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A KINETIC APPROACH TO
GENERAL FIRST ORDER QUASILINEAR EQUATIONS

BY

YOSHIKAZU GIGA1, TETSURO MIYAKAWA2 AND SHINNOSUKE OHARU2

ABSTRACT. This paper presents a new method for constructing entropy so-

lutions of first order quasilinear equations of conservation type, which is illus-

trated in terms of the kinetic theory of gases. Regarding a quasilinear equation

as a model of macroscopic conservation laws in gas dynamics, we introduce as

the corresponding microscopic model an auxiliary linear equation involving

a real parameter £ which plays the role of the velocity argument. Approxi-

mate solutions for the quasilinear equation are then obtained by integrating

solutions of the linear equation with respect to the parameter £. All of these

equations are treated in the Fréchet space Lx (Rn), and a convergence theo-

rem for such approximate solutions to the entropy solutions is established with

the aid of nonlinear semigroup theory.

Introduction. The purpose of this paper is to present a new method for con-

structing global weak solutions of the Cauchy problem for the first order quasilinear

equation of conservation type with variable coefficients:

n

ut + V A\x, u)Xt + B(x,u)=0       (x G Rn, t > 0),
(M) èî

u(x, 0) = uo(x).

Using the vanishing viscosity method under suitable regularity and boundedness

conditions on A1 and B, Kruzkov [10] proved that for every bounded measurable

initial function uq there exists a function u on Rn x [0, oo) which is a solution of

(M) in the following sense:

(i) u is in L°°(Rn x (0,T)) for every T > 0;

(ii) u(-,t) —» uo in Lfoc(Rn) as t —> 0; and

(iii) for every k G R1 and every nonnegative function <f> G C^(Rn x (0, oo)), the

following inequality holds:

(E)

/■OO      /* /*00      r n

I      I 4>t\u-k\dxdt+ I      / sgn(w - fc)^(Az(x,u) - A%{x,k))<j>Xi dxdt

-  /      / sgn(tt - k)J>J2Aii(x,k) + B(x,u)
i=i

dx dt > 0,
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where sgn(y) = y/\y\ if y ^ 0; and sgn(0) = 0. It is easily seen from (E) that u is

a weak solution of (M), i.e., it satisfies

i:i
u<t>t + X] A%(x'u)^. ~ •B(x'u)

1=1

dx dt = 0

for <j> G Co°(Rn x (0, oo)). When A1 and B are nonlinear in u, the uniqueness

of generalized solutions is not always ensured in the class of weak solutions as

mentioned above; see [11]. However, it is shown in [10] that given a bounded

function uo there exists exactly one weak solution of (M) satisfying (i)-(iii). In

what follows, a solution of (M) satisfying (i)-(iii) will be called an entropy solution

since (iii) is regarded as a generalization of the entropy condition in the sense of

Olemik [15].

In this paper we discuss the construction of entropy solutions of (M) by applying

a method evolved in the previous work [5] of the first two authors. To explain our

method we recall two ways for describing the motion of gases: the macroscopic and

microscopic approaches. The so-called Boltzmann equation governs the evolution in

time of the microscopic state of gases, while the conservation laws in fluid mechanics

describe the macroscopic thermo-fluid properties of gases. Both descriptions are

connected in the following way: Given a microscopic quantity on the phase space,

the corresponding macroscopic quantity is given by integrating the microscopic

quantity with respect to the velocity argument. We take this point of view to

construct approximate solutions of the Cauchy problem (M). Namely, we regard (M)

as a model of macroscopic conservation laws in fluid mechanics and then formulate

the corresponding microscopic model as the linear problem:

n

(m)        /t + X]K(^0/)x,+6(x,0/ = c(x,0,        /(z,£,0) = /o(x,0,
¿=i

where / = I(x,£,t), al(x, £) — Alç(x,£) and b(x,£) = B$(x, £). The parameter

(£i?' plays the role of the velocity argument as in the kinetic theory of gases.

The macroscopic quantity corresponding to / is then defined by the integral

/oo
f(x,t,t)dt.

-oo

We then introduce (in §1) a function F(w, £) of two real variables so that every

macroscopic quantity w is decomposed as

/oo F(w,0dt
-oo

If we set /o(x, £) = F(uq(x), £), then it is to be expected that the function v approx-

imates the solution of (M). To ensure this we impose the following compatibility

conditions:

/oo al(x,t:)F(w,c:)dc:        (i=l,...,n),
-oo

/oo
b(x,t)F(w,$)d¿

-oo

n

c(x,e) = F(C(x),0,        C(x) = -YdAlXl(x^)-B(x,0).
i=l
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Indeed, conditions (C) and (D) imply that v satisfies (M) at t = 0. This suggests

that for small positive h approximate solutions can be successively constructed

to satisfy (M) for t = jh, j — 0,1,..., and that the aimed solutions of (M) are

obtained as the limits as h [ 0 of such approximate solutions.

In [5] the method described above was employed to treat the special case A% =

Al(u), B = 0, though the uniqueness problem of the constructed solutions was not

discussed in detail. Our result not only extends the previous one to the case of more

general equations, but also shows that the weak solutions constructed in [5] and

in this paper are entropy solutions. The uniqueness result in the above-mentioned

special case was also given independently by Kobayashi [8] by the systematic use

of nonlinear semigroup theory in the Banach space L1(Rn). It is possible to extend

our result to a more general case in which A% = Al(x, t, u) and B = B(x, t, u). Some

of the results in this direction will be discussed in the forthcoming paper [18].

Features. For a review of the standard approaches to (M) that are mainly based

on the vanishing viscosity method, we refer, for example, to [3, 4, 14 and 15].

In contrast to these approaches our method is illustrated in terms of the kinetic

theory of gases. The idea of using linear equations of the form (m) to construct

solutions of the original nonlinear equations is due to S. Kaniel. He introduced a

kinetic model for monatomic gases and made an attempt at the approximation of

solutions of the Navier-Stokes equations. A similar approach to specific systems of

conservation laws has been proposed by Harten, Lax and van Leer [7].

Our argument contains three features. Firstly, we are concerned with quasilin-

ear equations involving both variable coefficients Al(x,u) and a lower order term

B(x,u) that can also be regarded as a forcing term. In order to deal with such

a general form we need precise estimates for the solutions of the linear first order

equation (m) with variable coefficients. Secondly, we treat equations (M) and (m)

in L°°(Rn), which is viewed as a subspace of Lloc(Rn). We show that approxi-

mate solutions constructed in L°°(Rn) converge in the Fréchet space L¡oc(Rn) to

the weak solutions of (M). This approach enables us to construct entropy solutions

associated with all initial functions bounded and measurable on Rn. Thirdly, we

apply a theory of nonlinear semigroups in Banach space in order to derive various

stability properties of the approximate solutions and to establish a convergence

theorem for approximate solutions to entropy solutions. To apply this theory we

introduce a family of appropriate weight functions, thereby imbedding L°°-bounded

absolutely convex subsets of LXoc(Rn) into the Banach space L1(Rn); and a con-

vergence argument for approximate solutions lying in a fixed L00-bounded set is

passed through the weight functions to that in L1(Rn).

