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FINITE CODIMENSIONAL IDEALS IN FUNCTION ALGEBRAS

BY

KRZYSZTOF JAROSZ

ABSTRACT. Assume S is a compact, metric space and let M be a finite

codimensional closed subspace of a complex space C(S). In this paper we

prove that if each element from M has at least k zeros in S, then for some

81,.Sfc 6 S, M C {/ 6 C(S): f(Sl) = ■■■ = f(sk) = 0}.

0. Let M be a subspace of codimension 1 in a commutative, complex Banach

algebra with unit. A. M. Gleason [4] and independently J. P. Kahane and W.

Zelazko [5] proved that M is an ideal if and only if M consists of noninvertible

elements or equivalently if and only if each element x in M belongs to an ideal Ix

which may depend on x.

In [8 and 9] C. R. Warner and R. Whitley considered the following more general

problem:

Problem 1. Let A be a commutative, complex Banach algebra with unit and let

M be a closed n codimensional subspace of A. Assume that every element from M

belongs to at least n different maximal ideals. Is M then an ideal?

They showed that the answer to the above problem is positive if A is any of

LX(R) and C(S) where S is a compact subset of R, and they also gave simple

examples showing that this does not hold in general (e.g.: S a compact Hausdorff

space such that there is an So G S with {so} not a G s set and M any subspace of

{/eG(S):/(30)=0}).
Chang-Pao Chen [2] generalized the above results to some other commutative

Banach algebras.

The original Gleason-Kahane-Zelazko work has also been extended in another

direction by B. Aupetit [1], S. Kowalski and Z. Slodkowski [6], and by M. Roitman

andY. Sternfeld [7].
C. R. Warner and R. Whitley asked whether the answer to the above problem

is positive for A = C(D) where D is a disc.

In this paper we give a positive answer to this problem for A = C(S), S being

an arbitrary metric space (Theorem 1). We also consider the following problem:

Problem 2. Let A be a commutative complex Banach algebra with unit and let

M be a finite codimensional subspace of A consisting of noninvertible elements. Is

M contained in some maximal ideal of A?

We prove that the answer to the second problem is positive for A — C(S), for

S any compact, Hausdorff space (Theorem 2). The author does not know any

function algebra A which fails to possess the property described in Problem 2.

In the paper we consider only complex algebras. Simple examples prove that in

the real case the original Gleason-Kahane-Zelazko theorem does not work [3].
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1. THEOREM 1. Let S be a compact, Hausdorff space such that each point of

S is a G s set, let M be a closed finite codimensional subspace ofC(S) and let k be

a positive integer. Suppose that each element from M has at least k different zeros

in S.  Then there are k different elements si,... ,sk in S such that

Mc{feC(S):f(s1) = --. = f(sk) = 0}.

The theorem answers Problem 1 for A = C(S) with S a metric, compact space:

COROLLARY. Let S be a compact, Hausdorff space such that each point of S is

a Gg set, let M be a closed subspace ofC(S) with codim(M) — k < +00. Suppose

that each element from M has at least k different zeros in S. Then M is an ideal

of the algebra C(S).

PROOF. By Theorem 1 there are k different elements si,... ,sk in S such that

M C M' = {/ G C(S) : f(si) = ■■■ = f(sk) = 0}.

We have codim(M) = k = codim(M') and hence M = M'.

As the main step in proving Theorem 1 we prove the following theorem, valid

for any compact, Hausdorff space S.

THEOREM 2. Let S be a compact, Hausdorff space and let M be a finite codi-

mensional subspace of C(S). Suppose that each element from M has at least one

zero in S.  Then there is an sq in S such that

Mc{fGC(S):f(s0)=0}.

PROOF OF THEOREM 2. Without loss of generality we assume that M is a

closed subspace of C(S). For a compact subset K of the complex plane we denote

by P(K) the linear space of all restrictions to K of polynomials; if K is an infinite

set we define the norm on P(K) by |p| = max2£^ |p(2)|> and by P(K) we denote

the completion of P(K) in this norm. We regard P(K) as a closed subalgebra of

C(K).

LEMMA 1. Let K be a compact subset of the real line in the complex plane and

let B be a linear subspace of P(K). Assume that there is a po in B with p0(z) 7^ 0

for z G K and that any element from B has at least one zero in K. Then there is

a zo G K such that

Bc{pGP(K):p(zo)=0}.

