FINITE CODIMENSIONAL IDEALS IN FUNCTION ALGEBRAS

BY KRZYSZTOF JAROSZ

ABSTRACT. Assume S is a compact, metric space and let M be a finite codimensional closed subspace of a complex space C(S). In this paper we prove that if each element from M has at least k zeros in S, then for some $s_1, \ldots, s_k \in S$, $M \subseteq \{f \in C(S): f(s_1) = \cdots = f(s_k) = 0\}$.

0. Let M be a subspace of codimension 1 in a commutative, complex Banach algebra with unit. A. M. Gleason [4] and independently J. P. Kahane and W. Żelazko [5] proved that M is an ideal if and only if M consists of noninvertible elements or equivalently if and only if each element x in M belongs to an ideal I_x which may depend on x.

In [8 and 9] C. R. Warner and R. Whitley considered the following more general problem:

Problem 1. Let A be a commutative, complex Banach algebra with unit and let M be a closed n codimensional subspace of A. Assume that every element from M belongs to at least n different maximal ideals. Is M then an ideal?

They showed that the answer to the above problem is positive if A is any of $L^1(\mathbf{R})$ and C(S) where S is a compact subset of \mathbf{R} , and they also gave simple examples showing that this does not hold in general (e.g.: S a compact Hausdorff space such that there is an $s_0 \in S$ with $\{s_0\}$ not a G_δ set and M any subspace of $\{f \in C(S): f(s_0) = 0\}$).

Chang-Pao Chen [2] generalized the above results to some other commutative Banach algebras.

The original Gleason-Kahane-Żelazko work has also been extended in another direction by B. Aupetit [1], S. Kowalski and Z. Słodkowski [6], and by M. Roitman and Y. Sternfeld [7].

C. R. Warner and R. Whitley asked whether the answer to the above problem is positive for A = C(D) where D is a disc.

In this paper we give a positive answer to this problem for A = C(S), S being an arbitrary metric space (Theorem 1). We also consider the following problem:

Problem 2. Let A be a commutative complex Banach algebra with unit and let M be a finite codimensional subspace of A consisting of noninvertible elements. Is M contained in some maximal ideal of A?

We prove that the answer to the second problem is positive for A = C(S), for S any compact, Hausdorff space (Theorem 2). The author does not know any function algebra A which fails to possess the property described in Problem 2.

In the paper we consider only complex algebras. Simple examples prove that in the real case the original Gleason-Kahane-Żelazko theorem does not work [3].

1. THEOREM 1. Let S be a compact, Hausdorff space such that each point of S is a G_{δ} set, let M be a closed finite codimensional subspace of C(S) and let k be a positive integer. Suppose that each element from M has at least k different zeros in S. Then there are k different elements s_1, \ldots, s_k in S such that

$$M \subset \{f \in C(S) : f(s_1) = \cdots = f(s_k) = 0\}.$$

The theorem answers Problem 1 for A = C(S) with S a metric, compact space:

COROLLARY. Let S be a compact, Hausdorff space such that each point of S is a G_{δ} set, let M be a closed subspace of C(S) with $\operatorname{codim}(M) = k < +\infty$. Suppose that each element from M has at least k different zeros in S. Then M is an ideal of the algebra C(S).

PROOF. By Theorem 1 there are k different elements s_1, \ldots, s_k in S such that

$$M \subset M' = \{ f \in C(S) \colon f(s_1) = \cdots = f(s_k) = 0 \}.$$

We have $\operatorname{codim}(M) = k = \operatorname{codim}(M')$ and hence M = M'.

As the main step in proving Theorem 1 we prove the following theorem, valid for any compact, Hausdorff space S.

THEOREM 2. Let S be a compact, Hausdorff space and let M be a finite codimensional subspace of C(S). Suppose that each element from M has at least one zero in S. Then there is an s_0 in S such that

$$M \subset \{ f \in C(S) \colon f(s_0) = 0 \}.$$

PROOF OF THEOREM 2. Without loss of generality we assume that M is a closed subspace of C(S). For a compact subset K of the complex plane we denote by $\mathcal{P}(K)$ the linear space of all restrictions to K of polynomials; if K is an infinite set we define the norm on $\mathcal{P}(K)$ by $|p| = \max_{z \in K} |p(z)|$, and by P(K) we denote the completion of $\mathcal{P}(K)$ in this norm. We regard P(K) as a closed subalgebra of C(K).

