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ABSTRACT. Let G be a locally compact group and p: U —► T a principal

G-bundle. If A is a C-algebra with primitive ideal space T, the pull-back

p*A of A along p is the balanced tensor product Co(f2) ®c(T) A. If ß: G —>

Aut A consists of C(T)-module automorphisms, and 7: G —> Aut Co (H) is the

natural action, then the automorphism group -y ® ß of Co(0) ® >1 respects

the balancing and induces the diagonal action p* ß of G on p* A. We discuss

some examples of such actions and study the crossed product p*A xp.ß G. We

suggest a substitute D for the fixed-point algebra, prove p* A x G is strongly

Morita equivalent to D, and investigate the structure of D in various cases. In

particular, we ask when D is strongly Morita equivalent to A—sometimes, but

by no means always—and investigate the case where A has continuous trace.

Let B be a C*-algebra and G a locally compact group acting on B as a strongly

continuous automorphism group a. Our goal here is to study the crossed product

C*-algebra BxaG for two classes of diagonal actions for which the induced action of

G on B is free. The first class includes actions of the form 7®/? on B = Co(û) ® A,

where p: Û —> T is a principal G-bundle, 7 is the dual action of G on Cn(fi),

and ß: G —► Aut A is an action of G on another C*-algebra A. We also consider

diagonal actions on algebras which are the pull-backs of another algebra A along

a principal bundle p: Û —» T: if A is a C*-algebra with primitive ideal space T,

then the pull-back p*A is the balanced tensor product Co(û) ®cb(T) A. When

ß: G —> Aut A consists of C(T")-module automorphisms, the product action 7 ® ß

preserves the balancing, and the diagonal action p*ß is, by definition, the induced

action on p* A.

In general, if /: X —> Y and q: Prim.,4 —► Y are continuous, then Cb(Y) acts

on Co(X) by composition with /, and on A by composition with q and the Dauns-

Hofmann theorem. We can therefore define the pull-back f* A oí A along / as

the C*-algebraic tensor product Co(X) ®cb(Y) A. The reason for the name is that

when A is the algebra of sections of some C* -bundle E over Y, there is a natural

isomorphism of f*A onto the algebra of sections of the pull-back f*E. In §1 we

discuss this and other basic properties of pull-backs and give some evidence to

show they are likely to be of interest. In particular, we show that if G is abelian

and a: G —> Aut A is locally unitary in the sense of [18], then the crossed product
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AxaG is the pull-back of A along a canonical principal G-bundle p: (AxaG)~—► Â.

In fact, under this isomorphism the dual action of G is carried into the diagonal

action p* id as described above. This observation and the results we present here

will be important in extending the results of [18] to nonabelian groups (see [13]).

Our main results concern diagonal actions on pull-backs along principal G-

bundles or, more generally, along the orbit map p: û —» T for a free G-space û

in which compact subsets of fi are wandering [10, p. 88]. For such actions the

orbit space T = Û/G is locally compact and Hausdorff, and a theorem of Green

[10, Theorem 14; or 22, situation 2] asserts that in this case the crossed product

Co (fi) x G is strongly Morita equivalent to Cq(T). We suppose 0 is such a G-space

and A is a C*-algebra for which there is a continuous map q: Prim.4 —► T.

It is well known that the crossed product B xa G is closely related to the fixed-

point algebra Ba (see, for example, [3]), and when G is compact, Green's theorem

says that Co(fi) xQ G is strongly Morita equivalent to Co(û)a = Cq(T). For

noncompact G the fixed-point algebra is typically empty, but we can use the same

idea provided we work in a large enough algebra. For the tensor product action

a = 7 ® ß, we use the algebra GC(Û, A) of bounded continuous functions which

"vanish at infinity on Q/G" (see Definition 2.1); although it is rather messy to work

with, the fixed point algebra GC(Û, A)a proves quite tractable. In particular, its

primitive ideal space turns out to be the orbit space for the natural action of G on

û x Prim A. For the diagonal action p*ß on the pull-back p* A, we use the quotient

of GC(û,A)a by the ideal I corresponding to the diagonal in (û x PrimA)/G—

although it is possible to view this as a fixed-point algebra, we found it easier to work

through GC(û,A)a. Our main theorems (2.2 and 2.5) state that Co(û,A) x^0G

and p*A xp.0 G are strongly Morita equivalent to GC(û,A)a and GC(û,A)a/I

respectively. The imprimitivity bimodule X in Theorem 2.2 is similar to that

constructed in Rieffel's proof of Green's theorem [22], and that of Theorem 2.5 is

a quotient of X. These two results are proved in §2.

To complete our analysis of the crossed products we have to investigate the

algebras GC(fi,,4)0 and GC(û,A)a/I, and we do this in §3. The latter has the

same primitive ideal space as A, and in many cases it is isomorphic to A (for

example, if ß is trivial or if 0 = T x G is the trivial bundle) or strongly Morita

equivalent to A. In case A = Co(T) and ß — id, we recover Green's theorem, so this

is not altogether unexpected. For nontrivial ß and A, more interesting things can

happen, and, in particular, GC(û,A)a/I need not be Morita equivalent to A (see

Corollary 3.6). However, the algebras GC(û,A)a/I and A are closely related; we

prove in Proposition 3.7 that their pull-backs along p are isomorphic. We conclude

§3 with some comments on the case where A and, hence, p*Axp.0G have continuous

trace, and we discuss the relationship between their Dixmier-Douady invariants.

In our last section we apply our results to extend a recent theorem of A. Wasser-

mann [24, Theorem 5]. Let G be a separable locally compact group, û a principal

G-bundle, and w:GxG^Ta multiplier for G. For G a compact Lie group,

Wassermann proves a version of our Theorem 2.2 [24, Corollary 1] and uses it to

show that the twisted transformation group G*-algebra C*(G, û,oj) has continuous

trace and to compute its Dixmier-Douady class. We use Theorem 2.2 to prove a

similar result for locally compact G.

Notation. If H is a Hubert space, K(H) denotes the algebra of compact operators
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on H, and U(H) is the group of unitary operators on H. If A is a G*-algebra,

we write M (A) for its multiplier algebra, Z(A) for its centre, 17(A) for its unitary

group, Aut A for the group of '-automorphisms and Inn A for the subgroup of inner

automorphisms—that is, those of the form Adu: a —► uau* for some u G U(M(A)).

Automorphism groups a: G -+ Aut A will usually be strongly continuous, and we

shall distinguish between an identity element Ia and the identity automorphism

id. If a : G —> Aut A is an automorphism group, we denote the crossed product

by A xa G and write tt x U for the representation of A xa G corresponding to

the covariant representation (n,U) of (A, G). The algebraic tensor product of two

G*-algebras A, B is denoted by AQB; in our context there will usually be a unique

G*-completion A ® B.

Given a locally compact (Hausdorff) space fi, we denote by Cb(û),Cc(û) and

Co(fi) the algebras of continuous functions which, respectively, are bounded, are of

compact support and vanish at infinity. If G is a topological group, then Q will be

the sheaf of germs of continuous G-valued functions. We write Hl(Û,G) for Cech

cohomology with coefficients in G, except in §4, where we write H% to distinguish

it from the Moore cohomology groups which appear there. We variously describe

the unit circle as S1 (a topological space) or T (a compact group).

1. Pull-backs of G*-algebras. Let A and B be C*-algebras and suppose for

convenience that at least one of A, B is nuclear, so that, among other things, there

is a unique G *-tensor product A ® B. Let F be a locally compact Hausdorff space

and suppose there are continuous maps /: Prim A -4 Y, g: Primi? —► Y. Then by

composing with / and g and invoking the Dauns-Hofmann theorem we can view A

and B as modules over the algebra Cb(Y) of continuous bounded functions. If Z is

a subalgebra of Cb(Y) the Z-balanced tensor product is by definition the quotient

of A ® B by the (two-sided closed) ideal Iz generated by the set

{a<j> ® b - a ® 4>b: a G A, b G B, <f> G Z}.