After this work was completed, our attention was called to the papers of Y.

Brenier [16, 17]. In [17] he deals with the case of A1 = Al(u) and B = 0, and

approximate solutions are constructed in the same way as in [5]. In [16] results are

announced for the case in which Ax — Al(x, u) and B = 0. All of these equations are

considered in the subspace L1 (Rn)r\Loc (Rn) and the verification of the convergence

of approximate solutions to entropy solutions is given by applying the method of

Crandall and Majda [4]. It would be of interest to compare his approach with ours.

1. Statement of results. In the linear problem (m) we put

al(x,0 = A\(x,0    (i=l,...,n), b(x,Ç) = BfaÇ),
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and impose the following conditions:

(H.l) For each r > 0, a\alXj,alXjXk and b,bXj, i,j,k = 1,... ,n, are bounded and

continuous on Rn x [—r,r\.

(H.2) C(x) = -¿"=1 Axx.(x,0) - B(x,0) and CXj, j = l,...,n, are bounded

and continuous on Rn.

(H.3) There are constants a,ß > 0 such that

a >-£<M-&(*,£),    /5>-6(i,0        forall^Oei^xiü1.
¿=i

Let jF(iu, 0 be the function defined by

F(w,0--
1 for 0 < £ < ut,

- 1 for w < £ < 0,

0      otherwise.

Then F satisfies conditions (C) and (D). Let {U^(t)\ t > 0} be the family of solution

operators Uç(t) : L°°(Rn) -> L°°(Rn) of (m) with c = 0 and set

Vdt) = Ut(t)fo + f Ui(t - o)c(-, 0 da,
Jo

integrating in the sense of Bochner. According to the definition of the macroscopic

quantity (I), we introduce a family of nonlinear operators {St: t > 0} in L°°(Rn)

defined by

/CO

VC(t)/o dtl,        Io(x, 0 = F(v(x), 0 for v € L°°(Rn).
■CO

We then define for each h> 0 an approximate solution uh of (M) by

(1.1) uh(x,t) = (St_h[t/h]Snt/h]uo)(x),

where [a] denotes the greatest integer in a G R1. By definition uh satisfies (at least

formally) equation (M) at t = jh, j = 0,1,..., so it is expected that uh will tend,

as h —> 0, to a solution of (M) with initial value uo- Indeed, we obtain the following

theorem, which is the main result of this paper.

Theorem I (Convergence Theorem). Assume that conditions (H.l)-
(H.3) hold.   Then given a ur¡ G L°°(Rn) the approximate solution uh defined by

(1.1) converges to the entropy solution u of (M) with initial value u0 and the con-

vergence

(1.2) lim uh(;t) = u(-,t)    in L¡oc(Rn)
h—»0

holds uniformly for t in bounded subintervals of [0, oo).

The definition of F seems to be somewhat artificial. But it will be seen that

F is essentially the only function for which conditions (C) and (D) hold and the

family {uh} of approximate solutions converges to the entropy solution of (M).

The above procedure of constructing uh is explained in terms of the kinetic theory

of gases in the following way: The operators Uç(t) describe the free motion of gas

particles with velocity £, while the substitution v —+ F(v, £) corresponds to collision
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processes.  Further, letting h —► 0 in (1.1) is understood to be an analogy of the

passage of the mean free path to zero.

Theorem I involves an existence theorem for entropy solutions with initial data

in L°°(Rn). Moreover, the convergence result (1.2) provides us with a new type of

product formula for a nonlinear semigroup in the space L¡oc(Rn) associated with

problem (M). By a semigroup of (nonlinear) operators on L°°(.ñn) we mean a one-

parameter family {6(í): t > 0} of (nonlinear) operators from L°°(jRn) into itself

satisfying the following conditions:

(1.3) 6(0) is the identity operator 3 and 6(i + s) = 6(t)6(a) on L°°(Rn) for

s,t >0.

(1.4) For each T > 0 and r > 0, {6(i): 0 < t < T} is equicontinuous on the

L°°-ball {v G L°°(Rn) : ||v||oo < r} with respect to the metric topology of L¡oc(Rn).

(1.5) For each v G L°°(Rn), 6(t)v is L,1oc(Än)-continuous for t > 0.

Combining Theorem I with the basic estimates for the operators St as well as

those for the approximate solutions to be shown later, we obtain the following

result. (See §4.)

THEOREM II (PRODUCT FORMULA). There is a semigroup {&(t): t > 0} of

nonlinear operators on L°°(Rn) with the following properties:

(i) For each v G L°°(Rn) the fonction u(x,t) = [&(t)v](x) gives the entropy

solution ol (M) with initial value v.

(ii) ||6(t)«||oo < eat(IMIoo + «Hell«,) for t > 0 and v G L°°(Rn).
(iii) For each v G L°°(Rn) we have the product formula

(1.6) 6(r> = lim SJ^    in L¡oc(R"),
n—*0

where the convergence holds uniformly for bounded t.

2. Estimates for approximate solutions. In this section we give basic es-

timates for approximate solutions uh and their derivatives. These estimates will

be used in §3 to show the convergence of uh. First we introduce weight functions

pr(x),r > 0, which are used to obtain L\oc estimates for uh. Let p be a smooth

nonnegative function with compact support in Rn such that / p(x) dx = 1 and set

(2.1) pr(x) =  / p(x - y) exp I -6r ^ |y¿| I dy   for x G Rn and r > 0,

where the constant 6r > 0 will be chosen in (2.3). The symbol || • ||9 stands for the

norm of Lq(Rn), 1 < q < oo. We use the weighted norms || • ||iir, r > 0, defined by

(2.2) II« l|l,r .= ||PrV||l, veL°°(Rn).

The following are easily verified:

(p.l) For v G L°°(Rn), prv¿0ifv¿ 0.

(P-2)  ||p,v||oo < NU  l|«||l,r < ||Pr||llM|oo = (2/6r)n\\v\\oo for V G L°°(Rn).

(p.3) pr(x + y)< exp(¿v ¿?ml |y¿|)pr(x).

We begin by establishing Lq estimates (q = l,oo) for Stv. In what follows we

fix a number w > 0 and set

n

(2-3) 6* = W'        Mr = J2sup{\al(x,0\;xeRnM\<r}.
t=i
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LEMMA 2.1.   Let v and w be in L°°(Rn) and C the fonction defined in (H.2).