LEMMA 1. Let K be a compact subset of the real line in the complex plane and let B be a linear subspace of $\mathcal{P}(K)$. Assume that there is a p_0 in B with $p_0'(z) \neq 0$ for $z \in K$ and that any element from B has at least one zero in K. Then there is a $z_0 \in K$ such that

$$B\subset \{p\in \mathcal{P}(K)\colon p(z_0)=0\}.$$

PROOF. It is sufficient to prove that there is a common zero for any finite subset of B, so without loss of generality we can assume that B is finite dimensional and we let $\{p_0, p_1, \ldots, p_m\}$ be a linear basis of B. Next we can assume that there is an open, connected, bounded neighbourhood G of K in \mathbb{C} such that $\inf_{z \in G} |p'_0(z)| \geq 1$. We define an entire function $F \colon \mathbb{C} \times \mathbb{C}^m \to \mathbb{C}$ by

$$F(z, w) = p_0(z) + \sum_{j=1}^{m} w_j p_j(z)$$
 where $w = (w_1, \dots, w_m)$.

We assume that there is no common zero for B and we define, by induction two sequences: $\{U_j\}_{j=0}^{\infty}$ of open, connected subsets of \mathbb{C}^m , and $\{g_j\}_{j=0}^{\infty}$ of analytic functions defined on U_j , respectively, such that

$$\emptyset \neq \overline{U}_{j+1} \subset U_j$$
 and $g_j(U_{j+1}) \cap K = \emptyset$ for $j = 0, 1, ...$

and

$$F(g_j(w), w) = 0$$
 for $j = 0, 1, \ldots$ and $w \in U_j$

and

$$g_j(U_j) \cap g_i(U_j) = \emptyset$$
 for any $i < j$.

Let $V_0 = \{w \in \mathbf{C}^m : \sum_{j=1}^m |w_j| \sup_{z \in G} |p_j'(z)| < 1\}$. By our assumption for any $w \in \mathbf{C}^m$ there is a z in K such that F(z,w) = 0 and for any $(z,w) \in G \times V_0$ we have $\partial F(z,w)/\partial z \neq 0$, so by the rank theorem there is an open, nonvoid, connected subset U_0 of V_0 and an analytic function $g_0 : U_0 \to G$ such that $F(g_0(w),w) = 0$ for $w \in U_0$.

Suppose we have defined U_j and g_j for $j=0,1,\ldots,p$. If g_p were constant then $g_p(w)$ would be a common zero for B, so g_p is a nonconstant analytic function defined on a connected set; so $g_p(U_p)$ is open. Hence there is an open, nonvoid set V_{p+1} such that $\overline{V}_{p+1}\subset U_p$ and $g_p(\overline{V}_{p+1})\cap K=\varnothing$. In the same manner as before we prove that there is an open, nonvoid, connected subset U_{p+1} of V_{p+1} and an analytic function $g_{p+1}\colon U_{p+1}\to G$ such that $F(g_{p+1}(w),w)=0$ for $w\in U_{p+1}$ and $g_{p+1}(w)\in K$ for some $w\in U_{p+1}$. Taking U_{p+1} smaller if necessary we can assume that

$$g_{p+1}(U_{p+1}) \cap \bigcup_{j=0}^{p} g_j(U_{p+1}) = \emptyset$$
.

Let $\tilde{w} = (\tilde{w}_1, \dots, \tilde{w}_m) \in \bigcap_{j=0}^{\infty} U_j$. The function $z \mapsto F(z, \tilde{w})$ is a polynomial which has infinitely many different zeros: $g_0(\tilde{w}), g_1(\tilde{w}), \dots$ in G, so it is the zero function, which proves that p_0 is a linear combination of p_1, \dots, p_m and contradicts the fact that $\{p_0, p_1, \dots, p_m\}$ is a linear basis of B.

