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ABSTRACT. For a manifold diffeomorphic to the interior of a compact mani-

fold with boundary, several classes of complete metrics are given for which the

Gauss-Bonnet Theorem is valid.

Introduction. For a compact oriented Riemannian manifold M, the Gauss-

Bonnet Theorem states that x(M) = fME(g), where E(g) is the Euler form for

the metric g. For noncompact manifolds the theorem is known to hold on finitely

connected, finite volume Riemann surfaces and for the invariant metric on quotients

of symmetric spaces by discrete, torsion-free, arithmetic subgroups. The proofs are

due to [Hu] and Harder [Ha] respectively (see also [Gr, p. 84; CG]).

A manifold in either of these classes is diffeomorphic to the interior of a compact

manifold with boundary. This is classical for Riemann surfaces, while for arithmetic

domains the result follows from the reduction theory of Borel and Harish-Chandra.

Elementary Morse theory thus guarantees that there are coordinates on a collar

dM x R+ of the boundary in which the metric may be written g = gi(x, i) + dt2,

where x G dM and t G R+. In [Ro] this form of the metric gives rise to a short

proof of Huber's result.

In §1 we exhibit, through the use of moving frames, several classes of complete

metrics for which Gauss-Bonnet is valid. For example, in Theorem 1.9 we show

that if g is a warped product metric, g = f2(t)gi + dt2 for gi a metric on dM,

then for Gauss-Bonnet it suffices that / —> 0 and /' —> 0 as t —> oo. Since E(g)

depends on the second derivatives of g, it is surprising at first glance that only first

order conditions on / are needed. However, roughly speaking, the warped product

structure controls the second order information.

All the metrics in §1 are more or less modeled on (1.14), Borel's explicit form

of the invariant metric for arithmetic quotients of split rank-one symmetric spaces.

Even with this explicit form of the metric, Harder's result is not trivial (see Theorem

1.13). The calculation gives a glimpse of the delicate interplay between the algebra

and geometry of these spaces.

In §2 we give some other metrics for which Gauss-Bonnet holds. In particular,

we show how to construct many surfaces of positive curvature and infinite volume

with Gauss-Bonnet. This contrasts with Huber's result, since in some sense finite

volume surfaces must be mostly negatively curved near infinity.
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1. Let M be a complete oriented Riemannian manifold diffeomorphic to the

interior of a compact manifold M with boundary dM = dM. Such a manifold is

said to be of finite topological type. Recall that the Euler form E(g) of a metric g is

the Pfaffian of the curvature two-form associated to g. We wish to find conditions

on g which guarantee that x(M) — fM E(g).

As in the compact case, for odd-dimensional M the question is purely topological.

The Euler form vanishes pointwise by the formulas in [Ch] or, alternatively, by

the fact that the Pfaffian of an odd-dimensional skew-symmetric matrix is zero.

Moreover, if 2M is the double of M, 0 = x(2M) = 2x(M) - x(3M) = 2\(M) -
x(dM). This gives the following result.

LEMMA 1.1. Let M be an odd-dimensional oriented manifold of finite topolog-

ical type.  Then

X(M) = /   E(g)    if and only if    xißM) = 0.
Jm

For example, let M = T\G/K be the quotient of a split rank one symmetric space

G/K by a discrete, torsion-free, arithmetic subgroup F. It follows from reduction

theory that each component dM1 of dM is the total space of a fibration over a torus

Ti with a torus T2 as fiber [Bo, Chapter III, §17]. By a standard spectral sequence

argument [Sp, p. 481], x(dMl) = x(Ti)xCF2) = 0, which verifies Harder's result

for this case.

Before going on to even-dimensional manifolds, we need to review Chern's Gauss-

Bonnet Theorem for manifolds with boundary [Ch]. On any Riemannian manifold,

a local orthonormal frame of one-forms 6% determines the connection one-forms w¿¿

by the equations

d9% = 2_. uij A 03    and    u>3i = —oJi3.

3

The curvature two-forms are then given by

ûij = düJij — y ^UJjk A OJ/cj.

k

For an n-dimensional Riemannian manifold M, let S M denote the (2n— ^-dimen-

sional manifold of unit tangent vectors. To a point (x, £) in the fiber of S M over

x G M, we associate a frame {61,..., 9n} of M at x with 61 dual to £• From the

associated ují3 and ûi3 we construct the form

(1.2)

n(#) =     E    Ck-^sEn{a)ÏÏa(2)a(3)h---AÛa(2k)a(2k+i)AuJa(2k+2)lA---AuJa(n)i.

