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ESTIMATES OF THE HARMONIC MEASURE

OF A CONTINUUM IN THE UNIT DISK1

BY

CARL H. FITZGERALD, BURTON RODIN AND STEFAN E. WARSCHAWSKI

Abstract. The harmonic measure of a continuum in the unit disk is estimated from

below in two ways. The first estimate is in terms of the angle subtended by the

continuum as viewed from the origin. This result is a dual to the Milloux problem.

The second estimate is in terms of the diameter of the continuum. This estimate was

conjectured earlier as a strengthening of a theorem of D. Gaier. In preparation for

the proofs several lemmas are developed. These lemmas describe some properties of

the Riemann mapping function of a disk with radial incision onto a disk.

Let F be a continuum in the closure of the unit disk A, 0 í £. We are interested

in lower estimates for the harmonic measure w(0, E, A), that is, the value at the

origin of the bounded function which is harmonic in each component of A - E and

which, roughly speaking, takes the value 1 at the boundary points belonging to E

and takes the value 0 on the rest of the boundary.

The classical Milloux problem (as in [1], for example) involves an estimate in

terms of Frad, the circular projection of E onto a radius of A, namely

(1) co(0,F,A)><o(0,Frad,A).

A natural conjecture, dual to the Milloux problem, would be

(2) co(0,F,A)><o(0,Fcirc,A)

where Ecirc is the radial projection of E onto the circumference of A. Theorem 1 of

this paper states that the solution (2) of this dual Milloux problem is valid if Fcirc has

length no greater than m.

Let Ediam be an arc on the circumference of A which has the same diameter as E.

Another natural conjecture is

(3) «(0, E, A) > <o(0, E^, A).

(The conjecture (3) appears as Open Problem 3.21 in [2].) Theorem 2 of this paper

states that (3) is valid. Simple examples show that either one of the estimates (2) or

(3) may be stronger than the other depending on the particular continuum under

consideration.

Estimates in terms of the projection Fcirc were studied by Maitland [10] for sets E

which are not necessarily connected. If Maitland's estimate is specialized to z = 0
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and E a continuum, it becomes equivalent to an inequality which is inequality (2)

with the left-hand side multiplied by a large constant (see Remark 1 at the end of

§2). In Gaier [4] it is shown that Hall's lemma is valid with a constant of 1 if the set

whose harmonic measure is to be estimated is an arc. Gaier's version of Hall's

lemma can be applied in the disk to yield (2) in the special case that le£ and

ri g E for some 0 < r < 1. In general, Gaier's theorem and our Theorem 1 are not

comparable.

Theorem 2 is a generalization of a theorem of Gaier [3, Theorem 9] which states

that if E is an arc with endpoints at 1 and f then

w(0, £,A)>(lA)arcsin(|l - f|/2).

Our proof of Theorem 2 makes use of this theorem of Gaier.

A theorem of M. Lavrientiev [8, Theorem 8] states that if E is an arc, if both

endpoints of E he on 3A, and if diam E = d < 1/2, then 2tru>(0, E, A) > d/2. Our

Theorem 2 applied to this situation yields the stronger result 2ttío(0, E, A) >

2arcsin(fi/2) > d.

Other references related to Theorem 2, in addition to those already mentioned, are

Jenkins [6,7] and Liao [9]. Jenkins [6] considers the same geometric situation as in [4]

and obtains an estimate that takes account of the location of the free endpoint of the

arc E. [6, and 7] describe the arc which minimizes w(0, E, A) among all arcs £ in a

given homotopy class with endpoints fixed.

1. Throughout this paper A denotes the unit disk \z\ < 1. For 0 < /■ < 1, Ar

denotes the disk with an incision:

(4) Ar = A-{z:r<z < 1}.

The Riemann mapping function of Ar onto A, extended continuously to the prime

ends of Ar and normalized to send 0 —> 0 and r —> 1, will be denoted by Fr. In the

remainder of this section we abbreviate Fr by F since r remains fixed.

This section is devoted to proving some mapping properties of F. Since F is

symmetric, F(z) = F(z), we state some of the properties for the upper half of Ar

only.