LEMMA 2. Let K be a compact subset of the real line in the complex plane and let M be a finite codimensional subspace of C(K). Suppose that each element from M has at least one zero in K. Then there is a $z_0 \in K$ such that

$$M\subset\{f\in C(K)\colon f(z_0)=0\}.$$

PROOF. Without loss of generality we can assume that M is a closed subspace of C(K) and, since the lemma is trivial for K being a finite set, we can assume that K is an infinite subset of the complex plane. Put $M_0 = \mathcal{P}(K) \cap M$. Since P(K) = C(K) and M is a finite codimensional closed subspace of C(K), then M_0 is a finite codimensional closed subspace of P(K) and M_0 is dense in M. To end the proof it is sufficient to show that M_0 has a common zero in K. Put

$$n = \max\{j \in \mathbf{N} \colon \forall p \in M_0 \,\, \exists z \in K \,\, p^{(j)}(z) = 0\}.$$

Since M_0 consists of polynomials evidently $n < \infty$. By Lemma 1 there is a $z_0 \in K$ such that

$${p^{(n)}: p \in M_0} \subset {p \in \mathcal{P}(K): p(z_0) = 0}.$$

Assume $n \geq 1$. M_0 is a finite codimensional closed subspace of the normed space $\mathcal{P}(K)$ which is contained in the kernel of a discontinuous functional $\mathcal{P}(K) \ni p \mapsto p^{(n)}(z_0)$, which is impossible. Therefore n = 0 and this proves

$$M_0 \subset \{p \in \mathcal{P}(K) \colon p(z_0) = 0\}.$$

LEMMA 3. Let μ be a finite, positive, Borel measure on a compact subset of the Euclidean space \mathbb{R}^n . For any subspace E of \mathbb{R}^n we define a measure μ_E on E

by $\mu_E(B) = \mu(\pi_E^{-1}(B))$ for any Borel subset B of E where π_E is the orthogonal projection from \mathbf{R}^n onto E. Assume that for every one dimensional subspace E of \mathbf{R}^n the measure μ_E has at least one atom. Then μ has at least one atom.

PROOF. We prove the lemma by induction. It is trivial for n=1. Assume that it is true for n-1 but not for n and let μ be as in the lemma. Fix an n-1 dimensional subspace E_0 of \mathbf{R}^n and denote $\mu_0 = \mu_{E_0}$. For any one dimensional subspace E of E_0 the measure $(\mu_0)_E = \mu_E$ has at least one atom so by the induction hypothesis μ_0 has an atom. Thus we have shown that for any n-1 dimensional subspace E_0 of \mathbf{R}^n the measure μ_{E_0} has an atom. By the definition of μ_E this means that for any nonzero vector v in \mathbf{R}^n there is a segment l in \mathbf{R}^n parallel to v and such that $\mu(l) > 0$. Hence there is an uncountable family \mathcal{A} of pairwise nonparallel segments in \mathbf{R}^n , each of positive μ -measure. There is an infinite subfamily \mathcal{A}_0 of \mathcal{A} such that each segment in \mathcal{A}_0 has μ -measure greater than some positive constant c. Assuming that μ has no atoms, we get that the measure of the common part of any two elements of \mathcal{A}_0 is zero so $\bigcup \mathcal{A}_0$ contains a subset of infinite μ -measure which contradicts the assumption μ is finite.

LEMMA 4. Let S be a compact subset of the Euclidean space \mathbb{R}^n and let M be a finite codimensional closed subspace of C(S). Assume that any f in M has at least one zero in S. Then there is an $s_0 \in S$ such that

$$M \subset \{ f \in C(S) \colon f(s_0) = 0 \}.$$

PROOF. Let measures μ_1, \ldots, μ_m on S constitute a linear basis of $(C(S)/M)^*$. Put $\mu_0 = \sum_{i=1}^m |\mu_i|$. Let E be a one dimensional subspace of \mathbf{R}^n ; by an appropriate choice of coordinates we can assume E is the first coordinate axis. Put