Since one of A, B is nuclear, the map (J,K) —» J ® B + A ® K is a homeomorphism

of Prim A x Primß onto Prim(A ® B) [2, Theorem 3.3], and it follows easily that

Ic„(Y) =IC0(Y)

= f){J®B + A®K: JePrimA, KePrimS, f(J) = g(K)}.

Thus the tensor products A ®c6(y) B and A ®c0(v) R coincide, so we can write

A ®c(Y) B without ambiguity, and we have the following lemma.

LEMMA 1.1. Let A,B,Y,f,g be as above. Then Prim(A ®c(Y) R) iS homeo-
morphic to the space

A = {(J,K) G Prim A x Prim 5: f(J) = g(K)}.

The spectrum of A®c(Y) R has a similar description.

DEFINITION 1.2. Let X, Y be locally compact Hausdorff spaces, let A be a C*-

algcbra, and suppose there are continuous maps /: X —» Y and g: Prim A —+ Y.

The pull-back of A along f is the balanced tensor product Co(X) ®c(v) A, which

we denote by f*A.
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Of course, as we have defined it, the pull-back f*A depends just as much on

the map g, but in the cases that interest us / will be the crucial ingredient—

in fact, g will often be the identity. As a simple example to fix ideas, consider

A = Co(Y,K(H)). Then it follows from Lemma 1.1 that f* A = C0(X,K(H)).
Our notion of pull-back for a C* -algebra is an extension of the usual notion of

pull-back for bundles. Suppose that A is represented as the sections To(E) of a

G*-bundle (E,p) over Y (cf. [8, §1 or 9, §10]). The bundle pull-back f*E is the

bundle over X consisting of the pairs (x,e) G XxE satisfying f(x) = p(e), together

with the obvious projection onto X. Note that the continuous sections of f*E can

be identified with the continuous functions <f>: X —> E such that p(<p(x)) — f(x) for

all x G X. The following result justifies our terminology.

PROPOSITION 1.3. Let E be a C*-bundle over a locally compact space Y, and

let f: X —> Y be continuous.  Then f*(To(E)) is isomorphic to Vo(f*E).

REMARK. There is a natural action of C(Y) on Fo(E), so the tensor product

Co(X) ®c{Y) ^o(E) makes sense. This also falls into the set-up above: every

■k G To(E)~ factors through evaluation at some point g(keTTr) G Y, the resulting

map g is continuous, and the action of C(Y) defined through g is the natural one.

PROOF. We define a map $ from C0(X) 0 T0(E) to T0(f*E) by

<¡>(4>®a)(x) = 4>(x)a(f(x)).

Because $ is the tensor product of the obvious embeddings oiCo(X) and To(E) into

M(To(f*E)), it extends to a homomorphism on the (unique) G*-tensor product.

The kernel of $ contains Ic(Y), and hence $ defines a homomorphism of f*To(E)

into T0(f*E). The range of $ is a Gb(X)-submodule of r0(/*ß), and {$(4>®a)(x)}

equals (f*E)x = Ef^ for each x, so the proof of [8, Proposition 1.7] shows that

the range of $ is dense. Of course, $ is a homomorphism between G*-algebras, so

it must actually be surjective.

According to Lemma 1.1, every irreducible representation of f*To(E) is equiva-

lent to one of the form £x®7r, where ex denotes evaluation at x G X, and n G ro(£0~

satisfies g(ker7r) = f(x). By definition of g (see the remark above) there exists

p G (Ef(x))~with n(a) = p(a(f(x))), and then we have

(ex ® n)(<p ® a) = p($(4> ® a)(x)).

In other words, every irreducible representation of f*To(E) factors through 3>,

which is therefore an isomorphism on f*To(E).    D

Our next two propositions describe two ways in which pull-backs of G*-algebras

arise. The first concerns continuous trace G*-algebras. Here it is possible to decide,

at least up to stable isomorphism, whether a given algebra R with spectrum X is a

pull-back along a given map / : X —► Y by inspecting the Dixmier-Douady invariant

of B. Our second proposition concerns the crossed product of a G*-algebra A with

spectrum F by a locally unitary abelian automorphism group a: G —* Aut A [18].

In this case, A X a G is the pull-back of A along the fibres of a certain canonically

defined principal G-bundle over Y.

PROPOSITION 1.4. Let X, Y be locally compact spaces and f:X—>Y a conti-

nous map.
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(1) If A is a continuous trace C*-algebra with spectrum Y, then f* A is a contin-

uous trace C*-algebra with spectrum X, and the Dixmier-Douady invariant 8(f*A)

is the image of 8(A) under the induced homomorphism f* : H3(Y, Z) —> H3(X, Z).

(2) If B is a separable continuous trace C*-algebra with spectrum X, then B is

stably isomorphic to f*A for some continuous trace C* -algebra A with spectrum Y

if and only if 8(B) G f*(H3(Y,Z)).
(3) If B is a separable and stable continuous trace C* -algebra with spectrum X,

then B is isomorphic to f*A for some continuous trace C* -algebra A with spectrum

Y if and only if 8(B) G f*(H3(Y,Z)). In this case, B = f*A whenever A is a

stable continuous trace C*-algebra with f*(8(A)) = 8(B).

PROOF. Suppose that A is a continuous trace C*-algebra with spectrum Y, and

notice that the map x —► (x, f(x)) is a homeomorphism of X onto A = (/* A)~ By

applying the techniques of [17, Lemma 2.6] to the single algebra A, we can choose

an open cover {Ni} of Y and elements Pi,ai3 of A such that Pi(y) is a rank one

projection if y G N, and

a*ij(y)aij(y) - Pi(y),        alJ(y)a*ij(y) = pj(y)

if y G Nj = Ni n Nj. The functions Uijk : Ntjk —> S1 defined by

(a*kajkaij)(y) = Uijk(y)pi(y)

form a 2-cocycle with values in the sheaf 5 of continuous Sx-valued functions on

Y. Let 7(A) denote the corresponding cohomology class in H2(Y,S); then the

Dixmier-Douady class 8(A) is the image of 7(A) in H3(Y, Z) = H2(Y, S) (see [17,

§2] for this description of 8(A)). For each i choose an open cover {W*} of f_1(N)

by relatively compact sets and functions /* G CC(X) such that flq is identically one

on W*. We define p¿,q and a¿gjr in Co(X) 0 A by

Vi,q = Pq®Pi    and    tHgJr = Fq ® <*ij-

Then for y G Nljk and x G W* we have

aiq,ks(x,y)*ajr:ks(x,y)aiqt3r(x,y) = uZ3k(y)pl¡q(x,y).

In particular, this holds for (x, y) of the form (x, f(x)). Thus, if we replace the p's

and a's by their images in f*A, we see that 8(f*A) is represented by the 2-cocycle

{Wq, Uijkof}. But the cover {W*} is a refinement of /~1(Ar¿), so this cocycle defines

the same class as {f~1(Ni),Uijkof}, which, by definition, is /*(r5(A)). This proves

(1) as well as the "only if" parts of (2) and (3), since 8 is a stable isomorphism

invariant (by, for example, [6, Théorème 1 and 16, Lemma 1.11]). The other

implication in (2) follows from the fact that 8 classifies separable continuous trace

G*-algebras up to stable isomorphism (see, for example, [17, Corollary 1.5]). The

rest of (3) will follow once we prove that if A is stable, then so is f*A.

We therefore fix a stable continuous trace G*-algebra with spectrum Y and

choose an isomorphism <& from A®K(H) to A such that the induced map on spectra

is the identity (see [18, Lemma 4.3]). Then $ is a Go(F)-module isomorphism, and

id ® $ carries the ideal Ic{Y) into the corresponding ideal in Co(X) ® (A ® K(H)).
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Of course, this ideal is just Ic(Y) ® K(H). Thus

f'A = Co(X) ®c(y) A as Co(X) ®c(y) (A ® K(H))

= [Co(X) ® A ® K(H)]/IC(Y) ® K(H)

= \Co(X) ® A/IC(Y)] ® K(H) = f*A ® K(ff),

and f A is stable. The result follows.    D

This proposition can give useful information in specific situations. For example,

let T be a compact space, X = RxT,Y = S1xT and /: X —> Y be the identity

on T and the quotient map on R. Then /*: H3(Y) —> H3(X) is surjective, so

every stable continuous trace G*-algebra with spectrum X has the form f* A; this

representation is not necessarily unique since /* can have nontrivial kernel (take

T = S2, say). On the other hand, if /: S3 —> S2 is the Hopf fibration, then

H3(S2) = 0 and no continuous trace G*-algebra B with spectrum S3 and 8(B) ^ 0

is a pull-back.

