THE MACKEY TOPOLOGY AND COMPLEMENTED SUBSPACES OF LORENTZ SEQUENCE SPACES $d(w, p)$ FOR $0<p<1$

BY
M. NAWROCKI AND A. ORTYŃSKI

Abstract

In this paper we continue the study of Lorentz sequence spaces $d(w, p), 0<p<1$, initiated by N. Popa [8]. First we show that the Mackey completion of $d(w, p)$ is equal to $d(v, 1)$ for some sequence v. Next, we prove that if $d(w, p) \not \subset l_{1}$, then it contains a complemented subspace isomorphic to l_{p}. Finally we show that if $\lim n^{-1}\left(\sum_{i=1}^{n} w_{i}\right)^{1 / p}=\infty$, then every complemented subspace of $d(w, p)$ with symmetric bases is isomorphic to $d(w, p)$.

I. Introduction. A p-norm, $0<p \leq 1$, on a vector space X is a map $x \mapsto\|x\|$ such that:

1. $\|x\|>0$ if $x \neq 0$.
2. $\|t x\|=|t|\|x\|$ for all $x \in X$ and all scalars t.
3. $\|x+y\|^{p} \leq\|x\|^{p}+\|y\|^{p}$ for all $x, y \in X$.

Let $B=\{x \in X:\|x\| \leq 1\}$; then the family $\{r B\}_{r>0}$ is a base of neighbourhoods of zero for a Hausdorff locally bounded vector topology on X (see [9]). If X is complete, we say that X is a p-Banach space.

The Mackey topology μ of a locally bounded space X with separating dual is the strongest locally convex topology on X which is weaker than the original one (see $[\mathbf{1 0}])$. It is easy to see that this normable topology is generated by neighbourhoods $\{r \overline{\text { conv }} B\}_{r>0}$. The Minkowski functional of the set conv B is called the Mackey norm on X. The completion of the space (X, μ) is called the Mackey completion of X and denoted by \hat{X}. The extension of the Mackey norm to \hat{X} is denoted by $\|\cdot\|^{\sim}$.

For every subset E of ω ($=$ the space of all scalar sequences) we denote

$$
E^{+}=\left\{x=\left(x_{i}\right) \in E: x_{i} \geq 0 \text { for } i=1,2, \ldots\right\}
$$

and

$$
E^{++}=\left\{x \in E^{+}: x \text { is nonincreasing }\right\} .
$$

Let $0<p<\infty$ and let $w=\left(w_{i}\right) \in l_{\infty}^{++} \backslash l_{1}$. For $x=\left(x_{i}\right) \in \omega$ we define

$$
\|x\|_{w, p}=\sup _{\pi}\left(\sum_{i=1}^{\infty}\left|x_{\pi(i)}\right|^{p} w_{i}\right)^{1 / p}
$$

where π ranges over all permutations of the positive integers. The space $d(w, p)=$ $\left\{x \in \omega:\|x\|_{w, p}<\infty\right\}$ equipped with the locally bounded vector topology induced by $\|\cdot\|_{w, p}$ is called the Lorentz sequence space.

It is well known that $d(w, p)$ is a p-Banach space for $0<p<1$ and a Banach space for $p \geq 1$. Moreover, the sequence of unit vectors (e_{i}) is a symmetric basis of

[^0](c)1985 American Mathematical Society $0002-9947 / 85 \$ 1.00+\$.25$ per page
$d(w, p)$. From the assumption $w \in l_{\infty}^{++} \backslash l_{1}$ follows that $d(w, p) \subset c_{0}$. Therefore for every $x=\left(x_{i}\right) \in d(w, p)$ there exists a nonincreasing rearrangement $x^{*}=\left(x_{i}^{*}\right)$ of x (i.e. a nonincreasing sequence obtained from $\left(\left|x_{i}\right|\right)$ by a suitable permutation of the integers) and $\|x\|_{w, p}=\left(\sum_{i=1}^{\infty} x_{i}^{* p} w_{i}\right)^{1 / p}$.

Observe that $d(w, p) \approx l_{p}$ if and only if $w \notin c_{0}$ (cf. [6, p. 176]).
The first topic of the present paper is the Mackey topology of $d(w, p), 0<p<1$.
Using a representation of the dual of $d(w, p), \mathrm{N}$. Popa $[8]$ proved that the Mackey completion of $d(w, p)(p=1 / k, k \in \mathbf{N}$, and w satisfies some additional conditions) is isomorphic to $d(v, 1)$ for a suitable sequence v. In $\S 3$ we show that the above theorem holds for any Lorentz sequence space $d(w, p), 0<p<1$. Our result is obtained without determining any dual space.

The last part of our paper is devoted to the study of complemented subspaces of $d(w, p), 0<p<1$.

It is well known that every Lorentz sequence space $d(w, p), p \geq 1$, has complemented subspace isomorphic to l_{p} (see [6, Proposition 4.e.3]). N. Popa [8] showed that unlike the case $p \geq 1$ there are spaces $d(w, p), 0<p<1$, which contain no complemented subspaces isomorphic to l_{p} and conjectured that it is true for each $d(w, p), 0<p<1$. In $\S 4$ we prove that if $\inf _{n} n^{-1}\left(\sum_{i=1}^{n} w_{i}\right)^{1 / p}=0$ (i.e. $d(w, p) \not \subset l_{1}$, see Proposition 1), then $d(w, p)$ has complemented subspace isomorphic to l_{p}. Moreover, if $\lim _{n \rightarrow \infty} n^{-1}\left(\sum_{i=1}^{n} w_{i}\right)^{1 / p}=\infty$, then every complemented subspace of $d(w, p)$ with symmetric basis is isomorphic to $d(w, p)$.

