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FINELY HARMONIC FUNCTIONS

WITH FINITE DIRICHLET INTEGRAL

WITH RESPECT TO THE GREEN MEASURE

BY

BERNT 0KSENDAL

Abstract. We consider finely harmonic functions A on a fine, Greenian domain

V c K1 with finite Dirichlet integral wrt Gm, i.e.

(*) f\vh(y)\2G(x,y)dm(y)< oo    lor x e V,
Jv

where m denotes the Lebesgue measure, G(x, y) the Green function. We use

Brownian motion and stochastic calculus to prove that such functions h always have

boundary values h* along a.a. Brownian paths. This partially extends results by

Doob, Brelot and Godefroid, who considered ordinary harmonic functions with

finite Dirichlet integral wrt m and Green lines instead of Brownian paths.

As a consequence of Theorem 1 we obtain several properties equivalent to (•),

one of these being that h is the harmonic extension to V of a random "boundary"

function h* (of a certain type), i.e. h(x) = Ex[h*] for all x e V. Another applica-

tion is that the polar sets are removable singularity sets for finely harmonic functions

satisfying (*). This is in contrast with the situation for finely harmonic functions

with finite Dirichlet integral wrt m.

1. Introduction and statement of results. Properties of harmonic functions with

finite Dirichlet integral have been studied by several authors. In 1962, Doob [5],

extending earlier works by Brelot and Godefroid, proved that a harmonic function h

on a domain Fin Rd(d > 2) admitting a Green function and with a finite Dirichlet

integral, i.e.

(1.1) (\vh\2dm <oo

(where m denotes Lebesgue measure in Rd) always has a fine boundary function h*

and h -* h* along the Green lines of V. Doob (and Brelot and Godefroid) used a

measure on the space of all Green lines.

In this article we use Brownian motion and stochastic calculus to prove a result of

this type and establish a corresponding L2-isometry (Theorem 1) in the more general

situation when h is a finely harmonic function on a fine domain Fin Rd with a Green

function G. The assumption that h has a finite Dirichlet integral is replaced by the

assumption that

(1.2) f\vh(y)\2G(x, y)dm(y) < oo    for all* g V,
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688 BERNT 0KSENDAL

i.e. that h has a finite Dirichlet integral wrt the Green measure. (It is known

(Debiard and Gaveau [4]) that v/i exists a.e. wrt m on V.) In the case when h is

harmonic in the ordinary sense on an ordinary Greenian domain V then (1.1) is a

stronger assumption than (1.2), because G(x, y) -* 0 as y -» W (the boundary of

V) and the singularity of G(x, y) at y = x is w-integrable.

For example, if V is the unit disc DcR2 then a harmonic function h on D

satisfies (1.1) if and only if the Fourier coefficients h*(n) of its boundary function h*

satisfy

(1.3) Z\h*(n)\2\n\< oo,
-00

while h satisfies (1.2) if and only if

(1.4) t \Hn)\2 < oo
-00

((1.3) can be found, for example, in M. Fukushima [12, p. 12], while (1.4) is a

consequence of Theorem 2). In the general fine situation it turns out that (1.1)

implies that (1.2) holds quasi-everywhere, i.e. everywhere outside some polar set. To

see this let W be a bounded subset of V and assume that (1.1) holds. Then by the

Fubini theorem

fj[fjvh(y)\2G(x, y) dm(y)^ dm(x)

= j\vh(y)Hjj}(x, y) dm(x)\ dm(y) < oo,

since supy( j wG(x, y)dm(x)) < oo. So (1.2) holds for a.a. x^W wrt m. In

particular, the function H(x) = fv\Vh(y)\2G(x, y) dm(y) is not infinite every-

where in V. But then it follows from Theorem 2.4 in Fuglede [11] that H(x) is a fine

potential in V and therefore finite quasi-everywhere, as asserted.

As a consequence of Theorem 1 we obtain several properties equivalent to (1.2),

one of these being that h is the harmonic extension to F of a random function h* (of

a certain type), i.e. h(x) = Ex[h*] for all x G F (Theorem 2). Another application is

that the polar sets are removable singularity sets for a finely harmonic function h

satisfying (1.2) (Theorem 3). This result is in contrast with the situation for finely

harmonic functions h satisfying (1.1). In this case it is known that polar sets need not

be removable singularity sets (see Fuglede [10, Théorème 12 and p. 153]). Thus the

condition (1.1) does not imply (1.2) in general.