PROOF. It is sufficient to prove that there is a common zero for any finite subset

of B, so without loss of generality we can assume that B is finite dimensional and

we let {po, Pi,..., Pm} be a linear basis of B. Next we can assume that there is an

open, connected, bounded neighbourhood G of K in C such that mizec \p'o(z)\ ^ *•

We define an entire function F : C x Cm —> C by

m

F(z,w) - po(z) + ^2,WjPj(z)    where w = (tui,... ,wm).

3 = 1

We assume that there is no common zero for B and we define, by induction

two sequences: {Uj}'ß=0 of open, connected subsets of Cm, and {gj}"jL0 °f analytic

functions defined on Uj, respectively, such that

0^Tjj+iCUj    and    gj(U3+i)r\K = 0     for .7 = 0,1,..,
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and

F(g3(w),w) = 0    for j = 0,1,... and w G Uj

and

g3(Uj) n gi(Uj) = 0     for any i < j.

Let Vq = {w G Cm: YIj=i \wj\suPzeG \p'jiz)\ < !}• By our assumption for any

tu 6 Cm there is a z in K such that F(.z, w) = 0 and for any (z, w) G G x Vo we

have dF(z, w)/dz ^ 0, so by the rank theorem there is an open, nonvoid, connected

subset Uo of Vo and an analytic function go'. Uo —> G such that F((/o(w),w) = 0

for w; G Uo-

Suppose we have defined Uj and g3 for j = 0,1,... ,p. If gp were constant then

<7p(u;) would be a common zero for B, so gp is a nonconstant analytic function

defined on a connected set; so gp(Up) is open. Hence there is an open, nonvoid set

Vp+i such that Vp+i C Up and gp(Vp+i) C\K — 0. In the same manner as before

we prove that there is an open, nonvoid, connected subset Up+i of Vp+i and an

analytic function gp+i : Up+i —» G such that F(gp+i(w), w) = 0 for w G Up+i and

gp+i(xv) G K for some w G <7p+i. Taking Up+i smaller if necessary we can assume

that
p

gp+i(Up+i)n\Jg3(Up+i)=0.
j=o

Let w = (wi,... ,wm) G Ç^LqUj.  The function z h-> F(z,w) is a polynomial

which has infinitely many different zeros:  go(uj), gi(w),... in G, so it is the zero

function, which proves that po is a linear combination of pi,... ,pm and contradicts

the fact that {po,Pi, • • • ,pm} is a linear basis of B.

LEMMA 2. Let K be a compact subset of the real line in the complex plane and

let M be a finite codimensional subspace ofC(K). Suppose that each element from

M has at least one zero in K.  Then there is a zqG K such that

Mc{fGC(K):f(zo)=0}.

PROOF. Without loss of generality we can assume that M is a closed subspace

of C(K) and, since the lemma is trivial for K being a finite set, we can assume

that K is an infinite subset of the complex plane. Put Mo = P(K) fl M. Since

P(K) = C(K) and M is a finite codimensional closed subpsace of C(K), then Mo

is a finite codimensional closed subspace of P(K) and Mo is dense in M. To end

the proof it is sufficient to show that Mo has a common zero in K. Put

n = max{j G N: Vp G M0 3z G K p^(z) = 0}.

Since Mo consists of polynomials evidently n < oo. By Lemma 1 there is a zo G K

such that

{pW:peMo}c{p€P(K):p(zo) = 0}.

Assume n > 1. Mo is a finite codimensional closed subspace of the normed space

P(K) which is contained in the kernel of a discontinuous functional P(K) 9pi-t

p'nH2o)i which is impossible. Therefore n = 0 and this proves

Moc{pGP(K):p(zo)=0}.

LEMMA 3. Let p be o finite, positive, Borel measure on a compact subset of

the Euclidean space Rn. For any subspace E o/Rn we define a measure pB on E
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by pe(B) = M(7Tg (B)) for any Borel subset B of E where tte is the orthogonal

projection from Rn onto E. Assume that for every one dimensional subspace E of

R" the measure pe has at least one atom.  Then p has at least one atom.

PROOF. We prove the lemma by induction. It is trivial for n = 1. Assume

that it is true for n — 1 but not for n and let p be as in the lemma. Fix ann-1

dimensional subspace Eo of R" and denote po = Me0- For any one dimensional

subspace E of Eo the measure (po)e — Pe has at least one atom so by the induction

hypothesis po has an atom. Thus we have shown that for any n — 1 dimensional

subspace Eo of R" the measure pe0 has an atom. By the definition of pe this means

that for any nonzero vector v in R™ there is a segment I in R™ parallel to v and

such that p(l) > 0. Hence there is an uncountable family A of pairwise nonparallel

segments in R", each of positive /¿-measure. There is an infinite subfamily Ao of A

such that each segment in Ao has /¿-measure greater than some positive constant

c. Assuming that p has no atoms, we get that the measure of the common part

of any two elements of Ao is zero so (J Ao contains a subset of infinite /¿-measure

which contradicts the assumption p is finite.