Throughout the paper we denote by $B_{w, p}$ the closed unit ball in $d(w, p), \mathbf{R}^{n}=$ $\operatorname{span}\left\{e_{i}\right\}_{i=1}^{n}, B_{w, p}^{n}=B_{w, p} \cap \mathbf{R}^{n}, n=1,2, \ldots$. In addition we denote $S_{n}(x)=$ $x_{1}+\cdots+x_{n}, n=1,2, \ldots, S_{0}(x)=0$ for any sequence $x=\left(x_{i}\right) \in \omega$.

We wish to thank Professor L. Drewnowski for many helpful discussions of the material in this paper.
II. Technical results. In this section we assume that $0<p \leq 1, w=\left(w_{i}\right) \in$ $l_{\infty}^{++} \backslash l_{1}, \sigma_{k}=S_{k}(w)^{1 / p}, f_{k}=\sigma_{k}^{-1} \sum_{i=1}^{k} e_{i}$ for $k=1,2, \ldots$, and $f_{0}=0$.

Lemma 1. Let $\|\cdot\|_{n}$ be the norm on \mathbf{R}^{n} defined by

$$
\|x\|_{n}=\sum_{i=1}^{n}\left|x_{i}\right|\left(\sigma_{i}-\sigma_{i-1}\right) \quad \text { for } x=\left(x_{i}\right) \in \mathbf{R}^{n}
$$

and let

$$
B^{n}=\left\{x=\left(x_{i}\right) \in \mathbf{R}^{n}:\|x\|_{n} \leq 1\right\}, \quad n \in \mathbf{N} .
$$

Then:
(a) $\left(B^{n}\right)^{++}=\operatorname{conv}\left\{f_{k}: k=0,1, \ldots, n\right\}$.
(b) $\left(B_{w, p}^{n}\right)^{++} \subset\left(B^{n}\right)^{++}$.
(c) Let $0<p<1$ and $x=\left(x_{i}\right) \in\left(\mathbf{R}^{n}\right)^{++}$. Then $\|x\|_{n}=\|x\|_{w, p}=1$ if and only if $x=f_{k}$ for some $k=1,2, \ldots, n$.
(d) If $p=1$, then $\left(B_{w, p}^{n}\right)^{++}=\left(B^{n}\right)^{++}$.

Proof. (a) Every point $x \in \mathbf{R}^{n}$ may be written in the form

$$
x=\sum_{i=1}^{n-1} \sigma_{i}\left(x_{i}-x_{i+1}\right) f_{i}+\sigma_{n} x_{n} f_{n}
$$

In addition, for each $x \in\left(\mathbf{R}^{n}\right)^{+}$,

$$
\|x\|_{n}=\sum_{i=1}^{n-1} \sigma_{i}\left(x_{i}-x_{i+1}\right)+\sigma_{n} x_{n}
$$

Therefore every $x \in\left(\mathbf{R}^{n}\right)^{++}$with $\|x\|_{n}=1$ is a convex combination of the vector f_{1}, \ldots, f_{n}. It implies $\left(B^{n}\right)^{++} \subset \operatorname{conv}\left\{f_{0}, f_{1}, \ldots, f_{n}\right\}$.

We observe that $\left\|f_{k}\right\|_{w, p}=\left\|f_{k}\right\|_{n}=1$ for $k=1,2, \ldots, n$. Both the sets $\left(\mathbf{R}^{n}\right)^{++}$ and B^{n} are convex, so

$$
\operatorname{conv}\left\{f_{0}, \ldots, f_{k}\right\} \subset B^{n} \cap\left(\mathbf{R}^{n}\right)^{++}=\left(B^{n}\right)^{++}
$$

(b) By the proof of (a) and by concavity of the function $x \mapsto\|x\|_{w, p}^{p}$ on $\left(\mathbf{R}^{n}\right)^{++}$,

$$
\begin{aligned}
\|x\|_{w, p}^{p} \geq \sum_{i=1}^{n-1} \sigma_{i}\left(x_{i}-x_{i+1}\right)\left\|f_{i}\right\|_{w, p}^{p}+\sigma_{n} x_{n}\left\|f_{n}\right\|_{w, p}^{p} & =\|x\|_{n} \\
& \text { for } x \in\left(\mathbf{R}^{n}\right)^{++},\|x\|_{n}=1
\end{aligned}
$$

Thus (b) follows from homogeneity of the functionals $\|\cdot\|_{n}$ and $\|\cdot\|_{w, p}$.
(c) Since the function $x \mapsto\|x\|_{w, p}^{p}$ is strictly concave on $\left(\mathbf{R}^{n}\right)^{++} \backslash\{0\}, 0<p<1$, the assertion (c) is clear.
(d) It is enough to observe that $\|x\|_{w, 1}=\|x\|_{n}$ for every $x \in\left(\mathbf{R}^{n}\right)^{++}$.