Now let A be a type I G*-algebra, let G be a locally compact abelian group and

suppose that a: G —► Aut A is locally unitary in the sense of [18]. If n G (A xa G)~

and 7f is its extension to M(A xa G), then the restriction of ñ to the subalgebra

A of M (A xa G) is still irreducible: this defines a continuous map p, called the

restriction map, of (A xa G)~onto A [18, Proposition 2.1]. Further, Theorem 2.2

of [18] shows that p and the dual action of G make (A xa G)~into a locally trivial

principal G-bundle over A.

PROPOSITION 1.5. Let A be a C*-algebra with paracompact spectrum Y, let

a: G —> Aut A be a locally unitary automorphism group, and let p: (AxaG) -»F

be the restriction map. Then AxaG is isomorphic to the pull-back p* A. Further,

there is such an isomorphism which carries the dual action of G on A xa G into

the action

7®c(y) id: G -> Aut[G0((A xa G)~) ®p(y) A] = Autp*A,

where 7 is the action of G on Co((Axa G)~) induced by the dual action.

PROOF. Let m: Cb((AxaG)'^) —> M(AxaG) denote the embedding guaranteed

by the Dauns-Hofmann theorem, and let Ra : A —> M (A xaG) be the embedding

of A as multiples of the Dirac ¿-function. As the ranges of m and Ra commute

they define a homomorphism

$: Co((AxaG)^®A^M(AxaG).

It is straightforward to check that the ideal Ic(Y) IS contained in the kernel of $,

so we have a homomorphism

*: p*A = C0((A xa GD ®c(y) A ^ M(A xa G).

We shall prove that * is an isomorphism of p"A onto A xa G, but first we must

prove that the range of ^ is contained in A xa G.

We therefore need to show $(<?!>®a) G AxaG for any a G A, <$> G Cc((AxaG]~).

Using a partition of unity, we may write 4> = J^^i, where the fa have small support.

Since it will suffice to prove that $((fo®a) G AxaG, we may assume that supp<h c
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p 1(N), where N is open in Y and a is implemented over TV by u: G —* M(A).

By Theorem 2.2 of [18], we then have

p_1(7V) = {ir x 77f(u): n G N, 7 G G}.

Let n: C0(Â) -* M (A) be the usual embedding. If A € CC(G) and / G C0(N), then
for each n G N, s —> n(\(s)n(f)) is a continuous, compactly supported function

with values in ñ(ZM(A)) = Cl. In particular, we may define (¡>(\, f) G Co(p~1(N))

by

0(A,/)(tt x 77f(u))l = / 7f(A(a)n(/)h(a)da.
./G

We also remark that by [18, Theorem 2.2] the map hu: (7r,7) —► 7r x 77f(u) is a

homeomorphism of N x G onto p_1(7V), so that h*u : <f> —* <\> o hu is an isomorphism

of Go(p_1(iV)) onto Co(N x G). A straightforward calculation shows that

</>(A,/)o/7u = Â®/,

where A is the usual Fourier transform of A.   Since the image of CC(G) is dense

in Go(G) and h\\ is an isomorphism, we conclude that the (b(X,f) span a dense

subspace of Co(p~1(N)). Thus it will be enough for us to show that $(4>(X, /) ® o)

belongs to A xa G for every A G CC(G), f G Cq(N) and a G A.

Let z G CC(G, A), it G N and 7 G G. Then we compute

(tt x iT(u))(m((p(\, f))RA(a)z) =       /  Tr(X(s)n(f)RA(a)z(r)ur)'y(sr)drds
Jg Jg

Tx(X(s)n(f)RA(a)z(s^1r)us-ir)^(r) dr ds,

=  /  7T    /  X(s)n(f)au~1as(z(s~1r))ds
Jg    Ug

(since z(s~1r)u~1 = uj1as(z(s~1r))),

= (irx 77f(it))(j/ * z),

11JG JG

q(r)n(ur) dr

where y(s) = X(s)n(f)aus1 is in CC(G,A). Now every irreducible representa-

tion of A xa G has the form 7r x U for some tt G A, and if n £ N, then both

m(4>(X, f))RA(a)z and y * z are in the kernel of n x U. Thus we can deduce that

*(0(A, /) ® a) = m(<b(X, f))RA(a) = y,

and we have shown that $ and, hence, ^ map into A xaG.

li it x U G (Axa G)~, then

7T x [/($((/> ® a)) = [ttx U(m((p))ir x U(RA(a))] = ^(tt x U)-k(o);

in other words, (n x U) o d> is the representation (ir x U,7r) in (A Xa G)~X A. By

Lemma 1.1 this implies that all irreducible representations of p* A factor through

$, and hence that $ is an isomorphism. Also, this shows that the range of $ is a

rich subalgebra of A x(V G, and since A xn G is liminal (being the section algebra

of a locally trivial bundle over a Hausdorff space) the range must be all of A x a G.

Thus ty is an isomorphism of p* A onto AxaG.
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It only remains for us to check that \I/ carries 7 ®c(v) id into the dual action.

However, for z G CC(G, A) and x G G we have

(wxU)(âx(z)) = (TTXxU)(z),

and this formula works equally well on the multiplier algebra, so

(tt x U)($(ix(p ® a)) = (ix<p)(ir x U)[n x U(RA(a))] = 4>(n x xU)n{a)

= (?r xx{7)($(0®a)) = (7rx¡7)(ax($(<£®a))).

This completes the proof of Proposition 1.5.    Ü

REMARK. We observe that the results of [18, §4] follow from Proposition 1.5

and the general result on pull-backs of continuous trace G*-algebras in Proposition

1.4.

2. Crossed products by diagonal actions. Let G be a locally compact

group acting freely on a locally compact (Hausdorff) space Û in such a way that

compact subsets of û are wandering [10, p. 80], and let 7: G —► AutGo(fi) be the

corresponding action. Then T — Û/G is also a locally compact Hausdorff space [10,

first part of Theorem 14]; let p: û —> T be the orbit map. To begin with we shall

be interested in automorphism groups of the form a = 7 ® ß: G —> Aut Go(fî) ® A,

where ß is a strongly continuous automorphism group of a C * -algebra A. If we

view Go(n) ® A as Go(0, A), then a is defined by

at(f)(x) = ßt(f(t~lx))       (f G Co(Û, A), xGÛ,tG G).

As we pointed out in the introduction, there will often be no fixed points for this

action, but we can rectify this by working in a slightly larger algebra.

DEFINITION 2.1. Let GG(fi, A) be the G*-algebra of bounded continuous func-

tions 4>: û —> A with the property that

p({xGÛ:U(x)]\>e})

is relatively compact for every e > 0.

Each automorphism at extends to GG(Q,A), so we can talk about the fixed

point algebra GC(û,A)a. (Note that this action of G will not always be strongly

continuous, however.) When G is compact, GG(f2,A) = Go(0, A) and this is the

fixed-point algebra for a in the usual sense. Our interest in GC(û,A)a stems from

our first main result.

THEOREM 2.2. Let G,u,A,ß and a be as above. Then the crossed product

Co(fi, A) xQ G is strongly Morita equivalent to GC(û,A)a.

As is more or less standard by now, we shall in fact construct an imprimitivity

bimodule between the dense subalgebra E = CC(G x Û,A) oí Co(û, A) xa G and

B = GC(û,A)a. The imprimitivity bimodule will be X = Gc(0,A), with the

module actions given by

z.fax) = / z(s,x)ßs(<i>(s'1x))A(s)1/2ds,
(2.1) JG

4>.b(x) = <¡>(x)b(x)

for z G E, b G B and <j> G X—note that by the wandering hypothesis the integrand

has compact support. In order to define the B- and E-valued inner products we

need a simple lemma.
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LEMMA 2.3.   Let xp G Cc(û, A).  Then the function </>: û —» A defined by

<t>(x)= f ßs(xp(s-lx))ds
JG

is continuous.

