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THE MACKEY TOPOLOGY AND COMPLEMENTED SUBSPACES
OF LORENTZ SEQUENCE SPACES d(w,p) FOR 0 < p < 1

BY

M. NAWROCKI AND A. ORTYÑSKI

ABSTRACT. In this paper we continue the study of Lorentz sequence spaces

d(w,p), 0 < p < 1, initiated by N. Popa [8]. First we show that the Mackey

completion of d(w,p) is equal to d(v, 1) for some sequence v. Next, we prove

that if d(w, p) (2 h, then it contains a complemented subspace isomorphic to lp.

Finally we show that if limn_1(X)"=1 wi)1 = °°, tnen every complemented

subspace of d(w,p) with symmetric bases is isomorphic to d(w,p).

I. Introduction. A p-norm, 0 < p < 1, on a vector space X is a map ih ||i||

such that:

1. ||x|| > 0 if x^O.

2. ||ii|| = \t\ ||x|| for all x £ X and all scalars t.

3. ¡|sc + y\\p < \\x\\p + \\y\\p for all x,yeX.
Let B = {x £ X: ||x|| < 1}; then the family {rB}r>o is a base of neighbourhoods

of zero for a Hausdorff locally bounded vector topology on X (see [9]). If X is

complete, we say that X is a p-Banach space.

The Mackey topology \i of a locally bounded space X with separating dual is the

strongest locally convex topology on X which is weaker than the original one (see

[10]). It is easy to see that this normable topology is generated by neighbourhoods

{rconv B}r>ç>. The Minkowski functional of the set convß is called the Mackey

norm on X. The completion of the space (X, p.) is called the Mackey completion of

X and denoted by X. The extension of the Mackey norm to X is denoted by [| ■ |p.

For every subset E of w (= the space of all scalar sequences) we denote

E+ = {x = (xi)eE: Xi>0tori= 1,2,...}

and

E++ ={i£ E+ : x is nonincreasing}.

Let 0 < p < oo and let w = (wi) G ¿J>+Vi. For x = (x¿) e«we define

/ oo \  1/P

\\x\\w,p = sup ÍJ2 \xn{i)\PWi I
*     \»=1 /

where n ranges over all permutations of the positive integers. The space d(w, p) =

{x G oj: ||ai||u>,p < oo} equipped with the locally bounded vector topology induced

by || • ||u,,p is called the Lorentz sequence space.

It is well known that d(w,p) is a p-Banach space for 0 < p < 1 and a Banach

space for p > 1. Moreover, the sequence of unit vectors (e¿) is a symmetric basis of
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d(w,p). From the assumption w G Z¿,+ \ii follows that d(w,p) C cq. Therefore for

every x = (xi) G d(w,p) there exists a nonincreasing rearrangement x* = (x¿) of

x (i.e. a nonincreasing sequence obtained from (|x¿|) by a suitable permutation of

the integers) and ||x||WiP = (£)i=i x*pw;¿)1/p.

Observe that d(w,p) fí¿ lv if and only if w £ en (cf. [6, p. 176]).

The first topic of the present paper is the Mackey topology of d(w,p), 0 < p < 1.

Using a representation of the dual of d(w, p), N. Popa [8] proved that the Mackey

completion of d(w,p) (p — 1/k, k G N, and w satisfies some additional conditions)

is isomorphic to d(v, 1) for a suitable sequence v. In §3 we show that the above

theorem holds for any Lorentz sequence space d(w,p), 0 < p < 1. Our result is

obtained without determining any dual space.

The last part of our paper is devoted to the study of complemented subspaces

of d(w,p), 0 <p < 1.

It is well known that every Lorentz sequence space d(w,p), p > 1, has comple-

mented subspace isomorphic to lp (see [6, Proposition 4.e.3]). N. Popa [8] showed

that unlike the case p > 1 there are spaces d(w,p), 0 < p < 1, which contain

no complemented subspaces isomorphic to lp and conjectured that it is true for

each d(w,p), 0 < p < 1. In §4 we prove that if infnn_1(^™=1 tt>¿)1/p = 0 (i.e.

d(w,p) <JL li, see Proposition 1), then d(w,p) has complemented subspace isomor-

phic to lp. Moreover, if limn_0ori~1(5Z"=i u;¿)1//p = oo, then every complemented

subspace of d(w,p) with symmetric basis is isomorphic to d(w,p).