Choose r > 0 so that ||v||co < f, ||w||oo < r o.nd ||C||oo < r-  Then we have

(i) \\Stv\\oo < eat(\\v\\oo + t\\C\\oo) < reat(l + t);

(ii) \\Stv\\x,r < e^+^Wv^r + /"*e(^+-)(*—)||C||lf„ Ar;
Jo

(Hi) WStV-StwWisKjWWv-wW^r

for all t > 0.

PROOF. Let /o(x,0 = F(v(x),tl) for (x, £) eJfx R1.   The function / =
Vç(t)Io is expressed as

I(x,Z,t) =/o(y,Oexpi- /   l(a,tl)daj+      c(a, £) exp I - /   /(r, £)drj d<j,

where

i(a,0 = Ç4, (*(*).£)+*(*(*), fl>

c(cr, £) = c(z(er), £), and 2(<r) = 2(ct; £) is a parametric representation of the char-

acteristic curve associated with the linear problem (m) such that z(t) = x and

z(0) = y. Let ||f||oo = "r\ and ||C||oo = r2. From the definition of F we have

F(-ruO<Io(y,0<I(ri,0    and    F(-r2, t) < c(o, £) < F(r2, 0

so that, by (H.3),

F(-rx,C)eat+F(-r2,0 f e^-'Uo
Jo

< f(x, C, t) < F(n, i)eat + F(r2, 0 f ea^ do.
Jo

This, together with condition (D), yields the estimate (i).

We next prove (ii). Let /o(x, £) = F(v(x), £) and Htv = J C/j(i)/0 d£. It suffices

to show that

(2.4) ||#tv||i,r < e(0+"]t\\v\\i,r    foralli>0.

Since \Uç{t)Io\ = f/$(í)|/o| by definition, we have

||fftv|kr< fpr(x)dx fuz(t)I/o| d£ = fd£ f Pr(x)Ui(t)\fo\ dx
(2.5) J J J       J

= fdt:J(Ut(typr)(y)\fo(y,c:)\dy.

Here U¿(t)* : L1(Rn) -> L1(Rn), t > 0, denote the solution operators of the initial

value problem

(m*) <7t=X>(z,Ü0x, -b(x,09,        g\t=o=9oeL1(Rn).
i=l

Since /o vanishes for |£| > r, (H.3), (p.3) and (2.3) together imply that

(Uz(t)*pr)(y) =pr(x)exp J b(z(o),Oda <e"tpr(y + (x-y))

< eßte6rM^pr(y) = e^+"V(y)-
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This, together with (2.5), yields (2.4) since \v\ = / \F(v, £)| df.
(iii) is proved in the same way as (ii) by using the identity

\v-w\ = J\F(v,t)-F(w, 01 de

This completes the proof.

Applying Lemma 2.1 repeatedly, we obtain the following result.

PROPOSITION 2.2. Let u0 and v0 be in L°°(Rn). Let uh and vh denote the

approximate solutions defined for initial values uç> and vo by (1.1), respectively.

Choose r > 0 as in Lemma 2.1. 7/T > 0 and R > reaT(l + T), then:

(i) ||«h(í)lloo<eQt(IKIIoo+í||q|oo)<A;

(ii) ll«h(i)lli,« < ew+w)t||«o||i,R + f ¿ß+uHt-°HC\\1,Rd<r,
Jo

(iii) ||«h(i) - vh(t)\\1>R < e("+w)t||«o - vo\\i,R

forte (0,T) andh>0, where uh(t) = uh(-,t) andvh(t) = vh(-,t).

We next give principal estimates for the derivatives ux., i = 1,..., n. To this end

we employ extended real-valued seminorms \\DX ■ \\i r, r > 0, on L°°(Rn) defined

by

(2.6) \\Dxv\\X:r =sup j ídiv(il>pr)vdx;ip e (C¿(Rn))n, \i¡>\ < lonÄn|.

The right-hand side is often denoted by /pr\Dxv\; see [6]. We then introduce a

function space €(Rn) which forms a core of the class of initial functions in question:

€(Rn) is defined as the set of those elements v G L°°(Rn) such that ||.Dzu||i)T. is

finite for all r > 0. Notice that for v G €(Rn), the distributional derivatives vXi are

Radon measures with locally finite total variations. In what follows, |A¡;7j| denotes

the total variation measure of the vector-valued measure Dxv = (vXl,..., vXn ), that

is, the measure on the Borel cr-algebra of Rn defined by the total variation of Dxv.

LEMMA 2.3. For each v G €(Rn) and each r > 0, there exists a sequence {vm}

of smooth fonctions on Rn such that

\\Vm -U||l,r -> 0,        ||I>xUm||l,r -»  ||.Dzf||l,r as m —► CO.

The proof of the above lemma is similar to those of [6, Theorem 1.17 and 12,

Kap. 6, Satz 1.1] so it is omitted.

LEMMA 2.4. For v G €(Rn) the derivatives dF(v(-),^)/dxi are Radon mea-

sures for a.e. £ G R1 and

\\Dxv\\hr = f \\DxF(v(-), Olkrdí    for all r > 0.

PROOF. First we show that

(2.7) /   \Dxv\ = I dt, I  \DxF(v(-), £)|    for any open set Ü,
Jn J       Jn

where the left-hand side is defined by (2.6) with pr replaced by the characteristic

function xn of fi and -ip G (Co(Q))".  This relation is already known for the case
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v > 0; see [6, Theorem 1.23 or 12, Kap. 6, Satz 1.5]. For the general case we write

v = v+ — v~, where v± = (\v\ ± v)/2, respectively. Then (see [12, p. 130])

/  \Dxv\ = / \Dxv+\+ f \Dxv~\
Jn Jq Ju

roo r fO p

=        d£      \DxF(v+(-),t:)\+ /     d£ /  \DxF(v-(-),-Ç)\.
Jo        Jn J-oo     Jq

Since the identities F(v, Ç) = F(v+,Ç) - F(v~, O.F^.iO = F(v, £)* hold
pointwise for x G Rn, the right-hand side equals

¡di f \DxF(v(-),0+\ + (di f \DxF(v(-U)-\ = fdi f \DxF(v(-),0\-
J      Jn J      Jn J      Jn

This proves (2.7). The regularity property of the Radon measure now implies that

(2.7) holds for any Borel set Ü. Thus, approximating pr by simple functions, we

obtain the desired result.

LEMMA 2.5.   Let HCHoo < r and choose 7 > 0 so that

> i EiJsap{|aiJ(ï,OI;*-€AB1 \C\<r},

II v G £(Rn) and ||v||oo < r, we have

\\DxStv\\i,r < e^+"+^(\\Dxv\\hr + 7i||t;||i,r)

+ /'t^+'«'+i')(t-<')(||I>IC||i,r + 7(*-^l|C||i,r)da
./o

for all t > 0.