PROOF. Let K = suppV>, x G û and e > 0. If N is a compact neighbourhood

of x in fi, then
L = {s G G: ip(s~ly) ^ 0 for some y G N}

is a subset of

{s G G: s(N U K) n(N U K) ¿ 0},

and hence is relatively compact by the wandering hypothesis. A standard compact-

ness argument gives a neighbourhood W of x such that W C N and

IM«-1!/) - V(*-1a:)|| < e/p(L)    for t G L, y G W.

Since ip(t~ly) = 0 if t £ L, it follows that (p is continuous at x.    D

We can now define the 5-valued inner product on X by

(2.2) (<I>,iI>)b(x) = f AWs-'xJXs-'x))^,
JG

for the lemma shows that (<¡>,th)B is a continuous function on fi, and it follows from

the left invariance of Haar measure that (ch, ijj)ß is invariant under a. In particular,

||(0,V')b(i)|| is constant on G-orbits and vanishes on orbits outside p(supp<^*^>),

so (4>,ip)ß does belong to GC(Û,A). An argument similar to the first part of the

above proof shows that if tp G CC(Û,A) then the function (s,x) —► tp(s~1x) has

compact support modulo G, so we may define the ^-valued inner product by

(2.3) (4>, tP)e(s, x) = A(s)-1/20(x)/îs(V,(s-i;c)').

We have to show that with the module actions (2.1) and the inner products (2.2),

(2.3), X is an E-B imprimitivity bimodule.

The purely algebraic axioms can be easily verified, and we have only to establish

(a) the positivity of the inner product, (b) the density of the spans of the ranges

of the inner products, and (c) the continuity of the module actions. We verify (a)

and (b) by constructing approximate identities of a special kind: our construction

is based on that of [11, Lemma 2 and 22, pp. 306-308].

LEMMA 2.4. (1) There is a net {fk} in E which is an approximate identity

both for E c Go(0, A) xQ G and for the E-module X in the B-norm and which

consists of finite sums of elements of the form (<fr, 4>)e-

(2) There is a net {g{} in B with the corresponding properties.

PROOF. (1) Let N be a neighbourhood of e in G, let D be a compact subset

of Û, and let s > 0. The construction of [22, pp. 307-308] (with the subgroup

H — {e}) shows we can choose positive functions g¿ G Cc(û) such that if

$(N,D,e)(s,x) = ^2 A(x)1/2gl(x)gl(s-1x),

i

then

m> .* ,,  i  >0    for s GN,

W VW*,*)j=0  fors^
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(2) f A(s)1^{NtDt£)(s,x)ds-í
Jg

< e    for all x G D.

We then choose an approximate identity {a-^ : 7 G T} for A such that 0 < a-, < 1

for all 7 and set

^(N,D,e,1)(s,x) = ^(N^D^(s,x)a1ßs(a1).

We aim to prove that the ^(n,d,e,i), indexed over reverse inclusion on N, inclusion

on D, decreasing e and T, form approximate identities for E = CC(G,CC(Û,A))

and the ^-module X with respect to the inductive limit topologies. It then follows

from routine arguments that they form approximate identities with respect to the

necessary norms. Further, we observe that if we set Zi(x) = gi(x)a1, then

V(N,D,en) = /Azj,Zi)e,
i

so this approximate identity has the required form.

Let / G E be fixed. We have to show that given e > 0 we can find (No, D0,80,70)

such that

||*(Af,D,«,7)/ - /lloo < £    whenever N c N0, D D D0, 8 < 80, 7 > 7o-

If a G A then a routine calculation shows that for each 8 > 0 there are 71 G T and

a compact neighbourhood Ai of e in G such that

Wa^ßtfa^a — a\\ < 8   whenever 7 > 71 and t G Ni.

The range of the function /: G x û —» A is compact, so a standard compactness

argument implies that there are a neighbourhood A^2 of e and 70 G T such that

\\a1ßt(a1)f(s,x) - f(s,x)]\ < ^ for t G N2, 7 > 70, (s,x) G G x Û.

We now observe that the action of G on Co(G x Û, A) defined by

t.f(s,x) = ßt(f(t-1s,t-1x))

is strongly continuous, so we can choose A^o such that A^o Ç ÍV2 and

||A(t)-1/2A(/(ry r1*)) - /Mil < tt^j

for all 7 > 70, t G No and (s,x) G G x û. Finally, we let Di be a compact subset

of û containing {x G û : (t, x) G supp / for some í} and take Do = A^Di. Then for

(N, D, 8,7) > {No, Do, e/2,70) we have

\\^(N,D,S,-1)f(s,x) - f(s,x)]]

I f
=    /  $(N,D,6)(t, x)a1ßt(a1)ßt(f(t~ls, t~lx)) dt - f(s, x)

\\Jg

< f A(t)ll2$(t,x)\\A(t)-ll2a^t(a^t(f(t-ls,t-lx))-f(s,x)\\dt + e/2.
JG

If x ^ Do the integrand vanishes; if x G Dq we have

||»/(a>x) - }(s, x)\\ < 2(Y^y(l + o) + l<e.
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A similar, but slightly easier, argument shows that if z G X then

sup ]]V{NtD<£n)z(x) - z(x)\\a -► 0   as (N,D,e,~i) -* .

This gives (1).

(2) We first note that Lemma 2.3 (with ß — id) shows that for any A G Cc(û)

the formula

X(G.x)= f X(s~1x)ds
Jg

defines a function in Cc(û/G).  In fact every function in Cc(û/G) has this form:

for if we are given / G Cc(û/G) with support K, we can choose g G Cc(û) such

that p({x: g(x) ^ 0}) contains K, and then take X(x) = g(x)f(G.x)/g(G.x). Thus

for each compact subset D of û we can choose Arj G Cc(û) such that 0 < Ad < 1

and A = 1 on p(D). We then define

n _ /a 1/2   1/2   ,1/2    l/2\
y(D,-y) - \ÁD   aX     >AD   aX    IB,

where {a-,} is an approximate identity for A with a1 > 0 and ||a^|| < 1. Arguments

like those we used to establish (1) show that if 4> G B and z G X, then

||(0(D,^)(x)-<A(x)|U^O    and    \\(6{D>l)z)(x)-z(x)\]A^0

uniformly in x G û as (D, 7) run through, respectively, increasing compact subsets

of Q and T. It follows that {0(d,-))} ¡s an approximate identity as claimed.    D

We can use Lemma 2.4 to prove properties (a) and (b) exactly as Rieffel does

in [22, p. 308], and it remains to check the continuity condition (c). If B does not

have an identity, we can extend the action of B on X to an action of B+, and then

it is straightforward to check that

(<p,Tpb)E = (<f>b*,iP)E    ior ch,^GX,bGB+.

Since ||6||2 — b*b > 0 in B+, it follows from the positivity of the inner product that

(0(||6||2-6*6),<A)E>O,

or, in other words, that

(<pb,<hb)E<\]b\\2(ch,<b)E.

It remains to prove the analogous result for the B-valued inner product. For any

state p of B, we consider the pre-inner product on X defined by

(4>,1p)p = p(((j),Tp)B),

and denote the (Hausdorff) completion of X in this inner product by Vp. For s G G,

we define V(s) G U(VP) by

V(s)<t>(x) = A(s)1/2/3s(0(s-1x)).

If M is the representation of Go(f2,A) on Vp by pointwise multiplication, then

(V, M) is a covariant representation of (G, Go(0, A)), and a simple calculation shows

that the integrated form of this representation satisfies

(M x V)(z)(b = z.cp   iorzGE, cp G X.