0<fc<n a

The Cfc are constants whose values are unimportant to us. The second sum is over

all permutations a of {2,3,...,n}. One checks that 11(g) transforms like an (n— 1)-

form on M, i.e. U(g) G pr*An_1(m), the pull-back of the (n - l)-forms on M by

the projection pr: S M —> M. To be more precise, if p is a tangent vector to S M

at (x, £), then p = pi + p2 with pi tangent to M and p2 tangent to the fiber S"_1

at x; we have Ûl3(p) = ûi3(pi) and similarly for ujn(p,).
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Now suppose M is incomplete with boundary dM. Then Chern's theorem is

X(M) = f E(g) + f    p'n(ff).
JM JdM

Here p is the section of SM over dM given by the outward unit normal vector.

Since p*ûi3(p,) = ûij(pi), and similarly for un, we can just write

(1.3) X(M)= f  E(g)+ f    11(g).J M JdM

From here on, M will be even dimensional and of finite topological type. We

will first choose "gradient flow" coordinates which simplify the components of the

metric g near dM. Any Morse function f on M has no critical points in an open

neighborhood of dM, so the hypersurfaces {/ = constant} are all diffeomorphic in

this neighborhood. Let (xi,..., xn_i) be local coordinates on one fixed hypersur-

face and let xn be the arclength parameter for the trajectories orthogonal to the

hypersurfaces (see [Mi, Chapter I]). Thus the component gi3 of g in the coordinates

(xi,..., xn) satisfies gin — 0, 1 < i < n — 1, and gnn = 1. Note that since M is

complete, the ends of M are covered by such coordinate charts with xn ranging

over (0, oo). Note also that the x„ coordinate is the same in overlapping coordinate

charts of this type.

For h G (0,oo), let Mh be all of M except for points (xi,... ,x„) in the ends

with x„ > h. Then

X(M) = x(Mh) = f    E(g) + /      11(g).
JMh JdMh

Thus M will satisfy Gauss-Bonnet if U.(g) goes to zero uniformly on dMh as h goes

to infinity.

We know that the tangent bundle TM splits in each end as TM = W © R, where

W is an integrable distribution. Motivated by the rank-one arithmetic domain

example, we now assume that W splits as

(1.4) W = W2@W3®---(£>Wk,    k>2,        with [Wi,Wj] = 0   if i ¿ j.

We also assume that, with respect to this splitting, g has the form

(1.5) g = ß(xn)g2 © • • • 8 fk(xn)9k + dx2n

with gi a metric on Wi and /¿ chosen positive. If dMo is a product manifold

Ni x ■ - ■ x Nk and if Wi = TNi, then (1.5) is called a (multiply) warped product

metric. In general, however, we will not even assume that the W% are integrable.

As explained below (Theorem 1.13), the motivation for (1.5) is also the invariant

metric on rank-one arithmetic domains.

We now want to estimate H(g) for the metric (1.5) to see what conditions on

the fi will ensure Gauss-Bonnet. We first select a local orthonormal frame at

dMi, {el,e2a,...,9ka}, with el = dxn and {6^a}, a = l,...,dimW3, a local

orthonormal frame for W3. A frame at dMh is then given by

which for general h will be denoted by {6 ,6 ,...,9 }. We use the indices p, u, p

to denote any index in {1,2a,..., ka}.
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Now

and

We claim that

<#" = \ E ^r A e" with Wp = -6p-
^,p

dë=lE~VAëp.
v.p

KP = o,

(1.6)

°lß,31
pa

°lß,r~t
pa

Kjß
Kw = o

= 0       if j Ï I,

= 0       if l t¿ r,

if a # Ä

if i ^ 1.

0

Here j, /,r range from 2 to fc, and a,ß,^ range from 1 to the dimension of the

appropriate Wi. The first question follows from d6 = 0. For the next equation,

set {Xi, X2a,..., Xka} to be the frame of tangent vectors dual to the 0's. Then

b3iß,ii =d^  (xW>X3i)

= Xl0(Va(X31)) - X31(Wa(Xl0)) - Wa([Xl0,X31])

= 0

if / ^ j. The third equation follows similarly. Finally, an easy calculation shows

that [Xi,Xja] = [d/dxn,Xja] is a multiple of Xja so, as above, the last two

equations follow.

