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A WEIGHTED INEQUALITY

FOR THE MAXIMAL BOCHNER-RIESZ OPERATOR ON R2

BY

ANTHONY CARBERY1

Abstract. For/e ¿"(R2), let (7£/)"(£) = (1 - |£|2«2)î/(£). It is a well-known

theorem of Carleson and Sjölin that T" defines a bounded operator on Z,4 if a > 0.

In this paper we obtain an explicit weighted inequality of the form

/      sup    \T%f(x)\2w(x)dxti( \f\2Paw(x)dx,
0<R<oo

with Pa bounded on L2 if a > 0. This strengthens the above theorem of Carleson

and Sjölin. The method gives information on the maximal operator associated to

general suitably smooth radial Fourier multipliers of R2.

1. Introduction. For/ g y(R2) and a > 0, let

(rç/)"(i) = (i-in27?2);/(i),

where R g R+ and    denotes the Fourier transform. Let

T%f(x)=    sup    \T£f(x)\.
0<R<ao

In [1] it was shown that \\T%f\\p < CpJ\f\\p for all a > 0 provided that 2 < p < 4

(a result which extended the theorem of Carleson and Sjölin [3]). In this note we

establish a weighted inequality which provides a stronger form of the above result on

the maximal Bochner-Riesz operator.

Theorem 1. Let 2 < q < oo and a > 0. Then there exists an operator P = P

which is bounded on Lq such that

j \Tlf(x)\2w(x) dx^f \f(x)\2Pw(x) dx

whenever w is a nonnegative function in Lq.

Several comments are in order.

1. It suffices to prove the theorem in the case q = 2. For if P2 fulfills the

requirements of the theorem in the case q = 2, P , defined by Pqaw =

[^>2,a(w?/2)]2/</' aoes so f°r Lq. That P is bounded on Lq is clear, and we may

interpolate with change of measure between the estimates

j\Tlf\2wUf\f\2(P2taw)J,       7 = 0,1,
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to obtain the inequality of Theorem 1. (This observation was pointed out to the

author by Professor J. Garnett.)

2. The proof of Theorem 1 is constructive—that is, an explicit formula for Pw in

terms of w is given. Previously, Rubio de Francia [7] had been able to show that for

each nonnegative w in L2, there exists a nonnegative w' in L2 with ||w'||2 < CJ|w||2

such that

sup     f \T%f(x)\2w(x) dx < Í \f(x)\2w'(x) dx.
0<K<oo J

However, the proof gave no information on how to construct w' from w. Since an

earlier version of this paper was prepared, it has come to the author's notice that

Córdoba [5] has constructed from each nonnegative w in L2 a nonnegative w' in L2,

with ljw'112 < QIMl2> sucri mat

j \TxJ(x)\2w(x) dx^ f \f(x)\2w'(x) dx.

The definition of w' given by Córdoba was not invariant under dilations, so the full

strength of Rubio's inequality was not obtained.

3. It would be of some interest to establish a version of Theorem 1 in which the

operator P did not depend upon q. In particular, the conjecture (see [8, p. 7]) that P

may be realised as (essentially) T,f_02~kaM2k/2 remains unsolved. Here, as subse-

quently, MN denotes the maximal function corresponding to averages over rectangles

in N uniformly distributed directions in R2. The relevant fact about MN here is that

WMnÍWi < C(log3A^)^||/||2, where C and ß are absolute constants. See Córdoba [4].

On the other hand, it can be shown that the operator P2 of Theorem 1 satisfies

11-^2,«HI, < G    ||w||   when 2 < q < 4. See the remark at the end of §2.

Theorem 1 follows from Theorem 2 below. For a > ^ let êa(è) = (1 - \è\)°Tl\è\.

Let

&a(f)(x)=f     K*f(x)\  dt/t,

where if ^ is a function defined on R2, ip,(x) = t'2^(x/t).

Theorem 2.1fa> \ then there exists an operator P bounded on L2 such that

j &a(f)\x)w(x) dx < Caf \f(x)\2Pw(x) dx

whenever w is a nonnegative function in L2.