In particular, we have

p((z<t>,z<t>)B) < \\z]\2p((<p,4>)B)
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for each state p of B. Therefore

(zcp,z<p)B<\\z\\2(<t>,<h)B

in B. This completes the proof of Theorem 2.2.    D

We now consider diagonal actions on pull-backs of a G*-algebra A. Suppose

p: û —> T is the orbit map for a G-space as before, let 7 be the corresponding

action of G on Go(fi), and let q: Prim A —> T be continuous. This implies as usual

that Cb(T) acts on A: we suppose that ß: G —> Aut A consists of automorphisms

which preserve this action. It is then easy to see that the ideal Ic(T) is invariant

under 7®/?. The diagonal action p* ß is the automorphism group induced by 7®/?

on the quotient p*A = Co(fi) ® A/Iq(t)- We have already met some interesting

examples: Proposition 1.5 shows that the dual actions of locally unitary abelian

automorphism groups have this form. Here are a few more.

EXAMPLES. (1) Let T be a compact space with Hl(T) =0,H2(T) ¿0,H3(T) ±

0, let û be a nontrivial principal T-bundle over T, and let A be a continuous trace

G*-algebra with 8(A) ^ 0. The Gysin sequence for the bundle p: û —► T shows

that p* is injective on H3(T), so 8(p*A) ^ 0 by Proposition 1.4. Then p*id is

an action of T on the nontrivial continuous trace algebra p* A which induces the

original T-action on (p*A)~= Û. (Note that, in general, actions on the spectrum

need not lift to actions of the algebra: this will be discussed in [19].)

(2) Let B a nontrivial n-homogeneous G*-algebra with spectrum T2. Then B

can be realized as a pull-back along a variety of finite coverings p : T2 —» T2 (see

[4]), and for each such realisation B carries an action of the corresponding group

of deck transformations.

We shall relate the crossed product p* A xp*0 G to the quotient of GC(û,A)a

by the ideal

I = {bG GC(û,A)a: Tr(b(x)) = 0 whenever o(ker7r) = p(x)};

in other words, GG(fi, A)a/I is our analogue of the fixed point algebra in this case.

At least when G is compact it is easy to see that GC(û,A)a/I is isomorphic to

the fixed point algebra for p*ß: for then GC(Û,A) = Go(fi,A), the ideal Ic(T)

corresponds to the closed subset {(x, J): p(x) — q(J)} of û x Prim A, and the

quotient map gives an isomorphism of Cq(û, A)a/1 onto (p*A)p &. In general it is

possible to realise GG(0, A)a¡I as the fixed point algebra for an extension of p*ß

to a larger algebra. However, we have found it easier to work with GC(fi, A)a and

its quotient, so we omit the details.

THEOREM 2.5. Let A be a C*-algebra, G a locally compact group, and suppose

that G acts freely on a locally compact space û in such a way that compact subsets

of Û are wandering. Suppose also that there is a continuous map q: Prim A —>

T = Û/G, so that Cb(T) acts on A and ß: G —> Aut A consists of Cb(T)-module

automorphisms. Letp: û —» T be the orbit map, and let GC(Û, A)a, I be as above.

Then the crossed product p*A XP-0G is strongly Morita equivalent to GC(Û, A)a/I.

In the course of proving this theorem we need to know what the spectrum of

GG(il,A)a looks like.

LEMMA 2.6. For x G û, it G Â let M(x, it) be the representation of GC(Û, A)a

defined by M(x,-n)(b) = ir(b(x)). Each M(x,w) is irreducible, and M(x,ir) is equiv-

alent to M(y, p) if and only if y — s.x and p is equivalent to it o ß~ l = s.ir for some
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s G G. Further, every irreducible representation ofGC(û,A)a is equivalent to some

M(x,ir).

PROOF. All except for the last sentence follows easily from the fact that A =

{b(x): b G GC(Û, A)a} for each x G Û. To see this, note that if <f> G Cc(û) has

support in a small neighbourhood of x and satisfies / <j)(s~1x) ds = 1 then

4>(y)= f 4>(s-ly)ßs(a)ds
JG

defines an element of GC(û,A)a with <p(x) close to a.

On the other hand, suppose p is an irreducible representation of B = GC(Û, A)a.

There is a natural homomorphism of Co(T) into the centre of M(B), and this action

of Co(T) on B is nondegenerate, so the canonical extension of p to M(B) defines

a nonzero complex homomorphism p on Co(T). Therefore p(f) ~ f(G.x) for every

/ G Co(T) and some x G û. We claim that if b G B satisfies b(x) = 0, then p(b) = 0.

To see this let e > 0. Since x —► ||6(x)|| defines an element of Go(0/G), we can find

/ € G0(fi/G) with 11/6 - 6|| < e and f(G.x) = 0. But p(fb) = p(f)p(b) = 0, so
this implies ||p(6)|| < e and justifies our claim. We can now define a representation

n of A by Tr(b(x)) = p(b) (recall that A = {b(x)}). Then it is irreducible, and

p = M(x, ir) by definition.    D

PROOF OF THEOREM 2.5. We first note that under the natural isomorphism

of Co(û) ® A onto Go(f2, A), the ideal Ic(T) ls carried onto

K — {4> G Co(û, A) : tt((J>(x)) = 0 whenever o(ker n) = p(x)},

and the group 7 ® ß is carried into a. By [11, Proposition 12(h)] the algebra

(Co(û,A)/K) xa G is isomorphic to the quotient of Co(û, A) xa G by the ideal

KxaG. Hence, if we write B = GG(fi, A)a and F = Co(û, A)xaG, then we want

to construct an F/(K xa G)-B/I imprimitivity bimodule. Rieffel has shown [21,

Theorem 3.1] that an F-B imprimitivity bimodule X induces a lattice isomorphism

between the (closed two-sided) ideals 1(F) in F and 1(B). Further, if the ideals

L C F and M C B correspond under this bijection, then F/L is strongly Morita

equivalent to B/M via an imprimitivity bimodule which is a quotient of X [21,

Corollary 3.2]. Now E = CC(G x Û,A) is dense in F, so the completion X of the

E-B imprimitivity bimodule X constructed in Theorem 2.2 is an F-B imprimitivity

bimodule, and it is enough for us to check that the ideals K xaG and / correspond

under the bijection given by X.

Rieffel's construction [21, §3] shows that the ideal IF of F corresponding to I

is the closed linear span of the set (X.I,X.I)E. A straightforward approximation

argument using the Cauchy-Schwartz inequality [20, Proposition 2.9] shows that

(X.I,X.I)e still generates IF. However, it is easy to check that if b, c G I and

o(ker7r) = p(x), then

Tr(((j>b,ipc)E(s,x)) =0,

so that ((f>b,ipc)E e CC(G, K). Thus IF C K xa G.

To prove the reverse containment K x G C IF we shall use a different description

of IF. We note that in terms of the representations M(x, it) of Lemma 2.6 we have

/ — P){ker M(x, it) : it G Â, xGÛ, g(ker7r) = p(x)}.
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Rieffel's bijection maps the primitive ideal ker p of B to the kernel of the repre-

sentation Xp of F induced from p via X [21, Proposition 3.3] and it preserves

intersections, so

IF = f]{kerXM^^ :ttgÂ, XGÛ, g(kerTr) = p(x)}.

We claim that XM^X^ is equivalent to the representation Ind^Ar(x,7r) of F in-

duced in the sense of Takesaki [23] from the representation N(x,ir): z —> ir(z(x))

oiC0(Û,A).

For we can realise \ndN(x,ir) in L2(G,H7r) by the formula

(2.4) \kLd<(e}N(x,n)(f)Z}(8) = f 7T(ß;1(f(t,sx)))at~1s)dt.
JG

On the other hand, XM^X^ acts in the completion of X QB H with respect to the

inner product

(<p ® v, xp ® w) = (M(x, ir)((xp, <p)b)v\xu)h„

according to the formula

XM^\f)(ch®v) = (f.<h)®v.

Define U:XQBH«^ L2(G, H„) by

U(<¡> ® v)(s) = TT(aJ1((h)(x))v.

A calculation then shows that U intertwines XM(-X'n^ and Ind N(x,ir), so the claim

is now justified.

We therefore have

IF = Ç>\{kerlnàfeyN(x,iT): n G Â, xGÛ, o(ker7r) = p(x)}.