The nonvanishing 5's can be determined by

df¿_
dxn

e1 a eja + fj deja^-iwr)-fk
=tA*'aV°+M^ *r,

+

1EÍL
fj dxn

/i(l)\2

1      Tuet+ <C   5 aP

\Zk
v,p

,mmr„r
Jvjp

(J2' denotes the sum over all pairs (v,p) not equal to (l,ja) or (ja, 1)). In other

words,

1  df3        ja     _ f3-f2(l)
(1-7) bltja = 6Jj-Q + y-^r-   b'iß,h

For any metric,

fjWf?
Oialß,lT

dT JeVa5" imPHes ^=e</
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with

A straightforward calculation from (1.7) gives

(1.8) ^"^(^--tM)^"-
If (1.5) represents a warped product metric, the calculation of n becomes easier.

In this case, dffa = djO3", where d3 is the exterior derivative for the submanifold

Nj. Thus

-^3außA6     +W)^   AÖ    •

Here ^ja,jß are the connection one-forms for Nj. Thus ü)ja,jß = (*J3a,jß for a ^ ß

(and trivially for a = ß), and Wja,lß = 0 if j ^ Z. Similarly, ußtV — dUJ^ -

^üJppAüJpv is either zero or equal to ußV (for p, v ^ 1). Thus every term in (1.2),

except Wja,i terms, is bounded. From (1.8), we can now construct many examples

of complete manifolds satisfying Gauss-Bonnet.

THEOREM 1.9. Let M be a complete oriented even-dimensional manifold of

finite topological type. Assume that in an open neighborhood of each component of

the boundary, M splits as a product manifold M = N2 x ■ ■ ■ x Nk x R with metric

f2Wd2 © • • ■ © fk(h)gk © dh?, where gj is a metric on Nj. If fj(h) —» 0 and
f'j(h) —» 0 as h —» oo, then x(M) = fME(g). In particular, any even-dimensional

oriented manifold of finite topological type admits complete warped product metrics

satisfying Gauss-Bonnet.

The last statement follows by setting N2 = dM. Notice that we only have to

impose first order conditions on fj because the warped product structure controls

the second order û^.

If the distributions Wi are not integrable, further computations are needed. For

example,
— V^ —ja   ñt*
Uja,jß = ¿^ajßJ

rja     äJ<*   .  pß     -nJß
- OjßJaV      + bja,jßV

+ 2   ¿-<   \bi0<il + hid** ~ bJldß) *

by (1.6) and the definition of 5.  By (1.7) the last expression is unchanged if the

bars are deleted, so

(1.10) Üja,jß - Uja,jß-
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Similarly, for j ^ I,

Uja,lß =  g  E ^"j/1 + 2 X, 6W-YÖ 7
a^-v /3#t

run = - V     JJ^'bip ■ fl"
(LU) 2f^ /,(!)■ //J"'"

'r/i7,ii)^

,! V frJjWua     ah

+ ïfcfj(l)-flW   '

As before, we want to keep fiMI/ bounded and to have ÖJiiP decay. Now

?lja,jß = düjjajß - ¿^Üja,ji AZüjltjß

1

1,1

The first two terms on the right are bounded by (1.10). By (1.11), the third term

will be bounded if the fj are mutually bounded, i.e. if there exist constants C%j,

Cij such that for h G [1, oo),

\f3(h)/n(h)\ < C%3    and    \fi(h)/fj(h)\ < Cij,        i,j = 2,...,k.

For Ûjaj0, with j t¿ Z, we still have to keep dïOjaj0, bounded. This will follow

from (1.11) if the derivatives (fj/fi)' and (fi/fj)' are bounded.

THEOREM 1.13. Let M be a compact oriented even-dimensional manifold of

finite topological type. Assume that in an open neighborhood of each component of

the boundary, TM — W2®- ■ -©^©R and the metric is of the form f2(h)g2®- ■ •©
fk(h)gk (Bdh2, with gi a metric on Wx. If fi(h) —> 0 and f¡(h) —> 0 as h —> oo, and

if fjf^1 and (fjfî~ly are bounded for all h (i,j = 2,..., k), then x(M) — fM E(g).

