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FINITE CODIMENSIONAL IDEALS IN FUNCTION ALGEBRAS

BY
KRZYSZTOF JAROSZ

ABSTRACT. Assume S is a compact, metric space and let M be a finite
codimensional closed subspace of a complex space C(S). In this paper we
prove that if each element from M has at least k zeros in S, then for some
81,-..,5k €S, M C{f € C(S): f(s1) =--- = f(sk) =0}

0. Let M be a subspace of codimension 1 in a commutative, complex Banach
algebra with unit. A. M. Gleason [4] and independently J. P. Kahane and W.
Zelazko [5] proved that M is an ideal if and only if M consists of noninvertible
elements or equivalently if and only if each element z in M belongs to an ideal I,
which may depend on z.

In [8 and 9] C. R. Warner and R. Whitley considered the following more general
problem:

Problem 1. Let A be a commutative, complex Banach algebra with unit and let
M be a closed n codimensional subspace of A. Assume that every element from M
belongs to at least n different maximal ideals. Is M then an ideal?

They showed that the answer to the above problem is positive if A is any of
L'(R) and C(S) where S is a compact subset of R, and they also gave simple
examples showing that this does not hold in general (e.g.: S a compact Hausdorff
space such that there is an so € S with {so} not a G5 set and M any subspace of
{f € C(S): f(s0) =0}).

Chang-Pao Chen (2] generalized the above results to some other commutative
Banach algebras. )

The original Gleason-Kahane-Zelazko work has also been extended in another
direction by B. Aupetit [1], S. Kowalski and Z. Stodkowski [6], and by M. Roitman
and Y. Sternfeld [7].

C. R. Warner and R. Whitley asked whether the answer to the above problem
is positive for A = C(D) where D is a disc.

In this paper we give a positive answer to this problem for A = C(S), S being
an arbitrary metric space (Theorem 1). We also consider the following problem:

Problem 2. Let A be a commutative complex Banach algebra with unit and let
M be a finite codimensional subspace of A consisting of noninvertible elements. Is
M contained in some maximal ideal of A?

We prove that the answer to the second problem is positive for A = C(S), for
S any compact, Hausdorff space (Theorem 2). The author does not know any
function algebra A which fails to possess the property described in Problem 2.

In the paper we consider only complex algebras. Simple examples prove that in
the real case the original Gleason-Kahane-Zelazko theorem does not work [3].
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1. THEOREM 1. Let S be a compact, Hausdorff space such that each point of
S is a Gs set, let M be a closed finite codimensional subspace of C(S) and let k be
a posttive integer. Suppose that each element from M has at least k different zeros
i S. Then there are k different elements s1,...,sx in S such that

M cC{feC(S): f(s1) =" = f(sk) = 0}.
The theorem answers Problem 1 for A = C(S) with S a metric, compact space:

COROLLARY. Let S be a compact, Hausdorff space such that each point of S is
a Gg set, let M be a closed subspace of C(S) with codim(M) = k < +o00. Suppose
that each element from M has at least k different zeros in S. Then M 1s an ideal
of the algebra C(S).

PROOF. By Theorem 1 there are k different elements sy, ..., st in S such that
McM ={feC(S): f(s1)=---= f(sk) =0}.

We have codim(M) = k = codim(M’) and hence M = M'.
As the main step in proving Theorem 1 we prove the following theorem, valid
for any compact, Hausdorff space S.

THEOREM 2. Let S be a compact, Hausdorff space and let M be a finite codi-
menstonal subspace of C(S). Suppose that each element from M has at least one
zero in S. Then there 1s an sg in S such that

M C {f €C(S): f(s0) = 0}.

PROOF OF THEOREM 2. Without loss of generality we assume that M is a
closed subspace of C(S). For a compact subset K of the complex plane we denote
by P(K) the linear space of all restrictions to K of polynomials; if K is an infinite
set we define the norm on P(K) by |p| = max.ck |p(z)|, and by P(K) we denote
the completion of P(K) in this norm. We regard P(K) as a closed subalgebra of
C(K).

LEMMA 1. Let K be a compact subset of the real line in the complezx plane and
let B be a linear subspace of P(K). Assume that there is a po tn B with pp(2) # 0
for z € K and that any element from B has at least one zero in K. Then there is
a 29 € K such that

B c {pe P(K): p(z0) = 0}.