$$M_E = \{ f \in M : f \text{ depends only on the first coordinate} \}.$$

 M_E can be regarded as a finite codimensional subspace of $C(\pi_E(S))$. Since each element of M_E has at least one zero in $\pi_E(S) \subset \mathbf{R}$ by Lemma 2, a linear combination of the measures $(\mu_i)_E$ for $i=1,2,\ldots,m$ gives a Dirac measure; so at least one of the measures $(\mu_i)_E$ has an atom and consequently $(\mu_0)_E$ has an atom. Since E was an arbitrary one dimensional subspace of \mathbf{R}^n , Lemma 3 ensures that μ_0 , hence at least one of the measures μ_1,\ldots,μ_m , has an atom. We can assume that $\mu_1=\delta_0+\nu,\ \nu(\{\mathbf{0}\})=0$ and $\mu_i(\{\mathbf{0}\})=0$ for $i=2,\ldots,m$, where δ_0 is a Dirac measure concentrated at the point $\mathbf{0}=\{0,\ldots,0\}\in S\subset \mathbf{R}^n$. Put $I=\{s=(s_1,\ldots,s_n)\in S: s_1=0\}$.

For any $0 \le t < \infty$ let $\varphi_t : \mathbf{R}^n \to \mathbf{R}^n$ be defined by

$$\varphi_t(s_1, s_2, \dots, s_n) = \left(t \sum_{i=2}^n |s_i| + s_1, s_2, \dots, s_n\right).$$

Any such map is an automorphism of \mathbf{R}^n and $\varphi_{t_1}(I) \cap \varphi_{t_2}(I) = \{\mathbf{0}\}$ if $t_1 \neq t_2$. Hence there is $t_0 \in \mathbf{R}^+$ such that $|\mu|(I) = 0$ where $\mu = |\nu| + |\mu_1| + \cdots + |\mu_m|$. On the other hand any automorphism φ of \mathbf{R}^n defines an isometric isomorphism of $M \subset C(S)$ onto $M_{\varphi} = \{f \circ \varphi \colon f \in M\} \subset C(\varphi^{-1}(S))$. So by applying an automorphism φ_{t_0} (it is just a curvilinear coordinate) we can assume that

(1)
$$|\nu|(I) = 0$$
 and $|\mu_i|(I) = 0$ for $i = 2, ..., m$.

We end the proof of the lemma by an induction with respect to m = codim(M). Put

$$M' = \{ f \in C(S) \colon \mu_i(f) = 0 \text{ for } i = 2, \dots, m \}.$$

M' is an m-1 codimensional subspace of C(S) so we have two possibilities:

- 1. Any element from M' has at least one zero in S.
- 2. There is an f_0 in M' without zeros in S.

If the first possibility holds, then by the induction assumption there is an $s_0 \in S$ such that $M \subset M' \subset \{f \in C(S) \colon f(s_0) = 0\}$, so we can restrict ourselves to examining the second possibility. We assume that it prevails and deduce a contradiction. There is no loss of generality in supposing that ν is not contained in the linear span of μ_2, \ldots, μ_m (otherwise $M \subset \{f \in C(S) \colon f(\mathbf{0}) = 0\}$). Then there is a $g_0 \in M'$ with $\nu(g_0) \neq 0$ and we can assume $\|g_0\| < \inf_{s \in S} |f_0(s)|$. Moreover, in the case that $\nu(f_0) \neq 0$ we can require $\|g_0\|$ to be small enough that $|\nu(g_0)| < |\nu(f_0)|$. Therefore in any case we shall have $\nu(g_0 + f_0) \neq 0$. Put $h_0 = f_0 + g_0 \in M' \cap (C(S))^{-1}$. Notice that by putting $\{f/h_0 \colon f \in M\}, \{f/h_0 \colon f \in M'\}$ and $h_0\nu$, $h_0\mu_i$ for $i=2,\ldots,m$ in the place of M,M', ν and μ_i for $i=2,\ldots,m$, respectively, we can assume without loss of generality that

$$1 \in M'$$
 and $\nu(1) \neq 0$.

Let π be an orthogonal projection on the first coordinate, and put as before $M_E = \{f \in M : f \text{ depends only on the first coordinate}\}$. By Lemma 2 there is a linear combination

(2)
$$\lambda_1 \delta_0 + \lambda_1 \cdot (\nu)_E + \sum_{i=2}^m \lambda_i(\mu_i)_E = \delta_t$$

for some $t \in \pi(S)$.