2. Boundary behaviour. In the following, Bt(u), u g ñ, t > 0, will denote Brownian

motion in Rd (d > 2). The probability law of Bt starting at x g Rd is denoted by Px,

and Ex is the expectation operator wrt Px.

For a finely open set KcR^we will let tv = inf{t > 0; Bt g V) be the first exit

time from V (rv= oo if 5, g F for all t > 0). If tY < oo a.s. the harmonic measure

Xyx at x wrt V is defined by

(2.1) f fdXx-E'[f(Bj\,

if/is a bounded, continuous real function on W.
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The Green function G(x, y) of fine domain V c Rd is defined by

G(x, y) dm(y) = /   P'[B, <Edy,s< rv] ds,

provided the integral converges. Intuitively, G(x, y) dm(y) is the expected length of

time Brownian motion starting at x stays in dm(y) before it exits from V. See Chung

[3] for more information. The domain Fis called Greenian if jKG(x, y) dm(y) < oo

for all compact sets K and all x g V. All finely open sets in Rd for d > 3 are

Greenian. If V c R2 then Fis Greenian if and only if F has a nonpolar complement.

Lemma 1. Let h be a finely harmonic function in a finely open set V c Rd with a

Green function G. Let rybe the first exit time from V. Then

(2.2)    Ex\fV\vh(Bs)fds   = j\vh(y)\2G(x,y)dm(y)   forallxeV.

Proof. By the Fubini theorem we have (x denotes the indicator function)

\£Wh{B,)\2 ds jf   |vA(*,)| X[o,ry)(s)ds

= fQX(fv\vh(y)\2 ■ PX[BS edy,s< v]) ds

= / WHy)\2(fPx[Bs *dy,s< rv] ds

= [\vh(y)\2G(x,y)dm(y).
•>v

Vh(y)'2
'v

which proves Lemma 1.

Lemma 2. Let f be a real, finely continuous function on a finely open set V c Rd.

Then for all x G V the function

*-»/(*,(«))

is continuous on [0, jv),for a.a. u> G ñ wrt PX.

Proof. Since / is finely continuous, it is quasi-continuous, i.e. for all tj > 0 there

exists an open set G c Rd with C(G) < t/ and / is continuous (in the ordinary

topology) outside G, where C denotes the capacity associated to the kernel k(x) =

\x\2-d if d > 3 and k(x) = -log|jc| if d = 2. (See Brelot [1, Theorem IV, 3, p. 25].)

So if U c F is a Greenian domain in Rd and x g U, e > 0, we can find an open set

G such that Px{3t,0 < t < rv, X, g G) < e and/IR^X G is continuous. In particu-

lar,

Px{t -* f(Xt) is continuous, t < tv] > 1 - e.

Since U and e was arbitrary we obtain that t -» f(Xt) is continuous a.s. Px on

{t<Ty).

Lemma 3. Let U c Rd be finely open and let t be a stopping time. Then for a.e. u

wrt Px we have:

If BT(u) G U then there exists e > 0 such that Bt(u) G U for all

t G (t(w) - e, t(w)).
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Proof. Since the fine topology is completely regular we can for each x g U find a

finely continuous function y -» fx(y) on Rd such that 0 < fx < 1, fx = 1 onRd\U

and fx(x) = 0. Let Dx c U be a fine neighbourhood of jc such that /,. < \ on Dx.

The family { Dx )xe v covers U, so by Doob's quasi-Lindelöf principle [5] we can find

a countable subfamily {Dx }"_j such that

K = U\ U D
k = l

xk

is polar. Put

'**•/= E2-%

Then / is finely continuous, / = 1 on Rd \ U, and / < 1 on U\ K. Assume Br g U.

Since K is polar, BT g #, and therefore f(BT) < 1, a.s. By Lemma 2, r -» f(Bt) is

continuous a.s. So for a.a. u there exists e > 0 such that/(I?,) < 1 for t — e < t < t.

This implies that B, g í/ for t — e < / < t and Lemma 3 is proved.