We now consider in detail the case of M = T \ G/K, an arithmetic quotient of

an even-dimensional split rank-one symmetric space. By the remarks after Lemma

1.1, we know that TM = Wi © W2 © R over open sets V x R whenever the

fibration is trivial over V C dM. Here Wi is the tangent space to the torus T¿.

Unfortunately, the G-invariant metric does not conform to this splitting. More

precisely, as explained in [Do] each end of M can be written as JV xR, where

N is at most two-step nilpotent. The Lie algebra of A^ splits into a direct sum

n — V2 © V3 of root spaces with V3 — Z(n), the center of n. The invariant metric

at the identity in N is

(1.14) g = e~2hg2 + e~Ahg3 + dh2

with g2 a metric on V2 and g3 a metric on V3. Since [n, n] C Z(n), the G-invariant

distribution given by V2 is not integrable, so Theorem 1.9 cannot be applied in

general. (However, for quotients of hyperbolic space G/K = SO(n, l)/SO(n), we

have V2 = n, so the theorem applies to give Gauss-Bonnet.)

Although Theorem 1.13 was designed to cover the nonintegrable case, the metric

(1.14) does not satisfy the decay hypotheses. However, a closer look at n allows us
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to reprove Harder's result. That is, we have

—2a
[V2, V2] C V3    implies    b202l = 0,

—3a
[V2,V3] = 0      implies   b2ß iSh = 0,

[V3, V3] = 0      implies    b3^3l = b3ß*^ = 0.

For example,

%hi = X20(fa(X2l)) -X2l(92a(X20)) -fa([X20,X2l]) = 0.

Thus (1.8), (1.10) and (1.11) reduce to

7-; — ^-2/tl,3a r.  -2/nz)3a r-r _  1 V^    <,-hh?ß      Ñ2<*
Wi,3q - (e        03ai - le        )V     , W2a,3/3 -  2 L,-, e      ö2-,,2ai'     >

Ô3i,2a = (e~h + e-hb22%A)62a, UJ2a,20 = w3û,3/3 = 0.

Thus the oJßl/ are exponentially decreasing, as are the ußU. Notice that the decay

is much faster than required.

The next proposition gives a slight generalization of the last calculation. The

odd hypotheses highlight the special nature of the invariant metric.

PROPOSITION 1.15. Let M be a complete oriented even-dimensional manifold

of finite topoloigcal type. Assume that in an open neighborhood of each component

of the boundary, TM = W2 © • • • © Wk © R and the metric is of the form f2(h)g2 ©

• • • © fk(h)gk © dh2 with gi a metric on Wt. If [Vt, Vj] = 0, /¿, f[ —► 0 as h —> oo

for i = 2,..., k, and fi/f2 and (fi/f2)' are bounded for i = 3,..., k, then x(M) =

fME(g)-

PROOF. Under the hypotheses, (1.10) and (1.11) reduce to

Üja,jß = 0,

Üjc,l0 = 0,      if j, I ^ 2,

-        _1\p fih(l),i0     a2l
U2a,l0 - ó 2_^   Tl-Wf   "20,2-/     •

As before, fi^„ is then bounded and wj^ decays.

2. In this section we collect a few more classes of metrics which satisfy the

Gauss-Bonnet Theorem.

The first example, which is well known, is the class of metrics which split as a

product near dM of a metric on dM and a metric on R+. The metric need not

be complete. We have o>iM = 0 for all p by the uniqueness of solutions to the first

structure equation. Thus n is identically zero.

We can also make an arbitrary metric constant near dM. That is, for a metric

g and fixed h G (1,00), set gh to be the metric which is g on M^^i/2 and such that

(gh)ij(x,k) = gi3(x,h) for k > h and x G dM. Here the components are computed

in coordinate charts of the form Vz x R, where the V¿ are charts for dM. On the

gap between dMfl~i/2 and dMh, the new metric is smoothed arbitrarily.

LEMMA 2.1.   For M even dimensional and of finite topological type,

X(M) = f  E(gh).
Jm
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PROOF. By construction, gh reflects smoothly across dMk, k > h, to a metric

g'h on M', the double of Mk. The Gauss-Bonnet Theorem for the compact manifold

M' gives

X(M') = f E(g'h) = 2 f    E(gh).
JM J Mk

However, x(M') = 2x(Mfc) - x(dMk) = 2x(M), since dMk is odd dimensional.

Thus x(M) = fM E(gn), and letting k go to infinity gives the result.