However, it is easy to see using (2.4) that if q(ker7r) = p(x) then IndAr(x,7r)

annihilates CC(G,K), so IF D K xa G. Thus / and K xaG correspond under X,

and the result follows.    D

3. The structure of the fixed-point algebras. We now study the alge-

bras GC(û,A)a of Theorem 2.2 and GC(û,A)a/I of Theorem 2.5. We begin by

describing their spectra.

PROPOSITION 3.1. Let A,G,U,p,T,ß,a,q and I be as in Theorem 2.5, and

for (x, 7t) G Û x A let M(x, tt) denote the representation b —» 7r(b(x)) ofGC(û, A)a.

Let û x À carry the product action. Then the map M induces a homeomorphism

of (û x A)/G onto (GG(fi, A)a)^ and a homeomorphism of

A = {G.(x,tt) G (Û x Â)/G: p(x) = o(kerTr)}

onto (GC(Û,A)a/I)~. In particular, if ß fixes A, (GC(û,A)a/I)"ishomeomorphic

to Â.

PROOF. The map M is continuous from ftxÂ to the spectrum of B = GC(Û, A)a,

constant on orbits and hence induces a continuous map on (û x A)/G. This induced

map is a bijection by Lemma 2.6, so for the first part it only remains to prove it is

open. So suppose that M(x¿,7r¿) converges to M(x,7r) in B; it will suffice to show
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that there is a subnet of {G.(x¿, 7r¿)} which converges to G.(x, it) in (û x A)/G. Ex-

tending these representations to M(B) and then restricting to Go(fi/G) C ZM(B)

gives another convergent net: it follows that G.x¿ —► G.x in Û/G. If K is a compact

neighborhood of x, then, as p is open, p(K) is a compact neighbourhood of G.x

and eventually (G.x¿) nif^0. For each ¿ we choose S{ with s,.x G K. By passing

to a subnet we may suppose that s¿.x¿ converges to some t.x; then with t% = t~lsl

we have í¿.x¿ —> x. If we can prove that U.tt —» 7r in A then G.(í¿,7r¿) —» G.(x,7r)

and we are done.

A typical basic open neighbourhood of it in A is given by

Mi = {p G Â: 3n G Hp, \\v\\ = 1 with \{p(a)ri\r,) - (îr(a)£|OI < e),

where e > 0, a G A and £ G Hn is a unit vector. Now pick 6e5 such that b(x) = a,

and fix i0 such that

\\b(ti.x)-b(x)\\<e/2   for i > i0.

Then

M2 = {PGè:3riG Hp, \\r,\\ = 1 with Mb)r,\r¡) - (M(i,7r)(6)£|0| < e/2}

is an open neighborhood of M(x, 7r) in ¿?, so we can find ¿i such that

M(ti.Xi,ti.TTi) = M(xi,TTi) G Mi    for ¿ > t'x-

Let ¿2 > ¿o,¿i and suppose i > i2. Then there is a unit vector n G HM(Xt^t) = H^i

such that

|(M(í¿.xi)íi.7ri)(6)»7|f7) - (M(x,7r)(6)r;|OI < e/2.

The Cauchy-Schwartz inequality gives

\(UMa)n\rj) - (7r(o)e|0l < e;

thus ti.TTi G Mi. This proves the first part, and the rest is straightforward.    D

COROLLARY 3.2. Let A,G,u,p,q,ß be as in Theorem 2.5 and suppose ß acts

trivially on A.  Then (p* A xp.0 G)" is homeomorphic to A.

PROOF. This follows immediately from the proposition, Theorem 2.5 and the

fact that an imprimitivity bimodule induces a homeomorphism of spectra [20,

Corollary 6.27].    □

This proposition suggests an obvious question: when is GG(fl, A)a/I isomorphic

to A, or at least strongly Morita equivalent to A? Our next proposition lists some

cases where this does happen, but in general the relationship is more complicated,

as we shall see later.

PROPOSITION 3.2.   Let A,G,u,p,q,ß,a be as in Theorem 2.5.

(1) Suppose that (a) each ßs is the identity, or (b) Q is isomorphic to G x Û/G

as a G-space. Then B = GC(f2,A)Q is isomorphic to Co(û/G,A), and B/I is
isomorphic to A.

(2) Suppose ß = Adu for some strictly continuous homomorphism u: G —>

M(A). Then B — GG(fî,A)a is strongly Morita equivalent to Co(û/G,A), and

B/I to A.

PROOF. (1) In case (a) it is immediate that functions in GG(n,A)a are con-

stant on orbits, so GC(Û, A)a = Cq(û/G, A). The ideal J coincides with the ideal
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Ic(sï/g), so B/I is just the balanced tensor product Co(fi/G) ®c(n/G) A, which is

isomorphic to A by, for example, [18, Lemma 3.9]. In case (b) let h: û —> G x Û/G

be a homeomorphism of G-spaces and let r : G x Û/G —> G be the natural projection.

Then it is easy to check that

Hf)(x) = ßT{h{x))(f(G.x))

defines an isomorphism of Go(fi/G, A) onto B, which induces an isomorphism of

A = C0(fi/G) ®C(n/G) A with B/I.
(2) An imprimitivity bimodule is given by

Y = {/ <E GG(fi, A) : /(ix) = ut/(x) for Í G G, x e fi}

with the module actions inherited from GG(fi, A), and inner products given by

(f,g)B(x) = f(x)g(x)\        (f,g)c(G.x) = /(x)*0(x)

(we have written C = Go(fi/G, A) for convenience). It is easy to prove that this is

an imprimitivity bimodule: only the density requirement on the inner products is

not completely obvious. To see that (•, -)c generates a dense ideal of G, it is enough

to show that for each x G fi, it G A there exists / G Y with ir((f,f)c(G.x)) ^ 0.

We choose a G A with tt(o) ^ 0, and define g: G.x —> A by g(tx) = uta. We

fix a continuous function p: fi —> [0,1] of compact support, extend g|nnsuppp to a

continuous function gi defined on all of fi, and set

h(y) = p(y)g\(y)   for y g fi.

Since h has compact support, the wandering hypothesis shows that the function

f(y) = I   ush(s~1y)ds
JG

belongs to GG(fi, A) (by the argument used to prove Lemma 2.3), and the invari-

ance of Haar measure shows that / G Y. It is easy to check that (f,f)c(G.x)

does not belong to ker7r. As the irreducible representations of B are also given by

b —> 7r(6(x)) (Lemma 2.6), exactly the same reasoning shows that (•, -)B generates a

dense ideal in B. Thus Y is the required B-C imprimitivity bimodule. It is routine

to check that the ideal I m B corresponds under Y to the ideal

J = {/ g C0(Û/G,A): f(G.x) G ker tt whenever g(ker7r) = G.x},

and hence B/I is strongly Morita equivalent to Co(û/G,A)/J = A as in [21,

§3].    D
We now turn to the construction of some examples where GC(û,A)a/I is not

strongly Morita equivalent to A. We shall need the following lemma, which is

essentially from [16, §2].

LEMMA 3.4. Let H be an infinite-dimensional Hubert space, and let X be a

compact Hausdorff space. Given a continuous map <f>: X —> AutK(H) we define an

automorphism a<¿, of A = C(X,K(H)) by a<t>(f)(x) = 4>(x)(f(x)). Then the map
<f> —> a<f, induces an isomorphism of the group [X, Aut K(H)] of homotopy classes

onto the group Aut c(X) A/Inn A of outer C(X)-automorphisms of A. Both groups

are isomorphic to the Cech cohomology group H2(X,Z).