In fact, Theorem 2 leads to a generalisation of Theorem 1. For a > \ let ¿£2

denote the usual space of Bessel potentials on R (see, for example, [9, Chapter 5])

transformed under the change of variables s >-* exp s. Thus, if m is defined on

(0, oo), \\m\\^ = m||(log(-))||^. If we let

(S?f)'tt) = m(\t\R)f(S)    and   S?f(x) =    sup    \S?f(x)\,
0<R<oc

we have the following inequality [2], valid when a > \ :

SZf(x) < Cjmfc¿9u(f)(x).

Consequently, we obtain Theorem 3.



A WEIGHTED INEQUALITY ON R2 675

Theorem 3. Let a > \. Then there exists an operator P bounded on L2 such that if

m is a radial function on R2 whose restriction to (0, oo) lies in£?2, then

f \S%f(x)\2w(x) dx < CjMk2/ \f(x)\2Pw(x) dx

whenever w is a nonnegative function in L2.

Theorem 1 may be deduced from Theorem 3 as follows. Let

(i-lfl^-*i(W)+[(i-ltf)î-*i(W)].
where </>0 is a C°° function of compact support in [- |, f ], agreeing with (1 - r2)\ on

[- 2> W Then the maximal operator corresponding to <b0 is dominated by the

Hardy-Littlewood maximal function, while (1 - r2)\- <#>0(r) belongs to ä?2 if

a < X + §.

Theorem 2 follows from the following lemma, proved in §2 below.

Lemma. Let <& be a smooth real-valued bump function supported in [-1,1]. Let

<H£) = $((|£| — l)/8) for small 8 > 0. Let \p = <b. Then there exists an operator

Q = Qs such that

(i)

jf° / |*,»/(x)|\*(x) dx j < / \f(x)\2Qsw(x) dx

whenever w is a nonnegative test function, and

(Ü)

||Ösvv||2 < C8(log(3/8)) VII2.

(Here and subsequently, ß will denote a positive absolute constant, and C will be a

positive constant depending only possibly on max0<y<3||í>(j,)||cio; C and ß may not

be the same at each occurrence.)

To obtain Theorem 2 from this lemma, we merely write

<*•(€)-(í-líl);-1!«!- E 2-«-1^(|{|),
k = 0

with <bk smooth, supported in [1 - 2_,c, 1 - 2"*~2] and satisfying H^H«, < C2kJ,

and letting \£*(£) = <í»jt(l¿D» we observe that if a > 1/2,

/ $«(f)2w = j Ç \0?*f(x)\2w(x) ^dx

= //o°°   (£2-«-^)«/(x)      '   **w(x) —dx
v   '   t

k

,V2)2

<{f;o2-*<--i,(//ocoi*f./(*)rW(x)fáx)

lr^-^f\f(x)2Q2Mx)dx]j

(„   C,nJ \f(*)\2 £ 2-««-WQ2->w(x) dx.
(a - 1/2) J k_0
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Thus P is realised as Y.t=02-k(a-3/2)Q2-k, and
OO

\\Pw\\2<c£ 2-*<«-3/2)2-^H|2< C\\w\\2.
k = 0

2. Proof of the lemma. From now on we consider $ and 8, hence <f>, to be fixed.

We assume 8 = 1/N2, where N is a power of 2.

We need to recall that in [1] we constructed a covering of R2 - {0} by rectangles

{S{} such that Ex si < 25, together with a partition of unity {ß{} subordinate to

that covering. If the distance between the centre of S{ and the origin is d, then S{

has sidelengths comparable to 8d and 81/2d, and is oriented so that the direction of

the longer side is approximately perpendicular to the line joining the origin to the

centre of SJk. Thus 5/ lies in an annulus Ak centred at the origin of width

approximately 82kS and subtends an angle of approximately 81/2 at the origin. In

each large annulus {21 < |£| < 2/+1}, / g Z, there are 1/8 smaller annuli Ak. Let y]k

be a smooth multiplier supported in 25/ (the rectangle with the same centre and

orientation as S{ but twice the sidelengths) and satisfying the same estimates as ß[,

and let (BJkf) (£) = yJk(£)f(i). Let p(£x, £2) be a smooth bump function of ¿x,

supported in [\,4] U [-4, - \] and identically one on [1,2] U [-2, -1], and let

g(f)(x) = (E*rezlP2* * f(x)\2)l/1- The proof of Proposition 4 of [1] shows us that