For these "cutoff" metrics, n need not vanish identically. For example, let M

be a surface diffeomorphic to S2 minus a point. Choose coordinates (xi,x2) in a

collar of the boundary circle, with xi the circle coordinate. Finally, let g be a cutoff

metric on M. For surfaces, n = w12. Now 02 = ■s/g22dx2 is a unit cotangent vector,

and Gram-Schmidt gives 61 = (gi2/y/g22) dxi + y/g~22dx2 as a unit cotangent vector

orthogonal to 62. Since dgij/dx2 = 0 near the boundary, a quick calculation shows

1 1       #022   .

2 g22    dxi

near the boundary.  Thus ct»i2 does not vanish in general, but as dictated by the

lemma

/    wi2 = - /    d(logg22) =0.
Js1 ¿ Js1

For a surface M of finite topological type, a complete metric in gradient flow

coordinates is f2 dO2 + dh2, where 6 is the angular variable of the circular hyper-

surfaces of the Morse function. Again it is easy to check that u>i2 = —(df/dh) dO.

Since dMh is a union of circles S\, - - ■, Sfc, we see that Gauss-Bonnet is satisfied if

and only if

k    r   dt
dO —> 0    as h —* oo.v f ^1

¿*> }Si dh
i=i •/öh

This formula is not the final word on Gauss-Bonnet for complete surfaces. Since

the h coordinate is gotten by integrating the gradient flow, putting a metric into

gradient flow coordinates may be difficult.

As a final example avoiding gradient flow coordinates, we derive necessary and

sufficient conditions for a surface of revolution in R3 to satisfy Gauss-Bonnet in the

induced metric. Specifically, we consider the surface M = {z = f(x2 + y2)} where

/: (0,oo) -> R is G°° and /(0) = /'(0) = 0. Thus M is at least C2 at (0,0,0).

To write the metric g on M induced from R3, first note that on the piece of M

lying over x2 + y2 — t2, the vector (—y, x,0) is tangent to M and has length t. In

other words, if 6 is the usual angular variable, the component of g in the horizontal

direction is t2d62. To find the other component, consider the curve (tx,ty,f(t2))

on M orthogonal to the circles; here x and y are fixed and satisfy x2 + y2 = 1.

The tangent vector is (x,y,2tf'(t2)) of length (l + 4t2f'(t2)2)^2. Thus in the (6,t)

coordinates covering M - {(0,0,0)} the induced metric is

(2.2) t2d62 + (l + 4t2f'(t2)2)dt2,        t^0.

(If / is concave, then / serves as a Morse function on M. However, even in this case,

finding gradient flow coordinates involves integrating (1 + 4t2 f (t2)2)^1 f (t2).)
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Set a(t) = 1 + 4t2f'(t2)2. If M satisfies Gauss-Bonnet, then

1        /* -i        rlir     /•oo /*oo

1 = X(M) = — / KdA= — /      /     Kts/a:dtd0= Kty/adt.
2tt J 2n J0    J0 J0

A direct calculation of the Gaussian curvature K from the metric (2.2) gives

(2.3) K = a'/2a2t,        t ¿ 0.

Thus we want conditions on / that ensure

/■OO

2= /     a'a-3/2dt.
fo

But this is equivalent to a_1/2(oo) = 0, since lim£^oo_1^2(e) = 1- Therefore, for

such M, Gauss-Bonnet is equivalent to t1/2f'(t) —> ±oo as t —► oo.

PROPOSITION 2.4. Let M be the surface of revolution {z = f(x2 + y2)} for

f: (0, oo) —► R with f G C°° and f(0) = f'(0) = 0.   In the metric induced from
R3,

X(M) = — f  KdA& t1/2f'(t) -* ±oo    as t -> oo.
™ Jm

In particular, if / is convex upwards or downwards (and nonconstant), Gauss-

Bonnet holds. Such M are well known to have positive Gaussian curvature, as

can be seen from (2.3) for t ^ 0. These surfaces clearly have infinite volume.

For complete infinite volume surfaces in general, one knows only the Cohn-Vossen

inequality x(-^0 > (l/27r) Jm K dA. Thus Proposition 2.4 somewhat complements

Huber's result that finite volume surfaces satisfy Gauss-Bonnet, since by standard

comparison results finite volume surfaces must be predominently negatively curved

near infinity.
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