PROOF. Let Io(x, 0 = F(v(x), t¡) and / = V^(t)/0. We wish to show that

\\DxI(-,^,t)\\i,r<e^^+^\\\DxIo(-,Oh,r + lt\\I0(.,0\\i,r)

+ /■* ew-H^Mt-«^^^ e)lllr+7(i _ ^11^ 0lllr] d(T
./0

holds for t > 0 and |£| < r. The desired estimate is then obtained by integrating

(2.8) with respect to £ and applying Lemma 2.4 to the resulting inequality. By

Lemma 2.3 we may assume that fo and c are smooth in x for each £ with |£| < r.

In this case /,- = fXj satisfies the equation

n n n

Ui)t + B^)*,+^ = c*< - w - £°W - E</<.
¿=1 ¿=1       ¿=i

so that, as in the proof of Lemma 2.1(h), we have

||O*/(-,í,t)lll,r<e(/3+u)t||Dx/0(-,0lll,r

+  f e(^+-)(*—)[||jDxC(., Olll.r + 7ll/(-, É,*)l|l,r] der
Jo

+ 1  f e(ß+u)(t-*) \\DxI(;t,0-)\\i,rd0,
Jo
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and

\\I(^,a)\\l,r<e^+^\\Io(-,Œl,r+re^^-^\\c(-,0\\l,rdT.
Jo

These estimates together yield

\\Dxf(; £, t)lll,r < e(/J+w)t[||öx/o(-, Olli,, + -yí|l/o(-, Olll.r]

+  f e^+^-^HDxCÍ-, OI|l,r + l(t - o)\\c(; Ç)\\l,r\ do
Jo

+ 1 fe(0+»)it-°)\\Dxf(;t:,o)\\i,rdo-.
Jo10

Applying Gronwall's lemma to G(o) = \\Dxf(-, £,<r)||i,r, we obtain (2.8).

Using Lemma 2.5 repeatedly, we obtain

PROPOSITION 2.6.   Given T > 0, let R > reaT(l + T). Define 7 as in Lemma

2.5 with r replaced by R. Let uq G €(Rn) and ||«o||oo < r-  Then

Px^(-,í)||1,ñ<e^+-+^t(||DzUo||i,fi + 7í||«o||i,r)

+ e f eC+w+^(t-ff)[||I>xC||ilB + !(t - <7)||C||i,Ä] der
Jo

for t G (0, T) and h > 0, where C is the fonction defined in (H.2).

We now compute the variations of the derivatives (Stv)t and (uh)t by using

Lemma 2.5 and Proposition 2.6. Put

z(x,i)= fb(x,t)Vz(t)f0di,

yl(x,t) = yal(x,£)^(i)/od£,       i = l,...,n,

where fo = F(v, 0 and v G L°°(Rn). Then it is clear that the relation

n

(Stv)t + ^y^+z = C
i=l

holds on Rn x (0,00) in the sense of distributions.   Using this, we obtain the

following.

LEMMA 2.7.   For each v G £(Rn) with ||u||oo < r and each t>0, the derivative

(Stv)t(-,t) is a Radon measure on Rn and is estimated as

ll(Sti;M-,t)||i.r<||C||i,r + ff. e(ß+")t*\Hi,r+ f e(ß+")(t-a)\\C\\i,rdcj
Jo

+ Mr íe^+w+^t(||I>xW||l,r + TÍ|M|l,r)

f e^^+^^-^dlDxClli.r + 7(i - o-)\\C\\i,r)d<j
Jo

rt

Here Mr is the number defined in (2.3),

Kr = sup i |6(a!, 01 + Y. K (*' 01;x G Ä"> l€l < r j ,
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and ||(S'tv)t(-,t)||i,r denotes the integral of pr with respect to the total variation of

the measure (Stv)t(-,t). In particular, for each T > 0, there is a constant K > 0

such that

||5tu-5Ti;||i,r < K\t-r\    for t,r G [0,T].

The next result is an immediate consequence of Lemma 2.7.

PROPOSITION 2.8. LetT > 0 and R> reaT(l + T). Define 7 as in Lemma

2.5 with r replaced by R. If uq G €(Rn) and ||urj||oo < r, then there is a constant

K > 0 depending only on i?,7 and ||-Dxuo||i,r such that

(2.9) ||tifc(i)-uh(a)||liB<Ä-|i-s|

for i, a € [0, T] and h>0.

3. Convergence to the entropy solutions. Propositions 2.2, 2.6 and 2.8

show that the weighted norms of uh are uniformly bounded on [0, T], and the total

variations of uh are uniformly bounded on each compact subset of Rn x (0, T).

Further, estimate (2.9) implies

\\uh(t) - 5|f/fcluo||i,Ä < K(t - h[t/h])    for t G [0,T], h>0.

Thus, a well-known compactness theorem ([6, Theorem 1.19]) yields the following.

PROPOSITION 3.1. Letur, be in €(Rn). Then there exist a sequence h(m) -> 0

and a function u on Rn x (0,00) with the following properties:

(i) uh(m\-,t) —► u(-,t), SLmj '«0 —* u{-,t) in LXoc(Rn) where the convergence

is uniform for t in bounded subintervals of [0,00).

(ii) u is in L°°(Rn x (0,T)) for every T > 0.

(iii) The mapt —» u(-,t) is continuous from [0,00) into L\oc(Rn) andu(-,0) = uç>-

Notice that the uniformity in t > 0 of the convergence (i) follows from (2.9). In

this section we first show that the function u given above is the entropy solution

of (M). Since the entropy solution is known to be unique, it turns out that {uh}

itself tends to u as h —> 0, and Theorem I (Convergence Theorem) is obtained for

uq G €(Rn). This result will then be applied to show the convergence of {uh} for

an arbitrary uo in L°°(Rn). In what follows, we set

(3.1) %h = h-l(Sh-l),        h>0.

To prove Theorem I for u0 G <t(Rn), we need a few lemmas.

LEMMA 3.2. Let uç> G €(Rn). Then, for each h G (0,1), there is a number

Ao = ^o(^) > 0 such that:

(i) u^(t) = (1 - A2lk)~i*/Alito is meaningful for A G (0, A0) and t > 0;

(ii) there is a function un(t) such that un(t) —> Uh(t) in LXoc(Rn) as A —> 0,

uniformly for bounded t.

LEMMA 3.3.   Let ur> and Uh(t) be as in Lemma 3.2. Then

S[ht/h]u0 - uh(t) -* 0 in L\oc(Rn)    ash^O

uniformly for bounded t.

