where w g L^(fi) satisfies Aw -Y wp = 0 in 2>'(ti) and

w = 0 classically on 3ß.

Sincep g [N/(N - 2), (N + 2)/(N - 2)) we see from Theorem 2 and Corollary

1.2 that we can find such a function w with w £ L°°(ß); choosing C > (1 - m)t0

then guarantees that u(-, t0) £ L°°(ß).

If p = N/(N - 2) then, from Lemma 1.1, u0(x) = C1A1-m)wp(x) belongs to

Lx(ß). In the case that/) g (N/(N - 2),(N + 2)/(N - 2)), q > 1, it follows, from

Lemma 1.3 and the fact that w0 is smooth away from x = 0, that u0 g Lq(ü) since

\/p = m < (N - 2q)/N.
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Remark. In Gidas and Spruck [13] it is shown that \x\2ÄP~1)u(x) > C> 0 if u is

a singular solution of (0.5) with / = 0 and p g (N/(N - 2),(N + 2)/(N - 2)).

Using this fact, one may state the following more precise version of Theorem 5. If

r G (1,2N/(N + 2)) and m = (N - 2r)/N, then the problem (0.7) has a separable

solution u(x, t) such that u0 G L^ß) for any q < r and u(-, t) <£ Lr(ß) for t g

[0, T], some t > 0.

In the case m = (N - 2)/N then (0.7) has a separable solution u(x, t) such that

u0 g L\Q) and u(-,t)<£ ¿«(ß) for any q > 1 on [0, T] some F > 0. To see this it

only remains to check that the singular solutions of (0.5) with 1 = 0 and p =

N/(N — 2) do not belong to Z/(ß) for any r > p. One argument for this is a

bootstrap argument using elliptic Lp (Calderón and Zygmund) estimates in a fairly

standard way. Another approach is to use Theorem 1 of Aviles [2] where the exact

behavior of w near x = 0 is obtained. We omit the details.

Since the above argument only works in the case m = (N — 2)/N, we do not

recover the nonregularizing theorem of Brézis and Friedman [7]. We conjecture that

there should be some direct argument, perhaps along the lines of Bénilan and Diaz

[5] by which lack of regularizing for some m implies lack of regularizing for any

smaller m.
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