Lemma 4. Lei h be a finely harmonic function in a fine domain V c Rd. Choose

x G F. 77ien we can /md an increasing sequence of fine bounded domains Vn with

Vn c V such that, with rn = ry, we have

oo,

,2

(2.3)

(2.4)

t„ Î rY a.s. Px   as n

Ex[h2(BlAj]=h2(x)+Ex\fAT"\vh(Bs)\2ds
Jo

<   00

for all n,

(2.5)

and

h is continuous on Vn,

h(BlAT ) = h(x) + f'AT-Vh(Bs) dBsa.s. P>

Proof. Choose z g F. Then there exists a fine bounded neighbourhood Uz=> z

with compact closure i/z c F and a sequence of functions hm harmonic (in the

ordinary sense) in a neighbourhood of Uz such that hm^> h uniformly on Uz

(Fuglede [8, Theorem 4.1]). Put t = ru. Then by Ito's formula

hm(BIAr) - hm(z) = fArvhm(Bs)dBs   for all n, /, a.s. P\

So by the basic isometry for Ito integrals

EÍ(hm(BlAr)-hm(z))2]=E<\fAT\vhm(Bs)\2ds

i.e.

since

E*[h2m(BIAT)] = h2m(z) + E*   rT\vhm(Bs)\2ds
/o

E*[hm(BIAT)]=hm(z)    for all m.
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Letting m -» oo we obtain, using Lemma 1 and Théorème 2 in [4],

E*[h2(BtAr)]=h2(z)+E* fAT\vh(Bs)\2ds
Jt\

< oo

and

h(BtAT) = h(z)+fA\h(Bs) dBsa.s. P\

The family { Uz }ze v covers F, so by Doob's quasi-Lindelöf principle [5] we can find

a countable subfamily denoted by {Wn } such that Wx = Ux and

U Wn=V\K,
n = l

where K is a polar set. Now define

Vn=\JWk,       «-1,2,....
A = l

Since K is polar, (2.3) holds. We prove (2.4) and (2.5) by induction: The argument

above proves that (2.4) and (2.5) holds for n = 1. To prove the induction step

assume that it holds for n = k. Put S0 = rk, T = rk+x (= rVk u Wk+1)- Define

Sx = inf{t > S0; B, <£ Wk+1),

S2 = inf{t> SX;B,<£ Vk),

and, inductively,

S2J+x = mf{t>S2j;B,€ Wk+X),

S2j+2 = inf{t> S2j+x;Bt<£ Vk),      j = 0,1,2,....

Then {S-} is an increasing sequence of stopping times. Since 5, < F < oo a.s. the

limit

lim 5,
y-» oo

exists a.s. and S <, T. Since Bs + g d¡Wk+1 for ally (ôy denotes fine boundary) we

must have Bs £ Wk+X a.s., by Lemma 3. Similarly Bs í Vk a.s. Thus S > T and

therefore S = T. Therefore it suffices to prove that

(2.6)     Ex[h2{BtASj)\ =h2(x)+Ex^ASj\vh(Bs)\2ds

and

(2.7)

< oo    for ally,

»{B,«s) = h(x)+ f'A JVh(Bs) dBs a.s. Px,   for ally.
•'o

For if (2.6) and (2.7) are established then the induction steps of (2.4) and (2.5)

follows by bounded convergence if we let j -> oo. (Recall that n is bounded on

Vk+v)
We establish (2.6) and (2.7) by induction ony. The strong Markov property states

that if t is a stopping time and 17 is measurable wrt { Bs; s > 0}, then

Ex[»rV\BT] = EB*[V],
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where 6T is the shift operator:

0,UK) • • • *,-(*,,)) = gi(B,l+.) • • • g,(B,l+t).