Lemma 1. Let z = pei9 with 0 < p < 1 and 0 < 6 < it. Then F(z) = pxeWi with

p < Pj and 6 < 0, < it.

Proof. We first show that Arg .F(z) ^ Argz for z on the upper semicircle of

\z\ = 1. Fix such a z and let a = {e": Argz < t < it). By monotoneity and

conformai invariance w(0, a, A) > w(0, a, Ar) = u(0, F(a), A) and consequently

F(a) has length no greater than the length of a (Löwner's lemma). Since the

endpoint -1 of a is left fixed by F we conclude that Arg z < Arg F(z) < it.

Now consider the harmonic function p(z) = Arg(F(z)/z) in Ar where Arg(-) is

the branch with values in (-it, it]. We have proved thatp(z) > 0 for z on the upper

semicircle. If z is on the upper edge of the incision [r, 1] then p(z) > 0 since, for

such z, Arg z = 0 and Arg F(z) > 0.
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By symmetry, p(z) = -p(z). Thus p(z) = 0 for -1 < z < r. The maximum

principle gives p(z) ^ 0 in the upper half of Ar, and from this we obtain the

assertion 0 < 6X < tt of the lemma. The assertion p < px is Schwarz's lemma.

Lemma 2. Let z g Ar with Re z < r. Then \z — r\ « |F(z) - 1|.

Proof. Consider the analytic function g(z) = (z - r)/(F(z) - 1) in Ar n {Rez

< r }. By Lemma 1 and symmetry |z — 1| < \F(z) - 1| for z on the circular part of

the boundary of Ar. Clearly \z — r\ < \z — 1\ for Rez ^ r. Hence \g(z)\ < 1 for z on

the circular part of the boundary of Ar n (Rez < r}.

Now consider points zeA, with Re z = r, Im z > 0. Lemma 1 shows that either

Im F(z) > Im z or else Re F(z) < 0. In the first case we have

\z - r\ = Im z < Im F(z) < \F(z) - l\,

and in the second case

\z - r\ < 1 « Re(l - F(z)) < \F(z) - 1\,.

Thus \g(z)\ < 1 on the vertical boundary of Arn {Re z < r).

To discuss g(z) for z near r, we consider F(r -Y f2) for f in a small upper half disk

centered at £ = 0. By reflection, F(r + f2) is analytic at f = 0 and i*"(r + f2) =1-1-

iaxÇ -Y a2l2 -Y  ■ ■ ■ with ax > 0. Thus

|g^'     |f(z)-l|      \ax + o(l)|

as z -> r. The maximum principle now yields |g(z)| < 1 in Ar n {Rez < r) as

desired.

The property of F7 in the next lemma is presented for its own interest; it will not

be needed for later results.

Lemma 3. Fix 0 with 0 < d < tt. Then Arg F(pe'e) is a nondecreasing function of p

forO < p < 1.

Proof. Since 3 Arg F(z)/dr = lm[zF'(z)/\z\F(z)], it suffices to show that q(z)

= Im[zF'(z)/F(z)] is nonnegative for z in the upper half of Ar.

On the upper semicircle of Ar, Arg F'(z) = Arg(F(z)/z); hence q(z) = 0 there.

On the upper edge of the incision (r, 1) we have Arg F'(z) = Arg F(z) + (tt/2).

Therefore q(z) > 0 for these values of z.

For -1 < z < r the values of z,F(z) and F'(z) are real, and thus q(z) = 0 here.

The local expansion of F in terms of Vz - r in a small upper half disk about r is

bounded from below, although unbounded from above. Also near z = 1, the local

expansion of F(z) shows zF'(z)/F(z) tends to zero as z tends to 1 in Ar. Thus

q(z) > 0 in the upper half of Ar as desired.

2. We use the following notation. If ñ is an open set, a a closed set, and

z g ß — a, then <o(z, a, B) denotes the value at z of the bounded function which is

harmonic in the component of ß - a containing z and which, roughly speaking,

takes the value 1 at boundary points belonging to a and the value 0 on the rest of the
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boundary. We say "roughly speaking" to avoid the problem of specifying where

u(z, a,&) actually takes on its prescribed boundary values.