Throughout the paper we denote by BWtP the closed unit ball in d(w,p), Rn =

span{e¿}™=1,  B™ p = BWiP n R™, n = 1,2,-In addition we denote Sn(x) =

Xi + • • • + xn, n — 1,2,..., So(x) = 0 for any sequence x — (x{) G w.

We wish to thank Professor L. Drewnowski for many helpful discussions of the

material in this paper.

II. Technical results. In this section we assume that 0 < p < 1, w = (w{) €

&+Vi> °k = SfcM1/p, Ik = <y~kX ¿Zi=i e» for k - 1,2,..., and f0 = 0.

LEMMA 1.   Let \\ ■ \\n be the norm on Rn defined by

n

INI"= X^ l1*!^« - °«-i)  Ior x - (xi)e Rn>
¿=i

and let

Bn = {x = (li)eR": ||x||„ < 1},        neN.

Then:

(a) (£")++=conv{/fe: fc = 0,1,...,n}.

(b)(B£,p)++C(5")++.

(c) Let 0 < p < 1 and x = (i¿) G (R")++. Then \\x\\n = ||x|U,p = 1 if and only

if x — Ik lor some k = 1,2,..., n.
(d)//p = l, then(B2,<p)++ = (Bn)++.

PROOF,  (a) Every point x G R™ may be written in the form

n-l

X =  y ^ C*i\Xi       Xi-^-i jfi + CTnXnJn.

t=l
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In addition, for each x G (Rn)+,

n-l

INI™ = X] °*(x¿ ~ Xi+1^+ <JnXn-
¿=1

Therefore every x G (R")++ with ||x||n = 1 is a convex combination of the vector

Ii,..., In- It implies (Bn)++ C conv{/0, /i,..., /„}.

We observe that H/fclU.p = ||/fc||n = 1 for A; = 1,2,... ,n. Both the sets (R")++
and Bn are convex, so

conv{/0,... ,/fc} C Bn n (R")++ - (Bn)++.

(b) By the proof of (a) and by concavity of the function x >-> ||x||p p on (Rn)++,

n-l

ll*,p > £ OAK - *i+l)ll/i|IS,,p + ̂ nIn||/n||S,,p = \\x\\n
t=l

for xG (Rn)++, ||x||n = 1.

Thus (b) follows from homogeneity of the functionals || • ||n and || • \\WtP.

(c) Since the function x h-> ||x||p    is strictly concave on (R™)++\{0}, 0 < p < 1,

the assertion (c) is clear.

(d) It is enough to observe that ||x||«;,i = ||x||n for every x G (R™)++.

COROLLARY 1.   If y = (y i) G (R") + and Sk(y) < ok for k = 1,... ,n, then

n f  n \l/P

Y^xi"yi - [ ^2xiwi )      Ior everyx- (x*) e (R™)++-

¿=i Vî=i      /
PROOF. Corollary 1 follows immediately from Lemma 1(b).

COROLLARY 2.   For every x = (x¿) G (Rn)++,

/n-l \ J/p /  n \ !/P

I  £ XPWi J + (an - <7„-l)xn <   ( Yl X^Wi I

PROOF.  It suffices to apply Corollary 1 with wi = Sn-i(w), ü>2 = wn, xx =

{Tn=i x^Wi)1/pon-i, x2 = xn, Î/1 = er„_i, and y2 = <xn - <rn-i-

PROPOSITION 1.   Lei 0 < p < 1, w = (wi) and v = (v¿) 6e/on¡7 ío /++\/i. Then

Sn/P( W)
d(w,p) c d(v, 1)    î/ and only if inf > 0.

n    bn(v)

In particular

d(w,p) C h    if and only if mîn~1Sn^p(w) > 0.
n

PROOF. If d(w,p) c d(v, 1), then, by the closed graph theorem, the inclusion

map is continuous. Moreover, ||/n||m,p = 1 for n — 1,2,_Thus

sup ||/„||„,i = sup       , < +00.
" «    Sn     (w)

If inf„ 5„/p(w)/5„(v) > 0, then, by Corollary 1, d(w,p) C d(v, 1).
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LEMMA 2. Let inf„fj„/n = 0. Then there exist an increasing sequence of

integers (nk) and a sequence of positive numbers q — (qn) G en, such that:

(a) Sn(q) <on for n = 1,2,....