(See Dynkin [7, Theorem 3.11, p. 100], or 0ksendal [13, (7.15)].) Assume (2.6) holds

for a giveny. For simplicity put a = t A S,, b = t A S,+1. Then, using (7.16) in [13]

Ex[h2(Bb)\ = Ex[Ex[h2(Bb)\Ba]] = E*[E*-[h2(Bb)]]

(2.8) = EX h2(Ba) + E> (b\vh(Bs)\2 ds
Jn

h2(x) + E' f\vh(Bs)\2 ds\+ EX[EB^\],

where ^ = f0b \Vh(Bs)\2ds = f0x\Vh(Bs)\2Xls,x)(b) ds. Since

Ex[eb-[^]\ = E'[E'[0a*\Ba\] = EX[0J]

and

«a* =   r|Vn(5a + J)|2 • X[a + s,oo)(b) ds

= r\vh(Bu)\2x[u,00)(b)du= fb\vh(Bs)\2 ds,

we obtain from (2.8) that

Ex\h2(Bb)\ = h2(x) + E'\ fh\vh(Bs)\2ds
.Jo

which establishes the induction step of (2.6). Observe that by Lemma 1

E* f"\vh(Bs)\2ds\= ¡ \vt\2G(x,y)dm(y)

< £   f |vn| G(x, y) dm(y) < oo.
,=i Jw>

Next assume that (2.7) holds for a giveny. Then

(h(Bb)-h(x)- ¡\h(Bs)dB^

(fobVh(Bs) dBs)= 2E -2E> h(Bb)jbVh(Bs)dBs
Jn



FINELY HARMONIC FUNCTIONS 693

where

h(Bb) ■ j\h(Bs) dß] = Ex Ex h(Bb)i[f\ fb)j\Ba

= E'

= EX

= EX

= Ex

+ EX

-YE

-YE'

E>

b,

(/oaV«(5j^s)£B.[«(56)]

(f\h(Bs)dBs}h(Ba)

(f°Vh(Bs)dBs)

f\vh(Bs)\2 ds

¡b\vh(Bs)\2 ds
Jo

-YE' Bb- f Vh(Bs)dB:

j\h(Bs)dB^

[fbVh(Bs) dBsJ\Ba

f \vh(Bs)\ dBs

and the induction step of (2.7) follows.

That completes the proof of Lemma 4.

Remark. Note that the proof gives that (2.3)-(2.5) still hold if we replace x by any

point y g \J™_xVn or if we add to the family {Wn) any finite collection of the sets

ut.
To each x g F we associate a sequence of finely open sets Vn = Vx and stopping

times t„ = rx as in Lemma 4. Let 93 ¡^ denote the a-algebra of subsets of ñ generated

by the random variables {J5T,; k > n }, completed wrt the measure Px. Define

S8(*) = r)s8<*>;

i.e. 93" is the tail field of the sequence {BT,}. Finally, put

33 = 93^=  H 93(J°-

We are now ready to prove the main result about stochastic boundary values of

finely harmonic functions:

Theorem 1. Let h be a finely harmonic function in a fine domain V c Rd with a

Green function G, and assume that

f\vh(y)\2G(x,y)dm(y) < oo   for all x G V.
Jy

Then there exists a function h* G L2(Px)for all x such that

(2.9)

and

limh(B,) = h* a.s.Px
'TV

(2.10) Ex[(h{BIATy)-h*)2] ->0   astttx>,forallxGV.

We may regard h* as a generalized (random) boundary value function ofh, in the sense

that h* is measurable wrt the tail field 93 v and h is the "harmonic extension" ofh* to
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V, i.e.

(2.11) h(x) = Ex[h*]   forallx&V.

Moreover, for all x G V we have

(2.12) **(«) = h(x) + f\h(Bs)dBsa.s.Px

and

(2.13) Ex[(h*f] = h2(x) + f\vh(y)\2G(x, y) dm(y).
Jy

Proof. Fix x g F. Choose finely open sets Vn = Vx with exit times t„ = tx as in

Lemma 4. Let n > m.

Then

2J*[A(2L>(2Lj] = Ex[Ex[h(Bjh(Bj\BTm]\

= Ex[h(BjEx{h(Bj\Bj]

= Ex[h2(Bj\.

Therefore

Ex[{h(Bj - h(Bj)2] = Ex[h2{Bj] - 2Ex[h(Bjh(Bj] + Ex[h2(Bj\

= Ex[h2(Bj] - Ex[h2(Bj] = Ex\f"\vh(Bs)\2ds

< f       |vn(j)| G(x, j)dw(>') -> 0    asm,« oo.