Corollary 1. If $y=\left(y_{i}\right) \in\left(\mathbf{R}^{n}\right)^{+}$and $S_{k}(y) \leq \sigma_{k}$ for $k=1, \ldots, n$, then

$$
\sum_{i=1}^{n} x_{i} y_{i} \leq\left(\sum_{i=1}^{n} x_{i}^{p} w_{i}\right)^{1 / p} \quad \text { for every } x=\left(x_{i}\right) \in\left(\mathbf{R}^{n}\right)^{++}
$$

Proof. Corollary 1 follows immediately from Lemma 1(b).
Corollary 2. For every $x=\left(x_{i}\right) \in\left(\mathbf{R}^{n}\right)^{++}$,

$$
\left(\sum_{i=1}^{n-1} x_{i}^{p} w_{i}\right)^{1 / p}+\left(\sigma_{n}-\sigma_{n-1}\right) x_{n} \leq\left(\sum_{i=1}^{n} x_{i}^{p} w_{i}\right)^{1 / p}
$$

Proof. It suffices to apply Corollary 1 with $\tilde{w}_{1}=S_{n-1}(w), \tilde{w}_{2}=w_{n}, \tilde{x}_{1}=$ $\left(\sum_{i=1}^{n-1} x_{i}^{p} w_{i}\right)^{1 / p} \sigma_{n-1}, \tilde{x}_{2}=x_{n}, y_{1}=\sigma_{n-1}$, and $y_{2}=\sigma_{n}-\sigma_{n-1}$.

PROPOSITION 1. Let $0<p \leq 1, w=\left(w_{i}\right)$ and $v=\left(v_{i}\right)$ belong to $l_{\infty}^{++} \backslash l_{1}$. Then

$$
d(w, p) \subset d(v, 1) \quad \text { if and only if } \inf _{n} \frac{S_{n}^{1 / p}(w)}{S_{n}(v)}>0
$$

In particular

$$
d(w, p) \subset l_{1} \quad \text { if and only if } \inf _{n} n^{-1} S_{n}^{1 / p}(w)>0
$$

Proof. If $d(w, p) \subset d(v, 1)$, then, by the closed graph theorem, the inclusion map is continuous. Moreover, $\left\|f_{n}\right\|_{w, p}=1$ for $n=1,2, \ldots$. Thus

$$
\sup _{n}\left\|f_{n}\right\|_{v, 1}=\sup _{n} \frac{S_{n}(v)}{S_{n}^{1 / p}(w)}<+\infty
$$

If $\inf _{n} S_{n}^{1 / p}(w) / S_{n}(v)>0$, then, by Corollary $1, d(w, p) \subset d(v, 1)$.

Lemma 2. Let $\inf _{n} \sigma_{n} / n=0$. Then there exist an increasing sequence of integers $\left(n_{k}\right)$ and a sequence of positive numbers $q=\left(q_{n}\right) \in c_{0}$ such that:
(a) $S_{n}(q) \leq \sigma_{n}$ for $n=1,2, \ldots$
(b) $S_{n_{k}}(q)=\sigma_{n_{k}}$ for $k=1,2, \ldots$
(c) The sequence $\left(S_{n}(q) / n\right)$ is nonincreasing.

Proof. We define (n_{k}) by induction taking $n_{1}=1$ and

$$
n_{k+1}=\inf \left\{n>n_{k}: \frac{\sigma_{n}}{n}<\frac{\sigma_{n_{k}}}{n_{k}}\right\}, \quad k=1,2, \ldots
$$

Put $Q_{n}=n \sigma_{n_{k}} / n_{k}$ for $n_{k} \leq n<n_{k+1}, k=1,2, \ldots, q_{n}=Q_{n}-Q_{n-1}$ for $n=1,2, \ldots$, and $Q_{0}=0$. The assertions (a), (b) and (c) follow immediately from the construction.

LEMmA 3. If $q=\left(q_{n}\right) \in c_{0}^{+}$and $\left(S_{n}(q) / n\right) \in \omega^{++}$, then $S_{n}(q) \leq S_{n}\left(q^{*}\right) \leq$ $2 S_{n}(q)$ for $n=1,2, \ldots$

Proof. Evidently $S_{n}(q) \leq S_{n}\left(q^{*}\right)$. We define

$$
A=\left\{i \in\{1, \ldots, n\}: q_{i}^{*}=q_{j} \text { for some } j>n\right\}
$$

Since the sequence $\left(S_{n}(q) / n\right)$ is nonincreasing, $q_{n+1} \leq S_{n}(q) / n$ for $n=1,2, \ldots$ Thus, if $i \in A$ and $q_{i}^{*}=q_{j}$ for $j>n$, so $q_{i}^{*}=q_{j} \leq S_{j-1}(q) /(j-1) \leq S_{n}(q) / n$. Therefore

$$
S_{n}\left(q^{*}\right)=\sum_{i \in A} q_{i}^{*}+\sum_{\substack{i \leq n \\ i \notin \boldsymbol{A}}} q_{i} \leq|A| \frac{S_{n}(q)}{n}+S_{n}(q) \leq 2 S_{n}(q) .
$$

LEMMA 4. Let $\lim _{n \rightarrow \infty} \sigma_{n} / n=+\infty$ and let $x_{m}=\left(x_{m i}\right)$ be a normalized sequence in $d(w, p)$. Then $\lim _{m \rightarrow \infty}\left\|x_{m}\right\|_{c_{0}}=0$ implies $\lim _{m \rightarrow \infty}\left\|x_{m}\right\|_{l_{1}}=0$.