Theorem 1. Let E be a continuum in {|z| < 1} with 0í£. Let Ecirc = {z/\z\:

z G E}. If the length of £circ is no greater than tt then co(0, E, A) > u(0, Ecitc, A).

Proof. By rotating E we may assume Ecirc = {e'e: 0 < 8 < a) where a < tt. Let r

be the point of E n (0,1] having largest modulus. Recall the definition of the

normalized Riemann map Fr: Ar -» A (see (4)ff.) By monotoneity w(0, E, A) >

<o(0, E, Ar). Since only the tip of the slit belongs to E, it is not necessary to

distinguish the sides of the slit to define Fr(E). Therefore the principle of majoriza-

tion [1, Theorem 3-1] applies to both Fr and F'1, hence

(o(0, E, AJ = <o(0, Fr(E), A).

That is, conformai invariance holds here. The continuum Fr(E) contains the point 1

and has a projection onto 8A of the form

Fr(EhTC={eie:0<6^ß),

where, by Lemma 1, ß satisfies a < ß < tt.

For convenience we replace Fr(E) by E' = {ze'ß: z g Fr(E)}. The arc E'

contains eiß and satisfies E^c = Fr(E)circ and w(0, E', A) = w(0, Fr(E), A).

Let s be the point of E' C\ (0,1] having largest modulus. As before, we have

«(0, E', A) > «(0, E', As) = co(0, FS(E'), A).

The continuum E* = FS(E') has projection E*irc = {e'e: 0 < 6 < y) where, by

Lemma 1, y satisfies ß < y < tt. Since leP and e'y g E* the monotoneity

principle can be applied to yield co(0, E*, A) ^ w(0, F*rc, A).

We have seen that the length y of £cfrc is no less than the length a of Ecirc. Hence

<o(0, E^c, A) > w(0, EciIC, A). The string of inequalities that has been obtained

yields the desired conclusions w(0, E, A) ^ w(0, Edic, A).

Remark 1. Theorem 1 cannot be strengthened by allowing E to consist of a finite

union of continua. This assertion follows from the example of Hayman [5]. That

example provides a set E in the closure of the right half plane H, E consisting of

three arcs, and a superharmonic function V(z) (in the notation of [5], V(z) =

-u(z)/M) in H which satisfies V(z) > w(z, E, H) for ze/i, V(x) < \ for x g

(0, oo). When transferred to A this gives a set E' of three arcs such that w(0, E^c, A)

= \ and w(0, £', A) < {-.

Remark 2. Theorem 1 requires that the length of Fcirc be < tt. Simple examples

show that this upper bound tt cannot be replaced by 2 tt — e. It would be of interest

to know the sharp upper bound.

3. Let d be the diameter of a continuum E c Cl A. Let Ediam be a circular arc on

3A which has the same diameter d. Then w(0, Fdiam, A) = (l/7r)arcsin(ri/2).

Theorem 2. Let E be a continuum contained in the closure of the unit disk A. Let d

be the diameter of E. Then

co(0, E, A) > — arcsin—.
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Proof. Let f1( f2 be points of E such that the diameter of E is |f2 _ fil- We may

assume that |£2| < \$x\ and that fx = r > 0. It follows that E contains no points of

the incision [r, 1] other than r; hence Fr(E) is a continuum in Cl A.

We have

(5) <o(0, E, A) > u(0, E, Ar) = <o(0, Fr(E), A).

The continuum Fr(E) contains 1 and Fr(Ç2). If we apply Gaier's theorem [3,

Theorem 9] and then Lemma 2 we obtain

1        .    \Fr(S2) - 1| „   1        .    \S2 - r\
- arcsin---> — arcsm —-—
tt 2 tt 2

(6) co (0, Fr( E), A ) > - arcsin ^^-l > - arcsin

(We have applied Gaier's theorem to a continuum rather than a Jordan arc; Gaier's

proof can be modified to make this legitimate.) The inequalities (5) and (6) yield the

desired conclusion since |f2 — r\ = d is the diameter of E.
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