So the sequence of functions hn = h(BT ) converges in L2(Px) to a function

hx G L2(PX). In particular

(2.14) «(*) =  hm £*[«(£,)] = Ex[hx].
«-♦00 "

By Lemma 4 we have

(2.15) «„ = h(x) -Y f\hn(Bs) dBs a.s. Px

and

(2.16)

Ex\h2} = A2(;c) + £*[ ra\vh(Bs)\2 ds] < A2(;t) + f4 f\vh(Bs)\2 ds
I/o J Lyo

= n2(x) + f\vh\2(y)G(x, y)dm(y) < oo    for all«.
Jy

The family {«„} constitutes a martingale wrt the a-algebras !Fn generated by 2?„

t <; Tn. So by the martingale convergence theorem P" (Umn_0Onn exists) = 1 and we

conclude that

(2.17) Ax(w)= limA»a.s.?1.
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Moreover, since t„ î iya.s. Px we obtain, from (2.15) and (2.16), by letting n -» oo

(2.18) h'(a) = h(x) + f\vh)(Bs) ds

and

(2.19) Ex[(hx)2] = h2(x) + [ | Vh(y)\2G(x, y) dm(y).
Jy

Note that (2.14), (2.18) and (2.19) are identical to (2.11), (2.12) and (2.13) except that

h* is replaced by hx. Next we establish (2.9) and (2.10) with h* replaced by hx: For

all t > 0 and n = 1,2,... we get by Lemma 4

(2.20) h{BtAJ = h(x) + fAT"(vh)(Bs) dBsa.s. Px
Jo

and

(2.21) Ex[h2(BtAJ] = h2(x) + Ex^AT"\vh(Bs)\2 ds

The same procedure as above gives, for « > m,

Ex[(h(BtATJ-h(BlAJ)2}=Ex\fAT"\vh(Bs)\2ds
'At_

-* 0   as m, n -» oo.

So letting n -» oo in (2.20), (2.21) and using (2.17), we conclude

(2.22) h(BIA    ) = h(x) -Y f'ATv(vh)(Bs) dBs a.s. P

and

,2

(2.23) Ex[h2(BtATy)\ =h2(x) + Ex j'ATv\vh(Bs)\2ds

where h(BIAT ) is interpreted as hx if t = tv. From (2.22) we get, for r > j

^h(BlAJ-h(BsAJ)2]=Ex\fA^\vh(Bu)\2du 0, S,f[Ty.

So h(BtAry) converges in L2(PX) as t T i>. By (2.17), (2.23) and the martingale

convergence theorem this limit is necessarily equal to hx.

Thus we have proved that (2.9)-(2.13) hold "with hx instead of h*. We proceed to

show that hx does not depend on x (modulo sets of measure 0):

Choose arbitrary y g V. By adding an extra finely open set Uy if necessary we

may assume that the sequence {F„} constructed above contains y (as well as x) for

large enough n. Let !%„ denote the a-algebra generated by {BT-, k > n). Then if n is

large enough

(2.24)

Therefore by (2.17)

(2.25)

«: P>

h„(u)^hx((c)a.s.py.
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On the other hand, by the same argument as above applied to Py there exists a

function hy g L2(Py) such that

(2.26) hn^hy   in L2(Py)

and

(2.27) hn(u)^hy(u) a.s. Py.

Combining (2.25) and (2.27) we see that

(2.28) hx(o>) = hy(co)a.s.Px.

So we put h* = hx, and Theorem 1 is proved.

Remark. Theorem 1 raises the following question: When is h* a genuine boundary

function? In other words, when is h* ¿^-measurable, i.e. of the form g(BT ) for some

function g g L2(dV, Xx)1 Any function of the form g(BT ) is 93^-measurable (since

BT = lim,ÎT Bt), but in general the family of 93 K-measurable functions may also

contain functions which are not of this type. For example, if

F= {(xx,x2);x¡ + x2<l}\{(xx,0);xx<0} c R2

and

h(xx, x2) = A.rg(xx + ix2) = ImOogixj + ix2)),       (xx, x2) g V,

then h has different boundary values as the Bt approach a point (xx, x2) on the

negative real axis from above or below. So A* is not Br -measurable in this case.

Using Theorem 1 we obtain the following characterizations of finely harmonic

functions satisfying (1.2).

Theorem 2. Let h be a finely harmonic function on a fine domain V c Rd with a

Green function G. Then the following are equivalent:

(i) fv \Vh(y)\2G(x, y)dm(y) < oo for all x g V.