We have again two possibilities:

- 1. $\lambda_1 = 0$,
- 2. $\lambda_1 \neq 0$.

If the first one holds, then upon applying (2) to the function $\mathbf{1} \in M'$ we get the contradiction

$$0 = \sum_{i=2}^m \lambda_i \mu_i(\mathbf{1}) = \sum_{i=2}^m \lambda_i(\mu_i)_E(\mathbf{1}) = \delta_t(\mathbf{1}) = 1.$$

If the second possibility holds, then from evaluating (2) at $\{0\}$ we get via (1) that t = 0 and $\lambda_1 = 1$, and so

$$\sum_{i=2}^m \lambda_i(\mu_i)_E = -(\nu)_E.$$

Then applying, as before, the above to the function 1, we get

$$0 = \sum_{i=2}^m \lambda_i(\mu_i)_E(\mathbf{1}) = -(
u)_E(\mathbf{1}) = -
u(\mathbf{1})
eq 0.$$

The contradictions above end the proof of the lemma and now we are ready to end the proof of Theorem 2. We can assume S is a closed subset of some Tichonov cube $[0,1]^I$, where I is a set of indices. For any finite subset I_0 of I let

$$M(I_0) = \{ f \in M \colon f \text{ depends only on the coordinates from } I_0 \}$$

and

$$S(I_0) = \{ s \in S : \forall f \in M(I_0) \ f(s) = 0 \}.$$

Let I_1, \ldots, I_m be any finite subsets of I and put $I_0 = \bigcup_{i=1}^m I_i$. We have $S(I_0) \subset \bigcap_{i=1}^m S(I_i)$. By Lemma 4 the set $S(I_0)$ is nonvoid and evidently compact. Hence there is an $s_0 \in \bigcap \{S(I_0) \colon I_0 \subset I, \operatorname{card}(I_0) < \infty\}$. Notice that since $\tilde{C}(S) = \{f \in C(S) \colon f \text{ depends on a finite number of coordinates only}\}$ is a dense subspace of C(S) and C(S) and C(S) is a closed subspace of finite codimension, $C(S) \cap C(S) \cap C(S)$ and hence $C(S) \cap C(S) \cap C(S) \cap C(S) \cap C(S)$ and hence $C(S) \cap C(S) \cap C(S) \cap C(S) \cap C(S)$.

PROOF OF THEOREM 1. Let S and M be as in the theorem and let $s_1,\ldots,s_l\in S$ be all of the common zeros of M. By Theorem 2, $l\geq 1$. Assume l< k and put $n=\operatorname{codim}(M)$. We have $M\not\subseteq \{f\in C(S)\colon f(s_1)=\cdots=f(s_l)=0\}$ so n>l. Let $\mu_1=\delta_{s_1},\ldots,\mu_l=\delta_{s_l}$ together with $\mu_{l+1},\ldots,\mu_n\in M^\perp$ be a basis in the n-dimensional space $[C(S)/M]^*=M^\perp$. We can replace each μ_j by

$$\mu_j - \sum_{i=1}^l \mu_j(\{s_i\}) \delta_{s_i} \qquad (j = l+1, \dots, n)$$

and thereby assume without loss of generality that

(3)
$$\sum_{j=l+1}^{n} |\mu_j|(\{s_1,\ldots,s_l\}) = 0.$$

Form

$$M' = \{ f \in C(S) : \mu_j(f) = 0 \text{ for } j = l+1, \ldots, n \}.$$

If s were a common zero of M', then δ_s would be in the linear span of $\{\mu_{l+1}, \ldots, \mu_n\}$ and then by $(3), s \in S \setminus \{s_1, \ldots, s_l\}$. Since $M' \supset M$, s would be an (l+1)st common zero of M, contrary to the definition of l. Hence no such s exists, so by Theorem 2 there is some invertible function f_0 in M'. Putting $\{f/f_0: f \in M\}$ in place of M we can assume, as in the proof of Lemma 4, that $f_0 \equiv 1$. The measures μ_{l+1}, \ldots, μ_n are linearly independent elements of the dual space $A = \{f \in C(S): f(s_i) = 0 \text{ for } i = 1, \ldots, l\}$, so there are f_{l+1}, \ldots, f_n in A such that

$$\mu_i(f_i) = 1$$
 for $i = l + 1, \ldots, n$

and

$$\mu_i(f_j) = 0$$
 for $i \neq j$; $i, j = l + 1, ..., n$.