Proof. We can assume that $x_{m}=x_{m}^{*}$ for every $m \in \mathbf{N}$. Fix $\varepsilon>0$. There is $n_{0} \in \mathbf{N}$ such that $2 n / \varepsilon \leq \sigma_{n}$ for every $n \geq n_{0}$. Let

$$
y_{i}=\left\{\begin{array}{cl}
0 & \text { if } i<n_{0} \\
2 / \varepsilon & \text { if } i \geq n_{0}
\end{array}\right.
$$

Then $S_{k}(y) \leq \sigma_{k}$ for every $k \in \mathbf{N}$. From Corollary 1 follows

$$
\sum_{i=1}^{n} x_{m i} y_{i} \leq\left(\sum_{i=1}^{n} x_{m i}^{p} w_{i}\right)^{1 / p} \leq\left\|x_{m}\right\|_{w, p}=1, \quad n, m=1,2, \ldots
$$

Thus

$$
\frac{2}{\varepsilon} \sum_{i=n_{0}}^{\infty} x_{m i} \leq 1 \quad \text { for } m=1,2, \ldots
$$

Finally

$$
\sum_{i=n_{0}}^{\infty} x_{m i} \leq \frac{\varepsilon}{2} \quad \text { for } m=1,2, \ldots
$$

Lemma 5. Let $0<p<1$ and $x=\left(x_{i}\right) \in d(w, p)^{++}$. If $\|x\|_{w, p}=\|x\|_{w, p}=1$, then $x=f_{k}$ for some $k=1,2, \ldots$

Proof. Let $x^{(n)}=\sum_{i=1}^{n} x_{i} e_{i}$ and let $\|\cdot\|_{n}$ be as in Lemma 1. Every point f_{k} is of the form $f_{k}=(\alpha, \alpha, \ldots, \alpha, 0, \ldots)$ for some $\alpha>0$. Suppose that $x \neq f_{k}$ for $k=1,2, \ldots$. Then there is $l \in \mathbf{N}$ such that $x_{l-1}>x_{l}>0$. Therefore by Lemma 1(b) $\left\|x^{(l)}\right\|_{l} \leq\left\|x^{(l)}\right\|_{w, p}$ and by Lemma 1(c) we see that the equality cannot hold. Thus for some $\varepsilon>0$ we have

$$
\left\|x^{(l)}\right\|_{l} \leq\left\|x^{(l)}\right\|_{w, p}-\varepsilon
$$

From this, using Corollary 2, we get by induction

$$
\left\|x^{(n)}\right\|_{w, p} \leq\left\|x^{(n)}\right\|_{n} \leq\left\|x^{(n)}\right\|_{w, p}-\varepsilon \quad \text { for } n \geq 1
$$

Thus $\|x\|_{\hat{w}, p} \leq\|x\|_{w, p}-\varepsilon$.
III. The Mackey topology of $d(w, p), 0<p<1$.

THEOREM 1. Let $0<p<1$ and $w=\left(w_{i}\right) \in l_{\infty}^{++} \backslash l_{1}$. Then there exists a sequence $v=\left(v_{i}\right) \in l_{\infty}^{++} \backslash l_{1}$ such that $d(w, p) \subset d(v, 1)$ and the Mackey topology of $d(w, p)$ is induced from $d(v, 1)$.

The sequence $v \in c_{0}$ if and only if $\inf _{n} n^{-1} S_{n}^{1 / p}(w)=0$.
Proof. If $\inf _{n} n^{-1} S_{n}^{1 / p}(w)>0$, then by Proposition $1 d(w, p) \subset l_{1}=d(v, 1)$ for $v=(1,1, \ldots)$. By [8, Proposition 3.4], the Mackey topology of $d(w, p)$ is induced from l_{1}.

Let $\inf _{n} n^{-1} S_{n}^{1 / p}(w)=0$. We choose sequences $\left(n_{k}\right) \subset \mathbf{N}$ and $\left(q_{n}\right)$ according to Lemma 2. Put $v_{n}=q_{n}^{*}, n=1,2, \ldots$

We will show that

$$
\begin{equation*}
B_{v, 1}^{n} \subset \operatorname{conv} B_{w, p}^{n} \subset 2 B_{v, 1}^{n} \quad \text { for every } n \in \mathbf{N} \tag{*}
\end{equation*}
$$

Indeed, by Lemma $3, S_{k}(v)=S_{k}\left(q^{*}\right) \leq 2 S_{k}(q) \leq 2 S_{k}^{1 / p}(w)$, for $k=1,2, \ldots$ Thus, using Corollary 1 with $y_{k}=\frac{1}{2} v_{k}$, we obtain ${ }^{-}\left(B_{w, p}^{n}\right)^{++} \subset 2\left(B_{v, 1}^{n}\right)^{++}$. Hence the right inclusion follows from the convexity of $B_{v, 1}$.

It is obvious that if $\left(B_{v, 1}^{n}\right)^{++} \subset$ conv $B_{w, p}^{n}$, then the left inclusion holds. Since $\left(B_{v, 1}^{n}\right)^{++}=\operatorname{conv}\left\{g_{j}: j=0,1, \ldots, n\right\}$, where $g_{j}=S_{j}^{-1}(v) \sum_{i=1}^{j} e_{i}, g_{0}=0$ (see Lemma 1(a) and (b)), it suffices to prove that $g_{j} \in \operatorname{conv} B_{w, p}^{n}$ for $j=1, \ldots, n$.