(ii) 77iere exists a 93 y-measurable function h* g L2(Px)for allx such that

h(x) = Ex[h*]   for all x g F.

(iii) For all x g F there exists a number Mx < oo such that

Ex[h2(BT)\ < Mx

for all stopping times t < rv.

Proof, (i) => (ii) by Theorem 1.

(ii) => (iii). Suppose (ü) holds. Choose x g F. Let t < rv be a stopping time. First

assume that t < t„ for some n. Then since h* is 93 ̂ -measurable 6Th* = h* (see e.g.

(7.16) in [13]) and

Ex[h2(Br)] = Ex[(EB*[h*])2} = Ex[(Ex[6Th*\BT])2}

= Ex{(Ex[h*\BT])2] < Ex[(h*)2] = Mx.

In the general case we apply the above argument to t a t„ and obtain Ex[h2(BTArJ]

< Mx. Letting n -> oo we get (iii).
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(hi) => (i). Let x g V. Let Vn = Vx and t„ = tx be as in Lemma 4. Then

Mx>Ex[h2(Brj] =h2(x)+f \vh(y)\2G(x,y)dm(y)

r 2

h2(x) + I \\7h(y)\ G(x, y) dm(y)    asn->oo,
Jv

and (i) follows.

3. Removable singularities. We now apply the existence of stochastic boundary

values to prove the polar sets are removable singularity sets for finely harmonic

functions with finite Dirichlet integral wrt the Green measure.

Theorem 3. Let U c Rd be a fine domain with a Green function G and let h be a

finely harmonic function on V = U\F, where F is a polar set. Suppose

(3.1) f \vh(y)\2G(x, y) dm(y) < oo   for all x G U.
Ju

Then h extends to a finely harmonic function in U.

Proof. By Theorem 1 there exists a function h* g L2(Pz) such that

(3.2) lim h(B,) = h*(a) = h(z)+ fy(vh)(Bs)dBs a.s. Pz,    forallzGF.
t î v •'o

Moreover,

(3.3) h(z) = Ez[h*]    forallzGF.

Since F is polar we have tv = rv a.s. Pz and therefore

(3.4) hm h(Bt) = h*(co) = h(z)-Y fU(vh)(Bs)dBs a.s. Pz,   forallzGF.
t Î Tf J0

Thus a natural candidate for the required harmonic extension of h would be

h(x) = Ex[h*], x G U. However, it is not clear that h* G L\PX) if x G F. In fact, it

turns out that h* G L2(PX) for all x g F, as the following argument shows.

Fix x G F. By the quasi-Lindelöf principle we can find an increasing sequence

{U„} of finely open sets such that t/„ c U, x g U"_,t/„ and K = [/\U^=1L/n is

polar.

Now apply Theorem 1 to the restriction h\Un\ F of h to the set U„ \ F. This gives

that there exists a function «*'" g L2(Pz) such that

(3.5) hmh(B,) = /,*•"(«) = h(z) + f\ Vh)(Bs) dBsa.s. Pz

for all z g U„\F, where <s„ = ru„\F- Since h is finely continuous on U\F we have

by Lemma 2 that

(3.6) hmh(B,) = h{Ba)a.s.Pz,       zg[/„\F.

Since F is polar we have

(3.7) o-„ = t„ a.s. Pz,       z<=U„\F, where t„ = r„m.
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Therefore, by combining (3.5)-(3.7) we obtain

(3.8) h(BT) = h(z)+f\vh)(Bs)dBsa.s.Pz,       z g Un\F.

Hence, for n > m

(3.9) h(Bj-h(Bj=f\vh)(Bs)dBsa.s.Pz,       z g Um\F.

Since FJC|93m « Pz|93m if »i is large enough, we conclude that

(3.10) h{Bj-h(Bj = f''(vh)(Bs)dBsa.s.Px.

Now assume that (3.1) holds. This gives as before that hn = h(Br) converges in

L2(PX) and pointwise a.e. Px to a function gx g L2(Px). But we also know that

hn -* h* a.e. Pz for z g \J^_xUn\F and therefore /i„ -* h* a.e. P*. We conclude

that

(3.11) gx = h* êI2(Pj).