(1) / I \B{ffw < -T-^—ßJ g(f)\M2MNw*)l/s
/.* (S —  1)

whenever s > 1. (In that proof MN appeared raised to the third power, but since we

are using smooth cutoff functions y¿, we can dispose of two of these powers.) The

operator g, being a vector-valued singular integral, satisfies the inequality

(2) jg(f)2u<—^—ß f \f\2(Mu°)1/s
J (J-1)

for all i > 1, since (Mus)1/s, s > 1, is an Ax weight with constant not exceeding

C/(s — 1)^. (Here M is the Hardy-Littlewood maximal function which is dominated

by the strong maximal function Mx.) Combining (1) and (2) yields

(3) /  I \Blf\2w < -——¡i \f\2(M3MNw°)1/s
J j.k (s- iyJ

fors > 1.

Construction of Q. For / and w in the Schwartz class, say, and w nonnegative, we

see that

j™ j\t,*f(x)\2w(x)dx^

= /°° /i,*f(x)^t*f(x)w(x)dx
dt_

t

dt
j     f   Ln,f(x)Tl,,f(x)w(x)dx^
0 j.f

k,k'

/OO     a     w_^-- ¿ft

f    J   Zntf(x)Ti,J(x)R^k,w(x)dx-,
j.j
k,k'
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where (T¿tf)~(t) - *(fÎ)Ai(É)/(É), and (Rj¿k.w)(£) = *(f) if í e S¿ - s£ (We
have left a certain latitude in the definition of Rjkjk, which we exploit later.) Observe

now that, for a given t, there are at most three consecutive values of k for which T¿,

is not the zero operator for all j. Applying Parseval's relation once more, and the

Cauchy-Schwarz inequality inj, j', k, k', we have

Ç f\4>t*f(x)\2w(x)dx^

,■00       /* - - A-

= /    /   £      £    TUÏJR^dt-

+ f / £    £   TuYuwdx^

« 3 P /   £ |r¿/T¿',/f    f  sup     £   |«iS>|a)
0 ;./ \i*-*1<*i/-n>2

r00   t «-i i   •   i2        ¿i

+9/   / £|f¿,/|w*7

= 3/°°/ L\ntf(x)\2Aw(x)dx^-,

1/2

21     / v-     i.„.   i2l       ,   dt
dx

t

dt
1kt!\x)\  ^wyx) ux -

j,k

where

(\ '

«UP        E    WMx)\\      + 3w(x).
|*-*'|<2 y-/l>2 /

Now the dt/t measure of {t\T¿, ¥= 0} is dominated by 8 for each fixed (k, j), and

integrating by parts as in [1] shows that \T¿J(x)\ < CL{ * |/|(x), with C indepen-

dent of t and depending only on max0<y-<3||$o')||0O. Here, ¡L{ < 1 and L{ * |/|(x)

< CMNf(x). Let y I be a smooth bump function supported in 2S{ and identically

one on S{, so that if (Bif)'(t) = 7¿«)/(í) then 7¿/(x) - T{tB{f(x). Thus,

/o°°/|<W(*)|2w(*)¿xf

<Cô7 E(^*|^/|(x))2^w(x)^
A*

<C8f L(Li*\B{f\2)(x)Aw(x)dx
J.k

= C8Í Z\BJkf\\x)L{*Aw(x)dx
J   J,k

K CSf E \Bif\2MNAw
j,k

CO

(s-1)
-0f\f\2{M3MN(MNAwY}

l/s
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for each s > 1, by (3). We now choose s — 1 + l/log(3/ô), so that

jf/|+,./W|!w(*)<fcf

< i i/i^ifiog i) v.^í«^)'wr,r*H'/ír'

This completes our construction of Q satisfying condition (i) of the lemma.