(b) Snk(q) =onk ¡ork= 1,2,....

(c) The sequence (Sn(q)/n) is nonincreasing.

PROOF. We define (nk) by induction taking nx = 1 and

nk+i=in{\n>nk: — < — \ ,        fc=l,2,....
I n       nk }

Put Qn = nonJnk for nk < n < nk+i, k = 1,2,..., qn = Qn - Qn-i for

n = 1,2,..., and Qo = 0. The assertions (a), (b) and (c) follow immediately from

the construction.

LEMMA 3. II q = (qn) G Cr} and (Sn(q)/n) G oj++, then Sn(q) < Sn(q*) <

2Sn(q) lorn = 1,2,....

PROOF. Evidently Sn(q) < Sn(q*). We define

A = {i G {1,... ,n} : q* = q3 for some j > n}.

Since the sequence (Sn(q)/n) is nonincreasing, qn+i < Sn(q)/n for n = 1,2,-

Thus, if i G A and q* = q0 for j > n, so q* = qj < Sj-i(q)/(j - 1) < Sn(q)/n.

Therefore

n
Sn(q') = £<?*+ X> < l¿|— + S^ Ï 25«(9).

LEMMA 4.   Lei limn_ooanjn = +oo and /eí xm = (xm¿) 6e a normalized se-

quence in d(w,p).  Then limm^oo ||xm||Co = 0 implies limm^oo ||xm||i, = 0.

PROOF.  We can assume that xm = xm for every m G N. Fix e > 0. There is

no G N such that 2n/e < on for every n > no- Let

(0     if i < n0,

2/e    if i>n0.

Then Sk(y) < ok for every k G N. From Corollary 1 follows

n /   n \1/P

X] XmiVi <   I £ Xmt^  I <  ll^mlU.p = 1, W, m = 1, 2, .. . .
t=l \t=l /

Thus
2 ^
-  /    xml < 1    for m = 1,2,....
£  z'—'

t=n0

Finally
oo

£
X^ xmî < -    for m = 1,2,....
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LEMMA 5.   Let 0 < p < 1 and x = (xt) G d(w,p)++. 1} \\x\\WtP = ||x||™,p = 1,

then x = Ik lor some k = 1,2,_

PROOF. Let x(") = J2i=i xiei and "et II ' II« be as m Lemma 1. Every point /fc
is of the form Ik = (a, a,..., a, 0,...) for some a > 0.  Suppose that x ^ Ik for

fc = 1,2,_ Then there is / G N such that x¡_i > x¡ > 0. Therefore by Lemma

1(b) Hx^H; < llx^Hu^p and by Lemma 1(c) we see that the equality cannot hold.

Thus for some e > 0 we have

\w,p•*' t    —    II IIW.p c'

From this, using Corollary 2, we get by induction

||*(n) |kp < ||xW ||n < ||xW |U,P - £    for n > 1.

Thus ||x||tu,p < ||x|U,p - £•

III. The Mackey topology of d(w,p), 0 < p < 1.

THEOREM 1. Lei 0 < p < 1 and w = (iy¿) G /¿+\/i. F/ien fAere exwis a

sequence v = (ví) G /¿>+Vi suc/i í/iaí d(w,p) C d(u, 1) and i/ie Mackey topology of

d(w,p) is induced from d(v, 1).

The sequence v G Co î/ and only i/inf„ n~1Sn   (w) = 0.

PROOF. If infnn-1Syp(ty) > 0, then by Proposition 1 d(u;,p) C l\ = <*(«, 1)
for u = (1,1,...). By [8, Proposition 3.4], the Mackey topology of d(w,p) is induced

from ii.

Let infn n~1Sn   (w) = 0. We choose sequences (nk) C N and (qn) according to

Lemma 2. Put vn = qn, n= 1,2,_

We will show that

(*) B™x c conv B£>p c 2ß" x    for every n G N.

Indeed, by Lemma 3, Sk(v) = Sk(q*) < 2Sk(q) < 2S¡./p(w), for fc = 1,2,.... Thus,

using Corollary 1 with yk = \vk, we obtain"(B™p)++ c 2(L?™,)++. Hence the

right inclusion follows from the convexity of Bv¿.