Lemma 3.2 is a modified version to the case of the Fréchet space L\oc(Rn) of the

generation theorem of nonlinear semigroups due to Crandall and Liggett [2] ; and
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Lemma 3.3 is similar to an approximation theorem for nonlinear semigroups due to

Brezis and Pazy [1] and Miyadera and Kobayshi [13]. The proofs of these lemmas

is given in §4.

The next lemma may be regarded as a discrete version of inequality (E).

LEMMA 3.4.   For v G L°°(Rn), s G R1 and tp £ Clf(Rn) with ip > 0, we have

(3.2)

/ sgn(u - a)V'2l/i«dx

< jjsga(v - s)(F(v, 0 - F(s, m^Hß^hf - lty] dxdt

+ Hsgn(v - sWh-HUdh) - l)F(a,0]dxd£

-rh-1 [fsgn(v-s)yj    í   U¿h - o)c(-,i)do dxd£,

f  I/€(fc-<T)c(-,Odo-
Jo

dxd£.

where U^(t)* are the solution operators of problem (m)*.

PROOF. By definition of 21^,

/"sgni« - s)Whvdx = /7sgn(7j - s^h^U^h) - l)(F(v, 0 - F(s, ())] dxdC

+ ff sgn(v - s^lh-^U^h) - l)F(s,t;)}dxdc:

■+ h~l 11 sgn(i> - s)vj

The first term on the right-hand side is transformed to

IJ(F(v, 0 - F(s, £))/i-1(í/í(M* - l)(sgn(« - sty) dxdl;

= IJ(F(v, 0 - F(s, 0)sgn(V - »Jfr-^í»* - 1) dxdi

+ h~l lJ(F(v,i)-F(s,t:))

x [U¿h)*(sgn(v - s)ip) - sgn(7j - a)[/i(rt)»dxd£.

Since (F(v,i) - F(s, 0)sgn(v - a)  =  \F(v,Ç) - F(a,OI and U^(h)' is order-
preserving, we easily see that

(F(v, 0 - F(s, 0)[Ui(hr (sgn(v - a)t/>) - sgn(t, - s)^(fc)>] < 0

for a.e. (x, 0 G Än+1. This shows the desired estimate (3.2).

Let u be the function given in Proposition 3.1. We wish to prove that u satisfies

inequality (E). Hereafter we denote h(m) by h for simplicity in notation. Choose

any d, G C§°(Rn x (0,oo)) with <f> > 0, and let v(x) = u£(x,t), tp(x) = <p(x,t) in

(3.2). Since

(ahU¿)(x, t) = \-\un(x, t) - uxh(x, t - A)),

we have

sgn(u¿(x, t) - s)(<ähuxh)(x, t) > X-H\uXh(x, t) - s\ - \uxh(x, t - A) - a[),
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and so

(3.3)

I    dtj <p(x, t)C&huxh)(x, í)sgn(u¿(x, i) - s) dx

> A"1 /     dt    (4>(x,t) - 4>(x,t + \))\u^(x,t) - s\dx

for small A, since <f> G CQ°(Rn x (0, oo)). On the other hand, (3.2) gives

(3.4¿

/     dt     4>(x, t)(ahu¿)(z, t)sgn(ri¿(x, í) - a) dx

/oo r r rh

dtjj Sgn(uxh-s)(F(uls)-F(s,c:))   h~l j   U&YL'tpdo

roo r r rh

+        dt       sgn(u£-s)   h'1       U¡:(o-)LF(s,c;)do-   dxdí,

roo r r rh

+        dt // sgn(u¿ -s)(f>   h'1       U^(h-o)c(-,tl)da   dxd£

dxd£

= h(s, h, A) + I2(s, h, A) + I3(s, h, A),

where

(3.5) Lg = - J2{alg)x> ~bg,        L*g = ^ a%9x, ~ bg.

Let $j (a), j = 1,2,..., be functions on R1 defined by

$ía)=íX fov\s\>l/j,
^[S>     \js2/2 + l/2j   for |s| < 1/j.

We easily see that

(3.6) lim   f  &'(s-k)g(s)ds = sgn(y-k)g(k)    for g G C^R1).

Now fix k G R1 and set qj(s) = $"(a - k). Since q¡ > 0, (3.4) gives

/oo roo r ^        roo

qj(s)ds /     dt     sgn(u¿ - s)(pAhul dx < ^  /     qj(s)Im(s, h, A) ds.
•oo Jx J m=1J—oo

We write Jm = Jm{h,X,j) for the integrals on the right side of (3.7) and wish to

find the limit of each Jm as A —» 0, h —► 0 and then j —> oo. We only give a detailed

argument to Ji since Jm, m— 2,3, are similarly treated. First Jx is written as

/oo /»oo /. /*

«7,(8) da /    dt // Sgn(uxh-s)(F(ux,t:)-F(s,c:))L*4>dxd^
-oo «/A «/ «/

/oo /*oo /* /•

q3(s)ds /     di // sgn«-s)(F(u¿, 0-^M)
-oo JX J J

+

k"1 /  (t/c(cr)*-l)L*0d<y dxd£

— Jll + ^12-



A KINETIC APPROACH TO FIRST ORDER EQUATIONS

Condition (C), (3.5) and the definition of qj yield

/oo roo r

qj(s)ds /     dt     sgn(u¿ — s)(i4(x,u¿) —-A(x,s)) • Vx0dx
-oo JA J

/oo roo r

qj(s)ds /     dt I sgn(un - s)(B(x,ux) - B(x,s))<pdx
-oo J X J

roo /• I"   rk roo píl

= /     dt     dx\ -        +2 qj(s)(A(x,u£)-A(x,s))-Vx(pdx
JX J [./-co      Jk Jk

-f   dtfdxlf    -f    +2 f h\qj(s)(B(x,u^)-B(x,s))<pds,
JX J \J-oo      Jk Jk

735

where

(A(x,w) - A(x,s)) ■ Vx<p = Y^{Al(x,w) - Al(x,s))<pXi.

As will be seen in §4, {u¿} is bounded in L°°(Rn x (0,T)) for any T > 0. Also,

by Proposition 3.1, Lemmas 3.2 and 3.3, we may assume without loss of generality

that lim/t-.o liniA-.o «fe = w a.e. in Rn x (0, oo). Hence (3.6) implies that

lim  lim lim Jn(h,X,j)
j—»oo h—>0 A—»0

(3.8) = 2 /     dt I sgn(t¿ - k)(A(x,u) - A(x,k)) ■ Vx<f>dx

-2        dt     sgn(u- k)(B(x,u) - B(x,k))<pdx.