Fix $j \in\{1, \ldots, n\}$. We find n_{k} such that $n_{k} \leq j<n_{k+1}$. Let C be the family of all subsets of cardinality n_{k} in the set $\{1, \ldots, j\}$. We define

$$
x_{C}=S_{n_{k}}^{-1 / p}(w) \sum_{i \in C} e_{i} \quad \text { for some } C \in C
$$

We have $\left\|x_{C}\right\|_{w, p}=1$ and

$$
\begin{aligned}
\frac{1}{|C|} \sum_{C \in C} x_{C} & =\binom{j}{n_{k}}^{-1} S_{n_{k}}^{-1}(w) \sum_{C \in C} \sum_{i \in C} e_{i} \\
& =\binom{j}{n_{k}}^{-1}\binom{j-1}{n_{k}-1} S_{n_{k}}^{-1 / p}(w) \sum_{i=1}^{j} e_{i} \\
& =\frac{n_{k}}{j} S_{n_{k}}^{-1 / p}(w) \sum_{i=1}^{j} e_{i}=S_{j}^{-1}(q) \sum_{i=1}^{j} e_{i} \\
& =\frac{S_{j}\left(q^{*}\right)}{S_{j}(q)} g_{j} .
\end{aligned}
$$

Thus $\left(S_{j}\left(q^{*}\right) / S_{j}(q)\right) g_{j} \in \operatorname{conv} B_{w, p}^{n}$. Since $S_{j}(q) \leq S_{j}\left(q^{*}\right)$ and the set conv $B_{w, p}^{n}$ is balanced, $g_{j} \in \operatorname{conv} B_{w, p}^{n}$. Therefore the assertion (*) holds. Thus the Mackey topology of $d(w, p)$ and the $d(v, 1)$-topology coincide on the subspace of all finitely supported sequences. Since this subspace is dense in $d(w, p)$, these two topologies coincide on $d(w, p)$.

If $\inf _{n} n^{-1} S_{n}^{1 / p}(w)=0$, then $v \in c_{0}$ by Lemma 2.
As a simple application of Theorem 1 we obtain the representation of the dual $d(w, p)^{\prime}$ of $d(w, p), 0<p<1$.

COROLLARY 3. Let $0<p<1, w=\left(w_{i}\right) \in l_{\infty}^{++} \backslash l_{1}$. Then
(a)

$$
d(w, p)^{\prime}=l_{\infty} \quad \text { if } \inf _{n} \frac{S_{n}^{1 / p} w}{n}>0
$$

(b) $d(w, p)^{\prime}=\left\{y \in c_{0}: \sup _{n} \frac{S_{n}\left(y^{*}\right)}{S_{n}^{1 / p}(w)}<+\infty\right\}=: E(w, p) \quad$ if $\inf _{n} \frac{S_{n}^{1 / p}(w)}{n}=0$.

Proof. If $\inf _{n} S_{n}^{1 / p}(w) / n>0$, then by Theorem $1 d(\widehat{w, p})=l_{1}$, so $d(w, p)^{\prime}=$ l_{∞}. Let $\inf _{n} S_{n}^{1 / p}(w) / n=0$. Then by Theorem 1 there exists $v=\left(v_{i}\right) \in c_{0}^{++} \backslash l_{1}$ such that $d(\widehat{w, p})=d(v, 1)$. Therefore by Proposition $1 \sup _{n} S_{n}(v) / S_{n}^{1 / p}(w)<$ $+\infty$. By [4, Theorem 11], $d(v, 1)=\left\{y \in c_{0}: \sup _{n} S_{n}\left(y^{*}\right) / S_{n}(v)<+\infty\right\}$. Hence $d(w, p)^{\prime}=d(v, 1)^{\prime} \subset E(w, p)$.

The inclusion $E(w, p) \subset d(w, p)^{\prime}$ follows directly from Corollary 1.
Remark 1. Theorem 1 and Corollary 3 are respectively extensions of Theorem 6.3 and Proposition 6.1 in [8].
IV. Complemented subspaces of $d(w, p), 0<p<1$.

THEOREM 2. Let $0<p<1$ and let $w=\left(w_{i}\right) \in c_{0}^{++} \backslash l_{1}$. If $\inf _{n} S_{n}^{1 / p}(w) / n=0$, then there is a positive continuous projection from $d(w, p)$ onto a sublattice order isomorphic to l_{p}.

Proof. First we construct by induction an increasing sequence of integers $\left\{n_{k}\right\}_{k=0}^{\infty}$ and a sequence $q=\left(q_{i}\right) \in \omega^{+}$such that the following conditions are
satisfied for all $k \geq 0$:

$$
\begin{equation*}
\left(\sum_{i=n_{k}+1}^{j} w_{i}\right)^{1 / p} \geq \sum_{i=n_{k}+1}^{j} q_{i} \text { for } n_{k}<j \leq n_{k+1} \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
k \leq\left(\sum_{i=n_{k}+1}^{n_{k+1}} w_{i}\right)^{1 / p}=\sum_{i=n_{k}+1}^{n_{k+1}} q_{i} \tag{2}
\end{equation*}
$$

(3) the sequence $\left(\sum_{i=n_{k}+1}^{j} \frac{q_{i}}{j-n_{k}}\right)_{j=n_{k}+1}^{n_{k+1}}$ is nonincreasing;

$$
\begin{equation*}
\left(\sum_{i=1}^{n_{k+1}-n_{k}} w_{i}\right)^{1 / p} \leq 2\left(\sum_{i=n_{k}+1}^{n_{k+1}} w_{i}\right)^{1 / p} \tag{4}
\end{equation*}
$$

We start with $n_{0}=0, q_{0}=0$. Suppose that n_{k} has been already defined for some $k \geq 0$. Since $w \notin l_{1}$, there is $r \in \mathbf{N}, r \geq n_{k}$ such that for every $n>r$

$$
\left(\sum_{i=1}^{n-n_{k}} w_{i}\right)^{1 / p} \leq 2\left(\sum_{i=n_{k}+1}^{n} w_{i}\right)^{1 / p}
$$

Applying Lemma 2 to the sequence $\left(w_{i}\right)_{i=n_{k}+1}^{\infty}$ we can find $n_{k+1}>r$ and $\left(q_{i}\right)_{i=n_{k}+1}^{n_{k+1}}$ such that (1), (2) and (3) hold. As $n_{k+1}>r$, the same is true of (4).