So we define

(3.12) Â(x) = Ex[h*],       x&U.

Thenh = hmU\F.

We claim that h is finely harmonic in U. To see this choose reí/ and a fine

neighbourhood D of x such that D c t/. Let F be the first exit time from D. Since

Ä" U F is polar we must have T < t„ for some n. Hence since h* is 93 ''-measurable we

get by the strong Markov property

~h(x) = Ex[h*] = Ex[Ex[h*\BT]] = Ex¡EB^[h*]] = f h(z) dXDx(x),
JdD

so that h satisfies the required mean value property.

As pointed out to me by B. Fuglede it is possible to give a stronger, pointwise

version of Theorem 3 by combining Theorem 3 with Theorem 2.4 in [11], mentioned

in the introduction:

Theorem 4. Let U be as in Theorem 3 and let h be a finely harmonic function on

U\F, where F is a polar set. Suppose

(3.13) [ \vh(y)\2G(x0,y)dm(y)<cx>
Ju

for some point x0 G F. Then h extends to a finely harmonic function in U\ (F\ { x0}).

Corollary 1. Let U be as in Theorem 3 and let be a finely harmonic function in

U\{x0}, where x0 is some point in U. Suppose (3.13) holds. Then h extends to a finely

harmonic function in U.

Remarks. (1) Note that Theorem 3 also gives a proof of Theorem 9.15 in Fuglede

[8]: If h is bounded in F, then h* is bounded and so h(x) = Ex[h*] is the required

harmonic extension of h. Using the identity (3.10) we also see that if A is bounded in

F then (3.1) holds.
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(2) The results above also apply to the case where we have m-dimensional finely

harmonic functions h: KcR"-> Rm. In particular, they apply to the finely harmonic

morphisms <f> = (<p,,... ,<¡>m): V -* Rm. In that case the condition that

(3.14) f\w<pÁ2(y)G(x, y)dm(y)< oo,       1 <J< m,x e F,
Jy

can be seen to be satisfied if the exit time r^V) for Brownian motion in Rm has a

finite expected value:

(3.15) E2[rHV)] < oo    forallzG<p(F).

To see that (3.15) implies (3.14) we apply the fact that <¡> is a Brownian path

preserving function (see (2.3), (2.4) and Theorem 1 in [14]). Since

<¡>{B0i_x) & <?(V)   for all i^,

where a, = f¿ \V4>j\2(B,) ds (a, does not depend ony), we have

(3-16) 0r„ *S tHV)

and therefore

( \v*j\\y)G(x, y) dm(y) = Ex fV\v<t>/(Bs) ds
Jy I/O

- E*[arrU **WIW < «9.

as asserted. In view of (1.4) it is natural to regard the finely harmonic morphisms

satisfying (3.14) as generalized //^-functions. The implication (3.15) => (3.14) then

corresponds to the now-well-known connection between classical H2-functions and

exit times from their image sets. See Burkholder [2].

(3) Consider the special case of an ordinary harmonic function h on a domain (in

the ordinary topology) F in Rd. Then the conclusions of Theorems 1, 2 and 3 hold in

particular if we replace the condition (1.2) by (1.1), since—as noted in the introduc-

tion—(1.1) implies (1.2) in that case.

In this case the assumption (3.1) of Theorem 3 can be relaxed to (3.17) below.

Corollary 2. Let U be a Greenian domain in Rd (in the ordinary topology), F a

relatively closed polar subset of U and h a harmonic function on U\F. Suppose

(3.17) ¡\vh(y)\2G(x, y) dm(y) < oo   for all x g U\F.
Ju

Then h extends to a finely harmonic function in U.

Proof. From Theorem 1 we obtain h* = lim,ÍT(//i(¿?,) g L2(PZ) for z g U\F

as before. By the Harnack inequalities we have h* G L2(Px) for x e F also, so

~h(x) = Ex[h*],       x&U,

is the desired harmonic extension.
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Finally, we note that by combining Corollary 2 with remark (2) we obtain

Corollary 3. Let U be a Greenian domain in C", F a relatively closed polar subset

of U andtp a (complex) analytic function on U\F. Suppose that

£zK«/\f)] < oo   forallze<b(U\F).

Then <p extends to an analytic function on U.
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