We next consider Jx2. The function g = U^(a)*L*(f> solves the initial value problem

ga = L*g (a > 0), g\o=o — L*<f>. So we see from the same arguments as in the

proofs of Lemma 2.7 and (2.8) that for each 7 > 0 a constant K~¡ can be found so

that

(3.9) /  \(Ut(a)* - l)L*<p\ dx < K^a   for o G [0, h] and |£| < 7,
Je

where E = {x G Rn;(x,t) G supp</> for some t > 0}. Since {tt¿} is bounded in

L°°(Rn x (0,T)) for any T > 0 and since supp^ = [k- 1/j, k + 1/j], (3.9) implies
that

(3.10) 1^12! < const x
/oo

<?j('
-co

a) da ) x h —» 0

as A —> 0, h —> 0 and then j —> 00. (Notice that /^ <7¿(a) ds = 2.) Similarly, one

can show that

lim lim lim J2(h, X,j)
j—>oo h—>0 X—>0

(3.11)

and

= -2 /     dt     sgn(w - k) J£AXi(x,k) + B(x,k) + C(x) <pdx

(3.12) lim lim lim J3(h,X,j) = 2 /    dt     sgn(u - k)C(x)(pdx,
j->ooh->0X->0 J0 J
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where C(x) is the function defined in (H.2). From (3.8) and (3.10)-(3.12) we have

(3.13)
S /.oo r

lim lim lim Y^ Jm = 2 /     dt     sgn(u - k)(A(x,u) - A(x, k)) ■ Vx(pdx
¿—ooh—OA—0 ¿-~' J0 J

771=1

- 2 /    dt     sgn(u - k) J2Alt(x,k) + B(x,u) 4>dx.

On the other hand, it follows from (3.3) and (3.7) that

3 .      />oo roo r

y\Jm>T¡     Qi{s)ds        dt ¡(<p(x,t)-<t>(x,t + X))\ui(x,t)-s\dx

-n=l Ay-°° J° J(3.14)

k\ dx! í    dti(pt\u

as A —> 0, h —► 0 and then j —► oo. (3.13) and (3.14) show that u satisfies

inequality (E), which completes the proof of the Convergence Theorem for the case

uo G <t(Rn).

We now consider the general case: uç> G L°°(Rn). Fix any T > 0 and choose

r > 0 so that ||u0||oo < r and \\C\\oo < r. Let R = reaT(l + T) and let {u0m} be a

sequence of functions in <t(Rn) such that ||wom||oo < r and

(3.15) ||uom -«o||i,ß -+ 0    as m ->• oo,

where || • ||i,ß is the weighted norm defined by (2.2). Let

«m(l,í) = (St-hlt/hjS^^UOmKx)

and um be the entropy solution of (M) with um(0) — uom- By Proposition 2.2,

|Kfc(f) - t&(t)||ilÄ < e(/3+a,)t|K - u0m\\i,R   for t G (0,T).

Letting h —► 0, we obtain

(3.16) \\ut(t) - um(t)\\XiR < e(ß+uj)t\\uol - uom\\i,R    forte(0,T).

Hence (3.15) implies that um(i) converges in LXoc(Rn) to a function w(i) uniformly

on [0, T] in such a way that

(3.17) Hi)-«m(i)lli.Ä<cw+u')t||«o-«om||i,Ä    foriG(0,T).

We shall show that u(t) is the desired entropy solution. Since um are continuous

from [0,T] into L¡oc(Rn) by Proposition 3.1, so is u. Thus, u(t) -> u0 in L¡oc(Rn)

as f -♦ 0. Further, Proposition 2.2(i) implies that ||w^(i)|| < R for f. G (0,T), so

u G L°°(Rn x (0,T)). Next we show that, as h -» 0,

(3.18) uh(í) -* u(t)    in LfociÄ") uniformly on [0,T].

Indeed, Proposition 2.2(iii) and (3.17) imply

||tih(i)-«(i)||i,ß

< ||«fc(t) - t&(t)||l,B + ||«5,W - «m(0l|l,H + ||«m(<) ~ «Will,«

< ||u£,(t) - um(t)\\hR + 2e«3+^t\\u0m - Uo||l,K
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for all í G  (0, T).    Since pR is integrable and bounded on Rn, the estimates

HumWlloo < R, ||um(i)||oo ^ ^ an(^ Proposition 3.1(i) imply that

||u^(i) - um(t)\\x,R ^ 0    ash^O uniformly on [0,T].

Hence (3.18) follows from (3.15). On the other hand, each um satisfies inequality

(E), so

/oo r  roo    r

qj(s)ds   /      / <pt\um - s\dxdt

+ /      / sgn(um - s)(A(x,um) - A(x,s)) ■ \7x(pdxdt

/oo roo     r

qj(s)ds /      / sgn(ttm -a)
-oo Jo      J

J2AXi(x,s) + B(x,um) tpdx > 0,

for every nonnegative (f> G C°°(Rn x (0,oo)).  Passing to the limit as in the case

uq G <t(Rn), we see that u satisfies inequality (E); therefore the proof is complete.

4. A nonlinear semigroup in L11oc(i?n). In this section we establish a product

formula "for a nonlinear semigroup associated with problem (M) in Lloc(Rn), and

give a result for this semigroup in a more precise form than Theorem II. This

section is divided into three subsections. §4.1 contains the proof of Lemma 3.2, §4.2

is devoted to the verification of Lema 3.3, and in §4.3, a nonlinear semigroup on

L°°(Rn), as mentioned in (1.3)—(1.5), is constructed through the product formula

(1.6).
4.1. Prooj of Lemma 3.2. We begin by defining the numbers

a0 = a0(h) = h~\eah - 1),    ß0 = ßo(h) = /T1(e</3+w>h - 1),

Ao = X0(h) = min{l/2a0(Ä). 1/A>(>0}

for each h > 0, where a, ß and w are constants specified in (H.3) and (2.3). Further,

we often use the operators 2U, h > 0, defined by (3.1), in the argument below:

2U = trl(Sh -1),        h> 0.

First we need the following lemma.

LEMMA 4.1. Let h G (0,1) and let r > 0 be any number such that HCHoo < r,

where C is the function defined in condition (H.2). Let X G (0, Ao) and r' >

(1 - Aao)-1^ + Xeah)r. Then, for each w G L°°(Rn) with HI«, < r there is a

unique fonction v G L°°(Rn) such that

(i) (1 - X%h)v = w.

Moreover, the following are valid:
(ii) H» < (1 - XaQ)-l(l + Xeah)r < r';

(hi)   ||vi -U2||l,r'  < (1- A/Jo)"1!!^ -W2||l,r'

if (1 - X%h.)vj = Wj and \\wj\\oo <r (j - 1,2).

PROOF. First observe that the set {v G L°°(Rn); H«^ < r'} is closed under

the norm || • ||lir/. The equation (1 - X^h)v — w is rewritten as

(41) v=hTxw+hhSkV-
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Denoting the right-side by ^x(v) we show the following.