Let

$$
f_{k}=\left(\sum_{i=n_{k}+1}^{n_{k+1}} w_{i}\right)^{-1 / p} \sum_{i=n_{k}+1}^{n_{k+1}} e_{i}, \quad k=0,1,2, \ldots
$$

It follows from (4) that $\left\|f_{k}\right\|_{w, p} \leq 2$.
Now we define the projection $P: d(w, p) \rightarrow \overline{\operatorname{span}}\left\{f_{k}\right\}_{k=0}^{\infty}$ by

$$
P(x)=\sum_{k=0}^{\infty}\left(\sum_{n_{k}+1}^{n_{k+1}} x_{i} q_{i}\right) f_{k}, \quad \text { where } x=\left(x_{i}\right) \in d(w, p)
$$

Let $x=\left(x_{i}\right) \in d(w, p)$ and let $\left(\hat{x}_{i}\right)_{i=n_{k}+1}^{n_{k+1}}$ and $\left(\hat{q}_{i}\right)_{i=n_{k}+1}^{n_{k+1}}, k=0,1, \ldots$, be respectively nonincreasing rearrangements of the sequences $\left(\left|x_{i}\right|\right)_{i=n_{k}+1}^{n_{k+1}}$ and $\left(q_{i}\right)_{i=n_{k}+1}^{n_{k+1}}$. Using (3) and Lemma 3 we have

$$
\sum_{i=n_{k}+1}^{1} \hat{q}_{i} \leq 2 \sum_{i=n_{k}+1}^{1} q_{i}, \quad l=n_{k}+1, \ldots, n_{k+1}
$$

Thus by (1) and Corollary 1 we get

$$
\begin{aligned}
\|P x\|_{w, p}^{p} & \leq 2^{p} \sum_{k=0}^{\infty}\left|\sum_{i=n_{k}+1}^{n_{k+1}} x_{i} q_{i}\right|^{p} \leq 2^{p} \sum_{k=0}^{\infty}\left|\sum_{i=n_{k}+1}^{n_{k+1}} \hat{x}_{i} \hat{q}_{i}\right|^{p} \\
& \leq 2^{p+1} \sum_{k=0}^{\infty}\left(\sum_{i=n_{k}+1}^{n_{k+1}} \hat{x}_{i}^{p} w_{i}\right) \leq 2^{p+1} \sum_{i=1}^{\infty} x_{i}^{* p} w_{i}=2^{p+1}\|x\|_{w, p}^{p}
\end{aligned}
$$

Thus P is continuous. By (2) and [8, Lemma 3.1] there is a strictly increasing sequence $\left(j_{k}\right)$ such that $\left(f_{j_{k}}\right)$ is equivalent to the canonical basis of l_{p}. Therefore the desired result follows from unconditionality of the basic sequence $\left(f_{k}\right)$.

Remark 2. Theorem 2 solves Problems 3 and 3a in [8].
COROLLARY 4. If $\inf _{n} n^{-1} S_{n}^{1 / p}(w)=0$, then $d(w, p) \oplus l_{p}$ is isomorphic to $d(w, p), 0<p<1$.

Proof. By Theorem 2, $d(w, p)=X \oplus l_{p}$ for some F-space X. Therefore

$$
d(w, p)=X \oplus l_{p}=X \oplus l_{p} \oplus l_{p}=d(w, p) \oplus l_{p}
$$

COROLLARY 5. Let $0<p<1$, and $\inf _{n} n^{-1} S_{n}^{1 / p}(w)=0$. Then $d(w, p)$ has uncountably many mutually nonequivalent unconditional bases.

Proof. It is enough to know that $d(w, p)$ has at least two mutually nonequivalent bases (cf. [6, p. 118]). Thus our result follows from Corollary 4.

In the proof of the next theorem we use the same ideas as in [$\mathbf{7}$, Theorem 2.3].
THEOREM 3. Let $0<p<1, w=\left(w_{i}\right) \in l_{\infty}^{++} \backslash l_{1}$. If $\lim _{n \rightarrow \infty} S_{n}^{1 / p}(w) / n=$ ∞, then each infinite-dimensional complemented subspace of $d(w, p)$ contains a subspace Y which is isomorphic to $d(w, p)$ and complemented in $d(w, p)$.

Proof. Let P be a continuous projection from $d(w, p)$ onto an infinite-dimensional subspace X of $d(w, p)$. Since $\lim _{n \rightarrow \infty} S_{n}^{1 / p}(w) / n=\infty$, by Theorem 1 $d(\widehat{w, p})=l_{1}$. Because X is complemented in $d(w, p)$, so its Mackey topology is also induced from l_{1}. Since the l_{1}-closure of $\operatorname{conv}\left\{P\left(e_{i}\right): i \in \mathbf{N}\right\}$ is a neighbourhood of zero in \hat{X}, the set $\left\{P\left(e_{i}\right): i \in \mathbf{N}\right\}$ is not precompact in l_{1}. Therefore, using the standard gliding hump method, we can construct a strictly increasing sequence of the integers $\left(n_{k}\right)$ and sequences of vectors $\left(y_{k}\right)$ and $\left(z_{k}\right)$ such that:
(1) $y_{k}=P\left(e_{n_{2 k+1}}-e_{n_{2 k}}\right)$;
(2) $z_{k}=\sum_{i \in A_{k}} t_{i} e_{i}$ is a block basic sequence;
(3) $\sum_{k=1}^{\infty}\left\|y_{k}-z_{k}\right\|_{w, p}^{p}<1$;
(4) $0<C_{1} \leq\left\|z_{k}\right\|_{l_{1}} \leq\left\|z_{k}\right\|_{w, p} \leq C_{2}$ for $k \in \mathbf{N}$, where C_{1}, C_{2} are some constants.