Boundedness of Q. A very simple interpolation argument shows that since MN

satisfies

\\MNf\\2 < C(log3N)ß\\f\\2   and    \\MNf\\3/2 < CN\\f\\3/2,

then MN is bounded on Lp withp = 2/(1 + (log(3/8))_1) with norm still no larger

than G((log3A/)^). To complete the proof of the lemma, then, it remains to show

that ||^4w||2 < C(log3/<5)^||vv||2, to which task we now turn ourselves; without loss

of generality it suffices to obtain a similar estimate for

1/2

A'w(x) =[sur>     £     \RJ/w(x)\2)     ,
\   k   |y-/|>2 /

where, for notational simplicity, we have written Rk\ as R'¿".

For|7'-/|>2,let

rk(j, j') = sup{ || - £'[: £, £' g Sí - Si', with £ and £' lying on

the same line segment passing through the origin},

and let

*k( j> f) = sup{ l£ - è'\ '■ í, €' e Sj¿ - •S'/ ', with £ and £' on the same line

segment which is tangent to a circle centred at the origin).

(These are the ' radial' and ' tangential' lengths of S¿ - S{.) Let the eccentricity

e*(¿ /) of Si - S{ be tk(j, j')/rk(j, j'). For each k g Z and each m g Z let

^"" = {(./'. /)|2M < ek(j, j') < 2m+1). Notice that SSm is independent of k. Ob-

serve that the eccentricities range between 1/N and N; thus 38m is nonempty only

when \m\ < log iV. Now

f ( sup l-RfwH dx = f sup j £      £      Ia^wR í¿c
I tj,j') I fc     '   m  (;,y)e*" /

C(logA^)^   max     f sup I       £      |R£" wf   <±c.
H<logAi^       *    If/.near /

Thus it is sufficient to obtain a bound for

■U.j')

which is independent of m.

f supj       £      |7vfw|2J dx
*    '(/./'le«" /
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For each m, then, let S?¡¡" = {AX\X G Am) be the collection of 'rectangles' formed

by the concentric circles (|£| = 2p/2mN}peZ and the uniformly distributed rays

{arg£ = 2trp/N},p = 0,1,...,N - 1. Let(Axg)\0 = XAx(t)g(0-
We now make use of our freedom in defining Rjkj'w. If {j, j') g SSm, let

(RJkJw)*(£) = £x,^(£)>H£)> the sum being taken over all X g Am such that ^x n

(5/ — S{) ¥= 0. By the construction of {^\}, there will be at most four nonzero

terms in this sum, and C. Fefferman's observation [6] that for a given k, the sets

{ S¿ - S{ }jj. are " almost disjoint" in the sense that T.jj>X si - si' < C yields

£    \RJM2 < c £ Mxw|2
(j,j')<BâSm ^^Am

for all /c. If we now take the supremum over k g Z, we obtain the desired result

since

£ KH2)1
.eA_ /

= IM|2,

2

Ex ,4 being identically equal to one almost everywhere on R2.

Remark. The above computations concerning the boundedness of Q show that

\\Qsw\\q<C8(log(3/8))ß\\w\\q

will hold provided that q > 2 and

,2\1/2||
(£KH2)      «c(iogjv)Vll«

with >iA as above and |w| < log JV. In the case q = 2 this is trivial; however, it

remains true when 2 < q < 4. The endpoint case m = log N is in [1] (in fact

inequality (3) above is the required estimate) and the case m = -log N is implicit in

the article of Córdoba in the proceedings of the conference in harmonic analysis in

honour of Antoni Zygmund held at Chicago (W. Beckner et al., eds., Wadsworth,

1982). The other cases are handled similarly; the middle case m = 0 is substantially

simpler.
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