LEMMA 4. Let S be a compact subset of the Euclidean space R" and let M be

a finite codimensional closed subspace of C(S). Assume that any f in M has at

least one zero in S.  Then there is an so G S such that

Mc{/eG(S):/(so)=0}.

PROOF. Let measures pi, ■ ■ ■ ,pm on S constitute a linear basis of (C(S)/M)*.

Put po = 5I£li \Pi\- Let E be a one dimensional subspace of R"; by an appropriate

choice of coordinates we can assume E is the first coordinate axis. Put

Me = {/ G M: f depends only on the first coordinate}.

Me can be regarded as a finite codimensional subspace of C(tte(S)). Since

each element of Me has at least one zero in tte(S) C R by Lemma 2, a linear

combination of the measures (pí)e for i = 1,2,..., m gives a Dirac measure; so

at least one of the measures (pí)e has an atom and consequently (po)e has an

atom. Since E was an arbitrary one dimensional subspace of R", Lemma 3 ensures

that po, hence at least one of the measures /¿i,...,/zm, has an atom. We can

assume that /zi = 8o + v, ¡^({0}) = 0 and /¿¿({0}) = 0 for i = 2,... , m, where

¿o is a Dirac measure concentrated at the point 0 = {0,... ,0} G S C Rn. Put

I = {s = (si,...,sn) G S: si = 0}.

For any 0 < í < oo let <pt : R™ -> R" be defined by

<Pt(si,s2,...,sn) = I í]T]|Sj| +si,s2,..-,sn I .

Any such map is an automorphism of R" and <Pt,(I) H £>t2(-0 = {0} if ¿i i1 ¿2-

Hence there is io G R+ such that ]p\(I) = 0 where p = \u\ + \pi\ + • ■ • 4- |/tm|-

On the other hand any automorphism ip of Rn defines an isometric isomorphism

of M C C(S) onto Mv = {f o ip; f g M} C Cfc-^S)). So by applying an
automorphism <pto (it is just a curvilinear coordinate) we can assume that

(1) |i/|(J) = 0   and    ]pi\(I) = 0   for * = 2,.. .,m.
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We end the proof of the lemma by an induction with respect to m = codim(M).

Put

M' = {f€ C(S) : ia(,f) = 0 for i = 2,..., m}.

M' is an m — 1 codimensional subspace of C(S) so we have two possibilities:

1. Any element from M' has at least one zero in S.

2. There is an /o in M' without zeros in S.

If the first possibility holds, then by the induction assumption there is an s0 £

S such that M C M' C {/ G C(S): f(so) = 0}, so we can restrict ourselves

to examining the second possibility. We assume that it prevails and deduce a

contradiction. There is no loss of generality in supposing that v is not contained

in the linear span of /¿2>- • • ,Pm (otherwise M C {/ G C(S): f(0) = 0}). Then

there is a go G M' with v(go) i1 0 and we can assume \\go\\ < infs€s |/o(s)|-

Moreover, in the case that v(fo) ^ 0 we can require ||go|| to be small enough that

1^(90)1 < l^/o)!- Therefore in any case we shall have v(go + fo) 7^ 0. Put ho —

fo + 9o£ M'n(C(S))~1. Notice that by putting {f/h0: f G M}, {f/h0: f G M'}
and hov, hoPi for i — 2,..., m in the place of M, M', u and p¿ for t = 2,..., m,

respectively, we can assume without loss of generality that

1 e M'    and    u(l) ¿ 0.

Let u be an orthogonal projection on the first coordinate, and put as before Me =

{/ G M: f depends only on the first coordinate}. By Lemma 2 there is a linear

combination

m

(2) A1r50 + A1-(l/)£; + ^A¿(/iI)E = r5t

¿=2

for some t G tt(S).

We have again two possibilities:

1. A1=0,

2. Ai ¿0.
If the first one holds, then upon applying (2) to the function 1 G M' we get the

contradiction
m m

0 = 53 X%pi(l) =^2Xi(fii)E(l) = 6t(l) = 1.
i=1 i=2

If the second possibility holds, then from evaluating (2) at {0} we get via (1) that

t = 0 and Ai = 1, and so
m

Y^X'(^)e = -He-
¿=2

Then applying, as before, the above to the function 1, we get

m

0 = X) Mw)E(i) = -HE(i) = -1/(1) ¿ 0.