It is obvious that if (B^1)++ C convB™ p, then the left inclusion holds. Since

(B"i)++ = conv{g0: j = 0,1,..., n), where gd = Sj~l(v) E¿=i e¿, o0 = 0 (see

Lemma 1(a) and (b)), it suffices to prove that g¡ G conv B™    for j = 1,..., n.

Fix j G {1,...,n}. We find n^ such that nk < j < nk+x. Let C be the family of

all subsets of cardinality nk in the set {l,..., j}. We define

xc = S~k1/P(w) J2 e*    for some CGC.
iec
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We have ||xc||u>,p — 1 and

11)s»,"pM¿«

ceC x K/ cedec

i ,
•M 3

nk)      \nk
t=i

= Js-^p(w)±el=S-\q)±el
J i=l 1 = 1

_ W)'  Sj[q) 9i'

Thus (Sj(q*)/Sj(q))gj G convB£,P- Since Sj(q) < S3(q*) and the set conv_B£p

is balanced, gj G convß™ p. Therefore the assertion (*) holds. Thus the Mackey

topology of d(w,p) and the d(v, l)-topology coincide on the subspace of all finitely

supported sequences. Since this subspace is dense in d(w,p), these two topologies

coincide on d(w,p).

If infn n~1Sn   (w) = 0, then v G Co by Lemma 2.

As a simple application of Theorem 1 we obtain the representation of the dual

d(w,p)' of d(w,p), 0 < p < 1.

Corollary 3. Let 0 < p < 1, w = (wt) g /¿+\/i. Then

Sn/PW
(a) d(w,p)' = loo    if inf —- > 0;

(b)    d(w,p)' = \yec0: sup Ä<+00L: E(w,p)    if inf^M=0.
[ n    Sn     (w) ) n n

PROOF. If inf„5n/p(w)/n > 0, then by Theorem 1 d(w?p) = lx, so d(w,p)' =

loo- Let infn Sn (w)/n = 0. Then by Theorem 1 there exists v = (u») G Cq"+\Zi

such that d(tú7p) = d(v, 1). Therefore by Proposition 1 supn Sn(v)/Sn (w) <

+00. By [4, Theorem 11], d(v, 1) = {y G c0: sup„ Sn(y*)/Sn(v) < +oo}. Hence

d(w,p)' = d(v,l)' cE(w,p).
The inclusion E(w,p) C d(w,p)' follows directly from Corollary 1.

REMARK 1. Theorem 1 and Corollary 3 are respectively extensions of Theorem

6.3 and Proposition 6.1 in [8].

IV. Complemented subspaces of d(w,p), 0 < p < 1.

THEOREM 2. Let 0 < p < 1 and let w = (wi) G c¿"+\Zi. 7/inf„ Sn/p(w)/n = 0,
then there is a positive continuous projection from d(w,p) onto a sublattice order

isomorphic to lp.

PROOF. First we construct by induction an increasing sequence of integers

{nfc}fcLo and a sequence q = (qt) G w+ such that the following conditions are
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satisfied for all fc > 0:
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(1)

(2)

(3)

(4)

f    j \1/p i

E wi I    -  XI qi for Uk < 3 ̂  nfc+i;
*,i=nfc + l       / ¿=nfc-r-l

/   nk+l \  !/P nt+i

fc <   XI w» )   = X] qi>
»,1 = 71*+ 1

3

i=nk+l

Wfc+1

the sequence  I    V,    -—-— 1

\i=nk + lJ        lk J J=nfc + ,

is nonincreasing;

rrik + i— nk 1/p (nt+1 \  1/P

E «*)
t=n*+l       /

We start with no = 0, go = 0.   Suppose that nk has been already defined for

some fc > 0. Since w £ ix, there is r G N, r > nk such that for every n > r

/n-nk       \ !/P /      „

E w0   ^2   E ^
1/p

«=1 ^l = Tlfc + 1

Applying Lemma 2 to the sequence (wi)°Znk + x we can find nk+i > r and (qi)¿Vk + i

such that (1), (2) and (3) hold. As nit+i > r, the same is true of (4).

Let
(nk + i \  -!/P    nk + i

J2 wA      J2 e"    fc = o,i,2,....
i=nk+l       J i=nk+l

It follows from (4) that \\Ik\\w,P < 2.