(4.2) ||*a(^)||oo <r'    if M«, < r';

and

(4.3) ||»A(«i)-*A(«a)||i,r'<«(A1fc)||t;i-«2||i,r.

for Vj G L°°(Rn), with ||vj||oo < r' (j = 1,2) and some 0(X,h) G (0,1). Assertion

(i) then follows from the contraction mapping principle. By Lemma 2.1 we have

and

||*aK) - VMl>2)||l,r' = J—j\\ShVl - ShV2\\xy

<-r±-Te^h\\vx-v2\\xy.
h + X

Now the right-hand side of the first estimate does not exceed r' (by definition of r'),

which proves (4.2). Since ß0X < 1 we see that 0(X, h) = X(h + X)-1e(-ß+UJ'>h G (0,1),

so (4.3) is obtained, (ii) and (iii) are easily obtained by applying Lemma 2.1 to the

equality v = ^\(v).

As mentioned in the proof of Lemma 4.1 (iii), the application of Lemma 2.1 (iii)

to (4.1) implies the inequality

(1 - Xß0(h))\\Vl - V2||lir < ||(3 - A2l>! - (3 - Aah)i*lkr

for Vi with H^Hoo < r and r > 0. This means that for h G (0,1) and A G (0, Ao)

the operator 3 — A2tfc is injective on all of L°°(Rn) and has an inverse operator

(J — A21/,)-1. In what follows, we write

Zx{h) = (3-X<Ah)-1    for Ag(0,Ao) and h G (0,1).

Hence the function v defined by Lemma 4.1 may be written as v — 3\(h)w.

In view of Lemma 4.1 we fix any T > 0 and any r > HCHoo, and put

(4.4) R > r ■ max{exp[T(eQ + 2a0(l))], eaT(l + T)}.

Notice that

r[(l - Aa0(/i))_1(l + Xeah)]k < r ■ exp[kX(eah + 2a0(h))} < R

for h G (0,1), A G (0, A0) and kX G [0, T], and

eakh(r + kh\\C\\oo) < eaT(r + T\\C\\oo) < R

for h G (0,1) and kh G [0,T].   Now Lemma 4.1(h) states that Zx{h)kw are well

defined provided h G (0,1), A G (0, Ao), kX G [0,T] and ||u>||oo < r. More precisely,

we have the following.

LEMMA 4.2.   For every h G (0,1), A G (0, Ao) and every integer k > 0 with

kX G [0, T], we have

\\3x(h)kw\\oo < r(l - Xa0(h))-k(l + Xeah)k < R.

This lemma asserts that the set {un; A G (0, Ao), h G (0,1)} constructed in §3 is

bounded in L°°(Rn x (0,T)). Now fix u0 G €(Rn) with ||u0||co < r and set

a-jk = ||3mC0Juo - 3\(h)kuo\\i,R,

where h G (0,1), 0 < u < X < X0(h), 0<j< [T/X] and 0 < k < [T/u].
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LEMMA 4.3.   The following estimates hold:

(i) (1 - Xß0)k+1a0k < fcA||8Uu0||i,Ä   for 0 < k < [T/X].

(ii) (1 - pß0)j+1aj0 < Jri\\%hUo\\i,R   for 0<j< \T/p\.

PROOF. Lemma 4.l(iii) gives

fc-i

aok = IK - 3x{h)ku0\\i,R < ^2 II3a(/i)'uo - 2x(h)l+lu0\\i,R
1=0

k-l

< IK - 3a W«o||i,k £U - Xßo(h))-1
1=0

<k\\uo-3x(h)u0\\hR(l-Xß0(h))-k,

and
IK - 3a(/i)uo||i,ä = I|3a(/i)(1 - X%h)u0 - 3x(h)u0\\i,R

^(l-A&Wr'APfcUolkfi.

This proves (i). (ii) is proved similarly.

LEMMA 4.4.   For 0 < j < [T/n] andO<k< [T/X] we have

(l-pß0y+1(l-Xß0)k+1a]k

< [{{jit - kx)2 + kx2)1'2 + ((ju - kkf+¿AM)1/2]||a*«olk*-

PROOF. By Lemma 4.3 the assertion holds for j = 0 or k = 0. Set 6 — p/X;

then we have the resolvent equation:

Zx(h)w = ZpWlOw + (l - 6)3x(h)w}.

Hence, by Lemma 4.1(iii),

ajk = \\Zp.(hyu0 - 3»[03a W^uo + (l - 0)2x{h)kuo\\\i,R

< (1 - MÄ))"1||3A(fe),'-1«o - eZxihf-'uQ - (1 - 6)Zx{h)ku0\\i<R

< (1 - /i/Jo)"1^-!^-! + (1 - 9)aj_hk).

The result is now obtained by induction on j and fc. See [2, §1] for the detailed

induction argument.

We are now in a position to prove Lemma 3.2. Since uo G <t(Rn), Lemma 2.7

shows that ||2thUo||i,ß is uniformly bounded in h G (0,1). Since \t - A[i/A]| < A,

Lemma 3.2 follows from Lemma 4.4 with j = [t/p] and fc"= [t/X].

4.2. Proof of Lemma 3.3. Let r, R > 0 be as in (4.4). For v, w G L°°(Rn) we
define

[u,H- =s\ipt-1(\\v + tw\\itR- ||v||i,h)
t<0

= limr^Hulli,« - ||7J - íw||i,ñ).

The functional [•,•]_ may be regarded as the tangent functional of the unit sphere

of the normed space (L°°(Rn), || ■ \\i,r) and, as is well known, it has the following

properties:

(4.5) [u,av]_ = a||w|kfl    for a G R1;        [v,aw]- = a[v,w]-    for a > 0.
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,,, „, [v,wi +Wl}- < lki||i,ñ + [v,w2\-,
(4.6)

[v,av + w]- — a|H|i,fi + [v, tu]-    for a G R .

LEMMA 4.5.   For v,w G L°°(Rn) with ||u||oo, Halloo < R, we have

\\Shv - w\\ltR < ¿ß+^h\\v - w\\x,r + h[Shv - w,mhw]-

<e^+^h\\v-w\\\i,R + h\\<2lhw\\x¡R.

PROOF. By (4.5) and (4.6),

\\ShV - w\\i,r = [Shv -w,Shv - w]- = [Shv -w,Shv - Sh.w + Sh,w - w}-

< \\Shv - Snw\\UR + h{Snv - w,<änw}-.

Applying (4.6) and Lemma 2.1 (iii) to the right-hand side, we obtain the result.

This time, we take any uq G C(Rn) with |K||oo — r ana set

bk] = \\Sku0 -Zu{hyu0\\i,R

îor0<p<h<l,0<p< X0(h), 0<j< [T/u] and 0 < k < [T/h].