The contradictions above end the proof of the lemma and now we are ready to end

the proof of Theorem 2. We can assume 5 is a closed subset of some Tichonov cube

[0, l]1, where J is a set of indices. For any finite subset Io of I let

M(Iq) = {f G M : f depends only on the coordinates from I0}
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and

S(Io) = {s G S: V/ G M(I0) f(s) = 0}.

Let Ii,... ,Im be any finite subsets of / and put Io — U¿^i h- We have S(Io) C

D^Li S(U). By Lemma 4 the set S(Iq) is nonvoid and evidently compact. Hence

there is an so G {^\{S(Io): Io C I,caxd(Io) < oo}. Notice that since C(S) =

{/ G C(S) : f depends on a finite number of coordinates only} is a dense subspace

of C(S) and M is a closed subspace of finite codimension, C(S) nM isa dense

subspace of M. But we have C(S) H M c {/ G C(S) : f(s0) - 0} and hence

Mc{/GG(S):/(so) = 0}.
PROOF OF THEOREM 1. Let S and M be as in the theorem and let Si,..., s; G

S be all of the common zeros of M. By Theorem 2, I > 1. Assume / < k and put

n = codim(M). We have M % {/ G C(S): f(si) = ■■■ = f(st) = 0} so n > I.
Let pi — 8s¡,...,pi = 8Sl together with /¿;+i,... ,p„ G M1- be a basis in the

n-dimensional space [C(S)/M]* — Mx. We can replace each pj by

i

Mj -^Pjiisi})^        (j = l + l,...,n)

¿=i

and thereby assume without loss of generality that

n

(3) 5Z  M({«i."-.«l}) = 0.
j=l+\

Form

M' = {/ G G(S) : p3(f) = 0 for j = / + 1,... ,n).

If s were a common zero of M', then 8S would be in the linear span of {pi+i,... ,pn}

and then by (3), s G S\{si,... ,s;}. Since M' D M, s would be an (/ + l)st common

zero of M, contrary to the definition of L Hence no such s exists, so by Theorem 2

there is some invertible function /o in M'. Putting {f/fo '■ f G M} in place of M we

can assume, as in the proof of Lemma 4, that /o = 1. The measures pi+i,... ,pn

are linearly independent elements of the dual space A = {/ G C(S) : /(s¿) = 0 for

i = 1,..., /}, so there are fi+i, ...,/„ in A such that

Pi(fi) = 1    íox i = I + 1, ■. ■ ,n

and

Pi(fj) = 0    for t ^ j; i,j=l + l,...,n.

Put K = max{\\fj\\ : I + 1 < j < n}, fix e > 0 with neK < 1 and let V C S be an
open neighbourhood of the set {si,...,s¡} such that

£ \ßi\(V)<e.
3=1+1

By our assumption {si,...,s¡} is a G¿ subset of S so there is a real valued,

continuous function go on S such that

Qo1^) - {si,.-.,si},        £ft)|s\v=0,

and
n

Q<go(s)<l-£  J2   \Ma)\    iorsGV\{si,...,Sl}.
]=l+i
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Put
n

ho = 1 - go +   £  V<A9o)fj-
3=1+1

We have ho(s3) = 0 for j — 1,... ,1 and (recalling that 1 G M') Pj(h0) = 0 for

j = I +■ 1,..., n, so ho G M. To get a contradiction it is sufficient now to show that

ho has only / zeros in S, namely st..., s¡. We have

n

IM*)I>1-   E   hl(^)||/ill>0   forsGSW
3=1+1

and
n

IM*)|>l-0ö(s)-e £  l/»l>0   tor s G V\{si,..., Sl}.

3=1+1

2.
REMARK. The assumption in Problem 2 that M is of finite codimension is

essential, as the following example, due to W. Zelazko, shows: Let A be a disc

algebra, i.e., A = P(D) where D is the closed unit disc in the complex plane and

put M = spanjßi, #2} where Si, R<i are nonconstant Blaschke factors with disjoint

zero sets. By the Rouché Theorem any element from M has a zero in D, but M is

not contained in any maximal ideal. Since A can be isometrically embedded into

G([0,1]), M can be also regarded as a two dimensional subspace of G([0,1]).
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