Now we define the projection P: d(w,p) —» span{/fc}°^0 by

oo    /nk + i \

•Pi^)= E ( EXiq* ) /*» where x = fa»)e d(w-p)-
fc=0 Vnt+1 /

Let x = (xí) G d(w,p) and let (x¿)"=+¿+1 and (<?i)"=n¿+1, fc = 0,1,..., be respec-

tively nonincreasing rearrangements of the sequences (|a;¿|)^í^1+1 and (çtjj^'-f-f

Using (3) and Lemma 3 we have

i i

E   * - 2   E   qi>        l = nk + l,...,nk+i.
i=nk + l i=nk+l

Thus by (1) and Corollary 1 we get

\pT\\P     < 2P V^

nk+í nk+i

E *»« -2P E E *»*
fc=0  i=nk+l <c=0  i=nk+l

OO      /    "fc+l \ oo

^ 2P+1 E       E   *><    S 2p+1 J»; = 2p+1||x||p,p.
fc=0   \t=nk + l / ¿=1
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Thus P is continuous.   By (2) and [8, Lemma 3.1] there is a strictly increasing

sequence (jk) such that (fjk) is equivalent to the canonical basis of lp. Therefore

the desired result follows from unconditionality of the basic sequence (/fc).

REMARK 2. Theorem 2 solves Problems 3 and 3a in [8].

COROLLARY 4. If minn~1Sn (w) = 0, then d(w,p) ®lp is isomorphic to

d(w,p), 0 < p < 1.

PROOF. By Theorem 2, d(w,p) = X © lp for some F-space X. Therefore

d(w, p) = X®lp = X®lp®lp= d(w, p) © lp.

COROLLARY 5. Let 0 < p < 1, and mfnn~1Sn/p(w) = 0. Then d(w,p) has

uncountably many mutually nonequivalent unconditional bases.

PROOF. It is enough to know that d(w,p) has at least two mutually nonequiv-

alent bases (cf. [6, p. 118]). Thus our result follows from Corollary 4.

In the proof of the next theorem we use the same ideas as in [7, Theorem 2.3].

THEOREM 3. Let 0 < p < 1, w = (vjt) G í++\/i. If limn^oo Sn/p(w)/n =
oo, then each infinite-dimensional complemented subspace of d(w,p) contains a

subspace Y which is isomorphic to d(w,p) and complemented in d(w,p).

PROOF. Let F be a continuous projection from d(w,p) onto an infinite-dimen-

sional subspace X of d(w,p). Since limn^ocSn (w)/n = oo, by Theorem 1

d(w~p) = ii. Because X is complemented in d(w,p), so its Mackey topology is

also induced from lx. Since the Zi-closure of conv{F(ej): i G N} is a neighbour-

hood of zero in X, the set {P(ei) : i G N} is not precompact in lx. Therefore, using

the standard gliding hump method, we can construct a strictly increasing sequence

of the integers (nk) and sequences of vectors (yk) and (zk) such that:

(1) ?/fc = P(en?k+1 -e„2J;

(2) Zk = YLieAk tiei ls a block basic sequence;

(3)Er=ill^-^llpL,p<i;
(4) 0 < Ci < H^fcll', < ||2fc|U,p < C-i for fc G N, where C\, C2 are some constants.

By Lemma 4 we have inffc maxíe^ |í¿| > 0. Since (efc) is symmetric and P is

continuous, the sequence (zk) is equivalent to (efc). Thus, as in [3], we may define

a continuous projection Q by

oo

QiX) = ^2'TLzn      ÏÎ X = (Xi)ed(w,p),
n=l £i"

where i„ G An and |í¿J = max{|í¿|: i G An}, n = 1,2,— Using a stabil-

ity theorem (cf. [6, Proposition La.9] and [7, Proposition 1.2]) we conclude that

spañ{P(eri2)t+1) - P(en2k)}k>k0 1S isomorphic to d(w,p) and complemented in

d(w,p).
Our next result is an easy consequence of Theorem 3 and Pelczyñski's decompo-

sition method.

COROLLARY 6. LetO <p < 1 andw = (wí) G /£,+ \/i- //lim„_00Srl/p(w)/n =

oo, then every infinite-dimensional complemented subspace ofd(w,p) with symmet-

ric basis is isomorphic to d(w,p).
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COROLLARY 7. Let 0 < p < 1, w = (w,) G c^+Vi and lim,,-,«, Sllp(w)/n =
co. Then d(w,p) contains a closed subspace X nonisomorphic to lp and d(w,p)

such that X k, lx.