LEMMA 4.6.   The following estimates hold:

(¡) e-(ß+u:)khho < ^||afcUo||liÄ    for 0 < k < [T/h).

(ii) (1 - iißoY+%3 < J>l|2lfc«o||i,Ä   lor 0 < j < [T/n].

PROOF. Since (ii) was already proved in Lemma 4.3, it suffices to show (i).

Putting v = Sk~luo and w — uo in Lemma 4.5, we have

bko<eW+»Hk-1,0 + h\\%huo\\i,R.

From this the result follows by induction on k.

LEMMA 4.7.   Let 6 = (h + /i)"1.  Then

\\Shv - 3MHlli,fi < ¿ß+^h9\\v - Zp(h)w\\ltR + (1 - 0)\\Shv - u;||i,R

for v,w G L°°(Rn) with IMI«, < R and \\w\\oo < R(l - pa0)(l + pe0*1)'1.  %

PROOF. First observe that ||3/zC0H|oo ^ ^- Hence Lemma 4.5 gives

\\Shv - Jß(h)w\\UR < ¿ß+^h\\v - 3M(ÄMkfl + h[Shv - 3M(Ä)w,ah3M(/iH_.

The last term is estimated as

h{Shv - Zp.(h)w,%h.Zp.(h)w\- = (h/p)[Shv - Zß(h)w,Zß(h)w - w]_

= (h/p)[Shv - Zp.(h)w,Zp(h)w - Shv + Shv - tu]_

< -(h/p)\\Shv - Z(h)w\\i,R + (h/p)\\Shv - w\\i,R,

from which the desired estimate is obtained.

We now prove Lemma 3.3. Putting v = S£-1uo and w = 3(MJ_luo in Lemma

4.7, we have

bkj < e^+^Oh-u + (1 - e)bk,j-!,

where 6 = (h + p)~lp. An induction argument, together with Lemma 4.6, yields

(4.7)       e-^+^kh(l-pß0y+1bk3<[(kh-jp)2 + (kh + jp)h}1/2\\^hu0\\hR.
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See [13, §3] for the detailed induction argument. Since uç, G €(Rn), Lemma 2.7

shows that ||2lhUo||i,Ä is bounded uniformly for h G (0,1). Therefore, putting

k = [t/h], j = [t/u] in (4.7) and then using Lemma 3.2, we conclude that the

assertion of Lemma 3.3 is valid.

4.3. A product formula. The nonlinear semigroup {6(f): f > 0} as mentioned

in Theorem II is constructed in the following way.

THEOREM 4.8. There is a semigroup {&(t): t > 0} o/ nonlinear operators on

L°°(Rn) with the following properties:

(i) For each v G L°°(Rn) we have the product formula

6(t)v = limS{¿/h]v    inL\oc(Rn),
n.J.0

where the convergence holds uniformly for bounded t.

(¡i)

||6(tHoo < e^GMloo + t||C||oo)    for t > 0 and v G L°°(Rn),

where C is the fonction defined in (H.2).

(iii) For each r > \\C\\oo, T > 0 and each R > reaT(l + T), we have

\\6(t)v - e(t)w\\i,R < ¿0+u»\\v - w\\UR

fortG [0,T] andv,weL°°(Rn) with H«, < r, HI«, < r.
(iv) Let < be the natural order relation in Lloc(Rn). Then each 6(f) is order-

preserving in the sense that if v,w G L°°(Rn) and v < w then &(t)v < G(t)w.

(v) For each v G L°°(Rn) the function u(x,t) — \&(t)v\(x) gives an entropy

solution of (M) with the initial value v.

PROOF. Given aoG L°°(Rn), let u(t;v) = u(-,t;v) be the L°°(Än)-valued

function on [0, oo) which is obtained through the convergence (1.2) (with uo replaced

by v). Then one can define, for each t > 0, an operator 6(f) : L°°(Rn) -> L°°(Rn)

by setting

(4.8) e(t)v = u(t; v)    for v G L°°(Rn).

We shall show that the family of operators {6(f): f > 0} gives the desired

semigroup. Firstly, Proposition 3.1(iii), together with the estimate (3.17), states

that for each v G L°°(Rn) the mapping f —► &(t)v is continuous from [0, oo)

into L\oc(Rn) and 6(0)t; = v. Hence {6(f)} satisfies the continuity condition

(1.5). Secondly, it was shown with the aid of Lemmas 3.2 and 3.3 that for each

v G L°°(Rn) the function u(x,f) = [6(f)t»](x) gives a unique entropy solution of

(M) with initial value v. (In fact, the convergence (1.2) itself was obtained through

the uniqueness of entropy solutions.) Now the semigroup property (1.3) of {6(f)}

follows from this fact. Thirdly, combining (4.8), the definition (1.1) of approximate

solutions and Proposition 2.8, we see that the operators 6(f) are represented by

the product formula

(4.9) etí^liniSf^    inL\oc(Rn),
nj.0

where the convergence is uniform for bounded t. All properties of {6(f)} in (ii)-

(iv) are derived from (4.9): (ii) follows from Proposition 2.2(i) and (4.9), (iii) is a



742 YOSHIKAZU GIGA, TETSURO MIYAKAWA AND SHINNOSUKE OHARU

consequence of Proposition 2.2(iii) and (4.9), and (iv) follows from (4.9) and the fact

that the operators Sh, h> 0, are all order-preserving (see the proof of Lemma 2.1).

In particular, (iii) states that {6(f)} satisfies condition (1.4) since for each pair r, R

with r < R, the relative topology (induced by the metric topology of L¡oc(Rn)) on

the closed convex subset Xr = {v G Loc(Rn): ||t>||<x> < r} is equivalent to the

metric topology on Xr defined by the metric dR(v,w) = \\v - w\\x%R, v,u> G XT.

Thus {6(f)} forms a nonlinear semigroup on L°°(Rn) with the properties listed in

(i)-(v), and the proof is complete.

Finally we give a few remarks on the results mentioned above.

(1) It would be interesting to discuss the "generator" of the semigroup {6(f)}.

The detailed argument concerning this problem will be given elsewhere.

(2) It is seen from the proof of Lemma 3.2 that for each h > 0, the operator

a^ generates a semigroup {&h{t) : f > 0} of nonlinear operators on L°°(Rn) in the

sense that the exponential formula

eh(t)v = lim(I - Aak)_l*/A1»    in L¡oc(Rn)

holds for v G L°°(Rn) and f > 0. Theorem 4.8(i) can be regarded as an approx-

imation theorem for the semigroup {6(f)}. Now using the semigroups {&h(t)},

h G (0,1), we have another approximation theorem for {6(f)}.

PROPOSITION 4.9.   For each v G L°°(Rn),

6(t)v = hmen(t)v    inL¡oc(Rn),
rllO

where the convergence is uniform for bounded t.
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