By Lemma 4 we have $\inf _{k} \max _{i \in A_{k}}\left|t_{i}\right|>0$. Since $\left(e_{k}\right)$ is symmetric and P is continuous, the sequence $\left(z_{k}\right)$ is equivalent to $\left(e_{k}\right)$. Thus, as in $[\mathbf{3}]$, we may define a continuous projection Q by

$$
Q(x)=\sum_{n=1}^{\infty} \frac{x_{i_{n}}}{t_{i_{n}}} z_{n} \quad \text { if } x=\left(x_{i}\right) \in d(w, p)
$$

where $i_{n} \in A_{n}$ and $\left|t_{i_{n}}\right|=\max \left\{\left|t_{i}\right|: i \in A_{n}\right\}, n=1,2, \ldots$. Using a stability theorem (cf. [6, Proposition 1.a.9] and [7, Proposition 1.2]) we conclude that $\overline{\operatorname{span}}\left\{P\left(e_{n_{2 k+1}}\right)-P\left(e_{n_{2 k}}\right)\right\}_{k \geq k_{0}}$ is isomorphic to $d(w, p)$ and complemented in $d(w, p)$.

Our next result is an easy consequence of Theorem 3 and Petczyński's decomposition method.

COROLLARY 6. Let $0<p<1$ and $w=\left(w_{i}\right) \in l_{\infty}^{++} \backslash l_{1}$. If $\lim _{n \rightarrow \infty} S_{n}^{1 / p}(w) / n=$ ∞, then every infinite-dimensional complemented subspace of $d(w, p)$ with symmetric basis is isomorphic to $d(w, p)$.

COROLLARY 7. Let $0<p<1, w=\left(w_{i}\right) \in c_{0}^{++} \backslash l_{1}$ and $\lim _{n \rightarrow \infty} S_{n}^{1 / p}(w) / n=$ ∞. Then $d(w, p)$ contains a closed subspace X nonisomorphic to l_{p} and $d(w, p)$ such that $\hat{X} \approx l_{1}$.

Proof. It follows from Corollary 6 that $d(w, p) \oplus l_{p} \not \approx d(w, p)$. Moreover $d(w, p) \oplus l_{p}$ is isomorphic to some subspace Z of $d(w, p) \oplus d(w, p) \approx d(w, p)$. Since $l_{p} \oplus d(w, p)=l_{1} \oplus l_{1} \approx l_{1}$ we get $\hat{Z} \approx l_{1}$.

Remark 3. Corollary 7 solves partially Problem 2 in [8].
Proposition 2. Let $0<p<1, w=\left(w_{i}\right) \in l_{\infty}^{++} \backslash l_{1}$ and $w_{1}<S_{n}^{1 / p}(w) / n$ for $n>1$. If $P: d(w, p) \mapsto Y \subset d(w, p)$ is a constructive projection, then $Y=$ $\overline{\operatorname{span}}\left\{e_{i}: i \in A\right\}$ for some set $A \subset N$.

Proof. We can assume that $w_{1}=1$. Since $1<n^{-1} S_{n}^{1 / p}(w)$, by Theorem 1 and Corollary 1, we have $d(\widehat{w, p})=l_{1}$ and $\left(B_{w, p}^{n}\right)^{++} \subset B_{l_{1}}, n=1,2, \ldots$. Thus $B_{w, p} \subset B_{l_{1}}$ and

$$
\hat{B}=\overline{\operatorname{conv}}^{l_{1}} B_{w, p} \subset B_{l_{1}}=\overline{\operatorname{conv}}^{l_{1}}\left\{c_{i}: i=1,2, \ldots\right\} \subset \overline{\operatorname{conv}}^{l_{1}} B_{w, p}=\hat{B},
$$

where $\hat{B}=\left\{x \in l_{1}:\|x\|_{w, p} \leq 1\right\}$.
Therefore $\|\cdot\|_{\hat{w}, p}=\|\cdot\|_{l_{1}}$.
Hence a continuous extension \hat{P} of P is a contractive projection in $l_{1}=d(\widehat{w, p})$. By [5, Chapter 6, §17, Theorem 3] (see also [6, Theorem 2.a.4]),

$$
\hat{P}(x)=\sum_{j=1}^{m} h_{j}(x) u_{j}
$$

where $\left\{u_{j}\right\}_{j=1}^{m}$ are vectors of norm 1 in $l_{1}(m=\operatorname{dim} Y$ is either an integer or $\infty), u_{j}=\sum_{i \in A_{j}} t_{i} e_{i}$, with $A_{j} \cap A_{k}=\varnothing$ for $j \neq k$ and $\left\{h_{j}\right\}_{j=1}^{m} \subset l_{1}^{\prime}$ satisfy $\left\|h_{j}\right\|_{\infty}=h_{j}\left(u_{j}\right)=1, j=1,2, \ldots$.