Put $K = \max\{\|f_j\|: l+1 \le j \le n\}$, fix $\varepsilon > 0$ with $n\varepsilon K < 1$ and let $V \subset S$ be an open neighbourhood of the set $\{s_1, \ldots, s_l\}$ such that

$$\sum_{j=l+1}^{n} |\mu_i|(V) < \varepsilon.$$

By our assumption $\{s_1, \ldots, s_l\}$ is a G_δ subset of S so there is a real valued, continuous function g_0 on S such that

$$g_0^{-1}(1) = \{s_1, \dots, s_l\}, \qquad g_0|_{S \setminus V} \equiv 0,$$

and

$$0 \le g_0(s) < 1 - \varepsilon \sum_{j=l+1}^n |f_j(s)| \quad \text{for } s \in V \setminus \{s_1, \dots, s_l\}.$$

Put

$$h_0 = \mathbf{1} - g_0 + \sum_{j=l+1}^n \mu_j(g_0) f_j.$$

We have $h_0(s_j) = 0$ for j = 1, ..., l and (recalling that $\mathbf{1} \in M'$) $\mu_j(h_0) = 0$ for j = l + 1, ..., n, so $h_0 \in M$. To get a contradiction it is sufficient now to show that h_0 has only l zeros in S, namely $s, ..., s_l$. We have

$$|h_0(s)| \ge 1 - \sum_{j=l+1}^n |\mu_j|(V)||f_j|| > 0 \text{ for } s \in S \setminus V$$

and

$$|h_0(s)| \geq 1 - g_0(s) - arepsilon \sum_{j=l+1}^n |f_j(s)| > 0 \quad ext{for } s \in V \backslash \{s_1, \ldots, s_l\}.$$

2.

REMARK. The assumption in Problem 2 that M is of finite codimension is essential, as the following example, due to W. Żelazko, shows: Let A be a disc algebra, i.e., A = P(D) where D is the closed unit disc in the complex plane and put $M = \text{span}\{B_1, B_2\}$ where B_1, B_2 are nonconstant Blaschke factors with disjoint zero sets. By the Rouché Theorem any element from M has a zero in D, but M is not contained in any maximal ideal. Since A can be isometrically embedded into C([0,1]), M can be also regarded as a two dimensional subspace of C([0,1]).

REFERENCES

- B. Aupetit, Une généralisation du théorème de Gleason-Kahane-Zelazko pour les algèbres de Banach, Pacific J. Math. 85 (1979), 11-17.
- Chang-Pao Chen, A generalization of the Gleason-Kahane-Zelazko theorem, Pacific J. Math. 107 (1983), 81-87.
- 3. N. Farnum and R. Whitley, Functionals on real C(S), Canad. J. Math. 30 (1978), 490-498.
- 4. A. M. Gleason, A characterization of maximal ideals, J. Analyse Math. 19 (1967), 171-172.
- J. P. Kahane and W. Żelazko, A characterization of maximal ideals in commutative Banach algebras, Studia Math. 29 (1968), 339-343.
- S, Kowalski and Z. Słodkowski, A characterization of multiplicative linear functionals in Banach algebras, Studia Math. 67 (1980), 215–223.
- M. Roitman and Y. Sternfeld, When is a linear functional multiplicative?, Trans. Amer. Math. Soc. 267 (1981), 111-124.
- C. R. Warner and R. Whitley, A characterization of regular maximal ideals, Pacific J. Math. 30 (1969), 277-281.
- 9. $\underline{\hspace{1cm}}$, Ideals of finite codimension in C[0,1] and $L^1(R)$, Proc. Amer. Math. Soc. **76** (1979), 263-267.

INSTITUTE OF MATHEMATICS, WARSAW UNIVERSITY, PKIN, 00-901 WARSAW, POLAND