PROOF. It follows from Corollary 6 that d(w,p) ® lp ¡56 d(w,p). Moreover

d(w,p) ® lp is isomorphic to some subspace Z of d(w,p) ® d(w,p) ~ d(w,p). Since

lp ® d(w,p) = íi®íi«li we get Zk.Ii.

REMARK 3. Corollary 7 solves partially Problem 2 in [8].

Proposition 2. Let 0 < p < 1, w = (w¿) g /++Vi and wi < Sn/p(w)/n

for n > 1. II P: d(w,p) 1—► F c d(w,p) is a constructive projection, then Y =s

span{et : ¿ G ^4} /or some set Ac N.

PROOF. We can assume that tut = 1. Since 1 < n~1Sn (w), by Theorem 1

and Corollary 1, we have d(úTj>) = /1 and (B™p)++ C B^, n = 1,2,— Thus

ßtu.p C 5¡! and

B = cönv^-B^p C B¡j = coïïv'1-^: i = 1,2,...} C coñv'1.B,ü,p = B,

where S = {x G h : ||x||WiP < 1}.

Therefore || • \\w<p = || • H^.

Hence a continuous extension P of P is a contractive projection in lx = d(vûyp).

By [5, Chapter 6, §17, Theorem 3] (see also [6, Theorem 2.a.4]),

m

p(x) = EMi)u¿>
j=i

where {it,}"L, are vectors of norm 1 in lx (m = dimY" is either an integer or

°°)> ui = 12içA tieii with Aj n Ak = 0 for j' ^ k and {hj}^=1 C l'x satisfy

\\hj\\oo = hj(uj) = 1, j= 1,2,....
Since for every x G d(w, p) and j = 1,2,. ,v,

ll^llu^p _ H-* -^Hu^p — H-*  ^||w;,p _  ||tlj\XJUj\\w,pi

so Uj G d(w,p) and Qj(x) :— hj(x)uj is a contractive projection from d(w,p) onto

a one-dimensional subspace span{itj}.

Therefore ||uj||w,p = ||uj||«,,p = 1. By Lemma 5, u* = Ik for some fc = 1,2,_

Since 1 < Sn'p(w)/n for n > 1, ||/fc|U,P < H/fcHiu.p if fc > 1. Thus u* = er, j =
1,2,....

COROLLARY 8. Let 0 < p < l, w = (w¿) G c%+\h and wx < Sn/p(vj)/n jor

n > 1. TTien ¿p is not isomorphic to the range 0/ a contractive projection in d(w, p).

REMARK 4. Corollary 8 is an extension of Theorem 5.5 in [8].

V. Open problems and remarks. If limn_MSl'p(w)/n = 0, then by Theo-

rem 2 there exists a continuous projection P from d(w,p) onto a subspace isomor-

phic to lp. Moreover, if limn_oo Sn (w)/n = 00, then by Theorem 3 no subspace

isomorphic to lp is complemented in d(w,p).

PROBLEM 1. Let 0 < p < 1 and 0 < lim^^ Sn/p(w)/n < 00. Is there a
continuous projection from d(w, p) onto a subspace isomorphic to /p?
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PROBLEM 2. Let 0 < p < 1 and Hm^^ Sn/p(w)/n = 0. Is there a contractive

projection from d(w, p) onto a subspace isomorphic to Zp?

The next result is an extension of Theorem 3.8 in [8].

PROPOSITION 3. Each symmetric basis (yk) o!d(w,p) (0 < p < 1) is equivalent

to the canonical basis (ek) of d(w,p).

PROOF. Using the standard gliding hump method we can find a strictly increas-

ing sequence of natural numbers (nk) such that the sequence Xfc = yn2k - 2/n2fc+1 is

equivalent to a block basic sequence zk — YlieA &»e*- Since Xfc is symmetric and

equivalent to (yk), by [8, Lemma 3.1] mfkmaxieAk |ó¿| > 0. Hence (yk) dominates

(efc). If we interchange the roles of (efc) and (yk) we deduce the equivalence of these

bases.

If limn^00 Sn(w)/n = 0, then d(w,p) has uncountable many mutually non-

equivalent unconditional bases. However the above proposition and Corollary 6

suggest the following

PROBLEM 3. Let 0 < p < 1 and limn^oo Sn/p(w)/n = oo. Are every two

unconditional bases in d(w,p) equivalent?
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