Since for every $x \in d(w, p)$ and $j=1,2, \ldots$,

$$
\|x\|_{w, p} \geq\|P x\|_{w, p}=\|\hat{P} x\|_{w, p} \geq\left\|h_{j}(x) u_{j}\right\|_{w, p}
$$

so $u_{j} \in d(w, p)$ and $Q_{j}(x):=h_{j}(x) u_{j}$ is a contractive projection from $d(w, p)$ onto a one-dimensional subspace $\operatorname{span}\left\{u_{j}\right\}$.

Therefore $\left\|u_{j}\right\|_{w, p}=\left\|u_{j}\right\|_{w, p}=1$. By Lemma $5, u_{j}^{*}=f_{k}$ for some $k=1,2, \ldots$ Since $1<S_{n}^{1 / p}(w) / n$ for $n>1,\left\|f_{k}\right\|_{w, p}<\left\|f_{k}\right\|_{w, p}$ if $k>1$. Thus $u_{j}^{*}=e_{1}, j=$ $1,2, \ldots$.

COROLLARY 8. Let $0<p<1, w=\left(w_{i}\right) \in c_{0}^{++} \backslash l_{1}$ and $w_{1}<S_{n}^{1 / p}(w) / n$ for $n>1$. Then l_{p} is not isomorphic to the range of a contractive projection in $d(w, p)$.

Remark 4. Corollary 8 is an extension of Theorem 5.5 in [8].
V. Open problems and remarks. If $\underline{\lim }_{n \rightarrow \infty} S_{n}^{1 / p}(w) / n=0$, then by Theorem 2 there exists a continuous projection P from $d(w, p)$ onto a subspace isomorphic to l_{p}. Moreover, if $\lim _{n \rightarrow \infty} S_{n}^{1 / p}(w) / n=\infty$, then by Theorem 3 no subspace isomorphic to l_{p} is complemented in $d(w, p)$.

Problem 1. Let $0<p<1$ and $0<\varliminf_{n \rightarrow \infty} S_{n}^{1 / p}(w) / n<\infty$. Is there a continuous projection from $d(w, p)$ onto a subspace isomorphic to l_{p} ?

Problem 2. Let $0<p<1$ and $\underline{\lim }_{n \rightarrow \infty} S_{n}^{1 / p}(w) / n=0$. Is there a contractive projection from $d(w, p)$ onto a subspace isomorphic to l_{p} ?

The next result is an extension of Theorem 3.8 in [$\mathbf{8}]$.
Proposition 3. Each symmetric basis $\left(y_{k}\right)$ of $d(w, p)(0<p<1)$ is equivalent to the canonical basis $\left(e_{k}\right)$ of $d(w, p)$.

Proof. Using the standard gliding hump method we can find a strictly increasing sequence of natural numbers $\left(n_{k}\right)$ such that the sequence $x_{k}=y_{n_{2 k}}-y_{n_{2 k+1}}$ is equivalent to a block basic sequence $z_{k}=\sum_{i \in A_{k}} b_{i} e_{i}$. Since x_{k} is symmetric and equivalent to $\left(y_{k}\right)$, by $\left[8\right.$, Lemma 3.1] $\inf _{k} \max _{i \in A_{k}}\left|b_{i}\right|>0$. Hence (y_{k}) dominates $\left(e_{k}\right)$. If we interchange the roles of $\left(e_{k}\right)$ and $\left(y_{k}\right)$ we deduce the equivalence of these bases.

If $\varliminf_{n \rightarrow \infty} S_{n}^{1 / p}(w) / n=0$, then $d(w, p)$ has uncountable many mutually nonequivalent unconditional bases. However the above proposition and Corollary 6 suggest the following

Problem 3. Let $0<p<1$ and $\lim _{n \rightarrow \infty} S_{n}^{1 / p}(w) / n=\infty$. Are every two unconditional bases in $d(w, p)$ equivalent?

References

1. Z. Altshuler, P. G. Cassaza and B. L. Lin, On symmetric basic sequences in Lorentz sequence spaces, Israel J. Math. 15 (1973), 140-155.
2. P. G. Cassaza and B. L. Lin, On symmetric basic sequences in Lorentz sequence spaces. II, Israel J. Math. 17 (1974), 191-218.
3. ___, Projections in Banach spaces with symmetric bases, Studia Math. 52 (1974), 189-194.
4. D. J. H. Garling, On symmetric sequence spaces, Proc. London Math. Soc. 16 (1966), 85-106.
5. H. E. Lacey, The isometric theory of classical Banach spaces, Springer-Verlag, Berlin and New York, 1974.
6. J. Lindenstrauss and L. Tzafriri, Classical Banach spaces. I. Sequences spaces, Springer-Verlag, Berlin and New York, 1977.
7. A. Ortyński, Projections in locally bounded spaces with symmetric bases, Comment. Math. (to appear).
8. N. Popa, Basic sequences and subspaces in Lorentz sequence spaces without local convexity, Trans. Amer. Math. Soc. 263 (1981), 431-456.
9. S. Rolewicz, Metric linear spaces, PWN, Warsaw, 1972.
10. J. H. Shapiro, Mackey topologies, reproducing kernels, and diagonal maps on Hardy and Bergman spaces, Duke Math. J. 43 (1976), 187-202.

Institute of Mathematics, A. Mickiewicz University, Matejki 48/49, 60-769 Poznań, Poland

[^0]: Received by the editors September 6, 1983.
 1980 Mathematics Subject Classification. Primary 46A45, 46A10; Secondary 46A35.
 Key words and phrases. p-Banach spaces, Mackey topology, complemented subspaces.