PROOF. It is easy to see that <p —> a^ is a homomorphism into Autc(x)A, and

that it is surjective (see, for example, [16, Lemma 1.6]).  A simple application of
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[16, Proposition 2.6] shows that when <f> is homotopic to the identity a^ is inner,

and the converse follows from the contractibility of U(H) [5, 10.8.2], so the map is

an isomorphism as claimed. The last statement follows from [16, Theorem 2.1]—

the separability hypotheses of [16] are not necessary in case of the trivial field

E = XxK(H).    a

PROPOSITION 3.5. Let X be a compact Hausdorff space, let H be a Hubert

space, and let A = C(S1 x X,K(H)). Let (p: X —> AutÄ"(iz") be continuous and

define ß: Z —> Aut A by ßn(f)(z,x) — <j)(x)n(f(z,x)). Let Z act on R, and hence

also on fi = R x X, by translation, and let q be the obvious identification of fi/Z

with S1 x X = Â.
(1) The algebra GG(R x X, A)a/I is isomorphic to

C* = {fG G([0,1] x X, K(H)) : /(l, x) = <p(x)(f(0, *))}.

In particular, GC(û,A)a/I = A if and only if (j) is homotopic to the identity.

(2) Suppose H is infinite-dimensional. Then GC(û,A)a/I is isomorphic to A

if and only if ßi is an inner automorphism.

PROOF. (2) follows from (1) and Lemma 3.4, so we concentrate on (1). It is

routine to check that the map * defined by

(*f)(t,x) = f(t,x)(p(t,x))

is a homomorphism of GG(R x X, A)a onto G<¿, and we have ker $ = 1, so * gives

the required isomorphism. It is easy to construct an isomorphism of 0$ with A

from a homotopy joining <j> to id, so it remains to construct a homotopy from an

isomorphism $ : G^ —► C,¿ — A. By composing with a suitable automorphism of A

we may assume that $ induces the identity homeomorphism on S1 x X = 0$ — A.

Thus we can define isomorphisms $t,x : K(H) —* K(H) by

*t,x{f{t,x)) = {*f){t,x)    for/6G¿;

note that i, x —» $t,x is continuous since $ maps continuous functions to continuous

functions. Then t, x —> $¿~x ° ^o,x ¡s a homotopy joining id to cp.    D

COROLLARY 3.6. Let X be a compact metric space for which H2(X,Z) ^ 0,

let A = C(S1 x X,K(H)) where H is infinite-dimensional and separable, and let

p:RxX—* S1 xX = Abe the usual quotient map. Then there is an automorphism

group /3: Z —> Autc(gixx)A such that the crossed product Co(RxX,K(H))xp.0Z

is not strongly Morita equivalent to A.

PROOF. By Lemma 3.4 there is a map <p: X —> AutA'(iï) which is not ho-

motopic to a constant. If we define ß as in the proposition then GC(û,A)a/I is

not isomorphic to A. It is easy to see that both are separable continuous trace

G*-algebras given by locally trivial fields of elementary G*-algebras, and it follows

that their Dixmier-Douady classes are different [5, 10.8.4]. But this is not possible

if the algebras are strongly Morita equivalent (see, for example, [1, §2.7]), so the

result follows from Theorem 2.5.    D

Although Corollary 3.6 suggests that we cannot expect general results relat-

ing A to GG(fi,A)a/7, in fact they are always quite closely related, as the next

proposition shows. Before stating it, we note that by Lemma 3.1 the map

r:Prim(GG(fi,A)a)^fi/G
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defined by r(kerM(x,7r)) = G.x is continuous, and we can therefore form the pull-

backs p*(GC(û,A)a) and p*(GC(û,A)a/I). It is routine to check that the action

of Gh(fi/G) on GG(fi/A)a defined by r and the Dauns-Hofmann theorem is the

natural one given by fb(x) = f(G.x)b(x).

PROPOSITION 3.7.   Let A, G, fi, p, q, ß, a be as in Theorem 2.5.

(1) The map $: Co(fi) ©GG(fi, A)a —> Go(fi, A) defined on elementary tensors

by $(0®6)(x) = <p(x)b(x) induces an isomorphism ofp*(GC(Û,A)a) onto Go(fi, A).

(2) The algebra p* (GC(Û, A)a /1) is isomorphic top*A.

PROOF. (1) The map Í» is the tensor product of the embeddings of Co(fi) and

GG(fi,A)a in M(Go(fi, A)), and so extends to a well-defined homomorphism on

the C*-algebraic tensor product. In fact $ kills the ideal Ic(n/G) and so defines

a homomorphism # of the quotient p*(GG(fi,A)a) into Co(fi,A). A standard

partition of unity argument shows that we can approximate arbitrary elements of

the form <j> ® a G Go(fi) ® A by members of the range of $, so ^ is surjective. If ex

denotes evaluation at x G fi, and n G Ä, then

£x ® 7T I $ I ̂  4>i ® bt J J = ex ® M(x, tt) I J2 & ® bi 1 •

If y = s.x, then ker M(y, tt) = ker M (x, s-1 .tt), so we have

ker $ C P){ker(£x ® M(y, tt)) : x, y G fi, tt G Â and G.x = G.y}.

But by Lemma 1.1 the right-hand side is just Ic(Ci/G), so ^f is an isomorphism.

(2) Let B = GG(fi,A)a, let * be the isomorphism above, and let J be the

ideal in p*B which is the quotient of Go(fi) ® I. We shall prove that V defines an

isomorphism of p*B/J onto p*A, and then identify p*B/J with p*(B/I).

Recall that PrimB is homeomorphic to (fi x Prim A)/G, and that by Lemma

1.1, Prim p*.B is homeomorphic to

{(x,G.(y,keTTT)) G fi x (fi x Prim A)/G: G.x = G.y}.

Since (ex ® 7r) o <1> = ex 0 M(x,7r), the induced homeomorphism ^ of Primp*!?

onto fi x Prim A is given by

\£(x, G.(y, ker it)) — (x,ker(s_1.7r))    where s.y = x.

On the other hand,

1 = P|{kerM(x,7r): g(ker7r) = G.x},

and so the ideal Go(fi) ® / in Go(fi) ® B corresponds to the closed subset of fi x

Prim B given by

{(x,G.(y,kem)): g(kerTr) = G.y}.

The quotient ./ therefore; corresponds to the closed subset

{(x, (j.(y,ker tt)): G.x = G.y = g(ker7r)}

of Prim p*ZL The image of this set under 4t is

{(x,ker(.s~'.7r)): .s G G, g(kcr7r) = G.x} = {(x,ker7r): g(ker7r) = G.x}.
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However, this closed subset defines the ideal K generated by

{4>f®a-<j)®fa: <p G C0(fi), / G C0(fi/G), a G A},

so we deduce that ^ maps J onto K and hence induces an isomorphism of p*B/J

onto p*A. The identification oip*B/J with p*(B/I) follows from a general lemma:

LEMMA 3.8. Let B,C be C*-algebras with C nuclear. Let X be a locally com-

pact Hausdorff space and suppose there are continuous maps p: Prim G —► X and

r: Primo —► X. Let I be an ideal in B and let J be the ideal in C ®c(X) B which

is the image of C ® I. Then

(C®c(x)B)IJ = C®c(x)B/I.

In fact, J is isomorphic to C ®c(X) I-

PROOF. Let F be the closed subset of Primo corresponding to J, so that

Prim(D//) can be identified with F, and C(X) acts on B/I by composition with

r\E : F —* X. Let L, K be the ideals such that

C®c(x)R = (C®R)/L   and   C ®c(x] R/I = [G® B/I\/K.

Then J = (C ® I)/[L n (G ® /)]. Using [5, 1.8.4] we have

[(G ® B)/L]/J S [(G ® B)/L]/[(C ® I + L)/L]

^(G®D)/(G®/ + L)

ja [(G ® ß)/(G ® 7)]/[(G ® J + L)/(C ® /)]

S \(C ® B)/(G ® I)]/[L/L n (G ® /)].

Thus we need to show that the isomorphism of G ® B/C ® 7 onto G ® D/J carries

L/[Ln(G®/)] onto K. However, since G is nuclear, both Prim(G®ß/G®7) and

Prim(G ® B/I) can be naturally identified with (PrimG) x F [2, Theorem 3.3].

Moreover, the isomorphism in question preserves these identifications, and hence

it will be enough to check that the ideals correspond to the same closed subset of

(PrimC) x F.

By Lemma 1.1, L corresponds to the subset

A = {(ker7T,kerp): it GC, pG B and p(ker7r) = r(kerp)}

of PrimC x Primß, so L/[L (~l (G ® /)] is given by the intersection of A with

(Prim G) x F. But as the action of G(X) on B/I is given by the restriction of r to

F, Lemma 1.1 shows that K corresponds to the same set. This establishes the main

part of the lemma. To see that J = C ®c(x) I, we need to show that if we regard

G ® I as an ideal in G ® B, then L n (C ® /) is the ideal generated by elements of

the form cf ® b - c ® fb for b G I. Again this follows from Lemma 1.1. D

This completes the proof of Proposition 3.7.    D

COROLLARY 3.9. Let G be a locally compact group, suppose G acts freely on a

locally compact space fi so that compact subsets are wandering, and letp: fi —•> fi/G

be the orbit map. Let A be a continuous trace C* -algebra with spectrum homeomor-

phic to fi/G and suppose ß : G —» Aut A consists of automorphisms which preserve

the resulting action ofCo(û/G). Then p*A xp.0G is a continuous trace C*-algebra
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whose Dixmier-Douady class satisfies

p*(8(p*Axp.gG)) = p*(8(A)).

It need not be the case that 8(p* A x G) = 8(A).

PROOF. By Proposition 3.1 the spectrum of GG(fi,A)" is homeomorphic to

fi/G x fi/G and, in particular, is Hausdorff. Let M(x,7r) be a fixed irreducible

representation and choose p G A such that p(p) is a rank one projection for p near

7T in A. Let 6 G GC(Û, A)a satisfy b* = b and 6(x) = p and choose a neighbourhood

N of x such that \\b(y) - p\\ < 1/4 for yGN. Let f G Cb(C) satisfy

Í1    if|z-l|<l/4,
}[>     JO   if |*| < 1/4.

By standard properties of the functional calculus we have

M(y,p)(f(b)) = p(f(b)(y)) = p(f(b(y))) = f(p(b(y))) = f(M(y,p)(b)),

so M(y, p)(f(b)) is a rank one projection for y G N and p near 7r. Thus GG(fi, A)a

and its quotient GC(û,A)a/I have continuous trace. By Theorem 2.5 p*A xv-0 G

is strongly Morita equivalent to GG(fi, A)a/I, so it too has continuous trace (see,

for example, [25, Theorem 2.15]) and its Dixmier-Douady class is equal to that of

GG(fi, A)a/I [1, §2.7]. It now follows from Propositions 1.4 and 3.7 that

p*(8(A)) = S(p'A) = 8(p*GC(Û, A)alI) = p*(8(p*A xp.0 G)).

The last statement is illustrated by Corollary 3.6.    G

This corollary suggests an intriguing problem: is it possible to compute

8(p* A xp.0G) in terms of topological data associated with p, A and ß! At least for

abelian G and locally unitary ß there is a complete formula, which will be discussed

in a forthcoming article by the first author and Jon Rosenberg [19].

4. Some twisted transformation group G*-algebras. Let G be a separable

locally compact group, p: !l->Ta locally trivial principal G-bundle and uj: G x

G —> T a multiplier. We shall compute the twisted crossed product C*(G, û,u) up

to strong Morita equivalence. To state our result we need to construct a pairing

.5: H2(G,T) x Hl(T,Q) -» H3(T,Z);

here the first group is the (Moore cohomology) group of equivalence classes of

multipliers [14], and the iï's are Cech cohomology groups.

We start with the natural pairing

ß: Hl(G,PU) x Hl(T,g) -» H\T,PU),

where H1(G, PU) is the collection of projective representations 7r : G —► PU (H) for

some Hubert space H: a class c G Hl(T, Q) can be realized as a cocycle Ay : Nj —>

G relative to some open cover {N} of T, and then ß(ir, c) is the class of the cocycle

ir o Xl3: Nj —> PU. We then define <5(7r,c) to be the image of ß(ir,c) under the

composition
Hl(T, PU) ^ H2(T, S) ^ H3(T, Z),

where Ai, A2 are the coboundary maps corresponding to the short exact sequences

O^S-^U^PU^O,       0 ̂  Z ^ Jc exp-in S -> 0.
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(Note that A2 is an isomorphism since Z is fine, and Ai is a bijection if H is infinite

dimensional [7, Lemme 22].) A well-known result of Mackey implies that for each

7T G H1 (G, PU) there is a multiplier w on G and an w-representation V : G —► U(H)

such that w = AdV, and u,V are unique up to equivalence. Simple calculations

show that r5(7T, c) depends only on the class of to in H2(G, T), and in fact is repre-

sented in H2(T, S) by the cocycle {N,p-ijk}, where pijk(t) = oj(Xij(t), Xjk(t)). It

therefore makes sense to define our pairing by

8(oj,c) = <5(AdV, c)    where V : G —» U(H) is an w-representation.

If fi is a locally trivial principal G-bundle over T corresponding to the class c G

HX(T, Q), we also write 8(u>, fi) for 8(u, c). Routine calculations show that for fixed

fi the map w —► 8(oj, fi) is a homomorphism of H2(G, T) into H3(T, Z).

THEOREM 4.1. Let G be a separable locally compact group, ui G H2(G,T),

and fi a locally trivial principal G-bundle over a locally compact space T. Then

C*(G,û,cj) is a continuous trace C*-algebra with spectrum T and Dixmier-Douady

class 8(uJ, fi).

For the proof we need a couple of lemmas. The first is Lemma 3 in Wassermann's

thesis [24, p. 19].

LEMMA 4.2. Let (G,A,a) be a C*-dynamical system, w G H2(G,T) and sup-

pose V : G —► U(H) is a nondegenerate ui-representation.  Then

C*(G,A,uj) ® K(H) = [A ® K(H)] xa®Adv G.

LEMMA 4.3. Let V: G —> U(H) be an ¿¿-representation and let fi —> T be a

locally trivial principal G-bundle.  Then

B = {fG GC(Û,K(H)) : f(gx) = AdV(g)(f(x)) for g G G, x G fi}

is  a continuous trace C*-algebra with spectrum T  and Dixmier-Douady class

8(û,û).

PROOF. Let fi be given by the cocycle A¿¿ : Nj —> G, so we can regard fi as the

disjoint union (JNi x G modulo the equivalence relation which identifies (t,g) G

N x G with (t,gXij(t)) G Nj x G. We write [t,g]i for the class of (t,g) G N x G

in fi. Then 8(w,Û) is represented in HX(T, PU) by {N,AdV o Xi3}, so that

f
A = I {fi} G l[Cb(NuK(H)): fi(t) - AdV(Xtj(t))f3(t) for Í G Nl3

is a continuous trace G*-algebra with 8(A) = 8(UJ,Û). We now define $: B —> A

(*/)i(í) = /([í,e]í);

on Nj we have

(*f)i(t) = f([t,eU) = f([t,Xi3(t)]3) = AdV(Xl3(t))f([t,e]3)

= AdV(Xl3(t))[(^f)j(t)],

so this does map into A. We also define $ : A —> B by

nfi}([t,9]i)=AàV(f)(fi{t));



776 IAIN RAEBURN AND D. P. WILLIAMS

routine calculations like the one two lines above show that $f{fi} is a well-defined

function on fi satisfying the appropriate condition along G-orbits, and that

ll*{/i}(Mt)ll = 11/iWII    for all g GG,

so ty{fi} belongs to GG(fi, K(H)). As * is an inverse for $ the lemma is proved.    D

PROOF OF THEOREM 4.1. Let 7 denote the action of G on G0(fi), and let V

be a nondegenerate w-representation of G on H. Then by Lemma 4.2

C*(G, fi, w) ® K(H) s [Go(fi) 0 K(H)\ xl8AdV G

By Theorem 2.2 this crossed product is strongly Morita equivalent to

GC(fi,K(H))1®AdV, which by Lemma 4.3 has continuous trace and the right

Dixmier-Douady class.    D

REMARK. Theorem 5 of [24] is this result for G a compact Lie group, together

with the observation that in this case w —> 8(uj, fi) can also be realised as the

composition

H2(G, T) -» H3(G, Z) -> H3(BG, Z) -* H3(T, Z).
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