PROOF. It is sufficient to prove that there is a common zero for any finite subset
of B, so without loss of generality we can assume that B is finite dimensional and
we let {po,p1,...,Pm} be a linear basis of B. Next we can assume that there is an
open, connected, bounded neighbourhood G of K in C such that infc¢ |py(2)| > 1.
We define an entire function F: C x C™ — C by

m
F(z,w) =po(z) + ijpj(z) where w = (wy, ..., Wn).
j=1
We assume that there is no common zero for B and we define, by induction

two sequences: {U;}%2, of open, connected subsets of C™, and {g,}72 of analytic
functions defined on Uj, respectively, such that

@#Ujp1 CU; and g¢;(Ujs )NK =0 forj=0,1,..,
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and
F(g;(w),w)=0 forj=0,1,... and w € U;
and
g;(Uj)Ng(U;) =0 for any 7 < j.

Let Vo = {w € C™: 370, |wj|sup,cc [Pj(2)] < 1}. By our assumption for any
w € C™ there is a z in K such that F(z,w) = 0 and for any (z,w) € G x V, we
have OF(z,w)/dz # 0, so by the rank theorem there is an open, nonvoid, connected
subset Uy of Vp and an analytic function go: Up — G such that F(go(w),w) =0
for w € Up.

Suppose we have defined U; and g; for j = 0,1,...,p. If g, were constant then
gp(w) would be a common zero for B, so g, is a nonconstant analytic function
defined on a connected set; so g,(Up) is open. Hence there is an open, nonvoid set
Vp+1 such that V41 C Up and g,(Vpt+1) N K = . In the same manner as before
we prove that there is an open, nonvoid, connected subset U,;; of V,1; and an
analytic function gp41: Up41 — G such that F(gp41(w), w) =0 for w € Up41 and
gp+1(w) € K for some w € Upyy. Taking Uy, smaller if necessary we can assume
that

p
9p+1(Ups1) N | 95 (Up11) =2

Jj=0
Let w = (W1,...,Wm) € ﬂ;’;o U;. The function z — F(z,®) is a polynomial
which has infinitely many different zeros: go(w),g1(w),... in G, so it is the zero
function, which proves that pg is a linear combination of py, ..., p, and contradicts

the fact that {po,p1,...,Pm} is a linear basis of B.

LEMMA 2. Let K be a compact subset of the real line in the complez plane and
let M be a finite codimensional subspace of C(K). Suppose that each element from
M has at least one zero in K. Then there is a zg € K such that

M C {f € C(K): f(20) = 0}.

PROOF. Without loss of generality we can assume that M is a closed subspace
of C(K) and, since the lemma is trivial for K being a finite set, we can assume
that K is an infinite subset of the complex plane. Put My = P(K) N M. Since
P(K) = C(K) and M is a finite codimensional closed subpsace of C(K), then M,
is a finite codimensional closed subspace of P(K) and My is dense in M. To end
the proof it is sufficient to show that My has a common zero in K. Put

n=max{j € N: ¥p € My 3z € K pU)(z) = 0}.
Since My consists of polynomials evidently n < co. By Lemma 1 there is a 29 € K
such that
{p™: pe Mo} C {p € P(K): p(z0) = 0}.
Assume n > 1. Mj is a finite codimensional closed subspace of the normed space

P(K) which is contained in the kernel of a discontinuous functional P(K) > p —
p(™ (o), which is impossible. Therefore n = 0 and this proves

My C {p € P(K): p(2) = 0}.

LEMMA 3. Let pu be a finite, positive, Borel measure on a compact subset of
the Euclidean space R™. For any subspace E of R™ we define a measure ug on E
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by pe(B) = p(rg'(B)) for any Borel subset B of E where mg s the orthogonal
projection from R™ onto E. Assume that for every one dimensional subspace E of
R"™ the measure ug has at least one atom. Then u has at least one atom.

PROOF. We prove the lemma by induction. It is trivial for n = 1. Assume
that it is true for n — 1 but not for » and let u be as in the lemma. Fix ann — 1
dimensional subspace Ey of R™ and denote po = ug,. For any one dimensional
subspace E of Eqy the measure (uo) g = pg has at least one atom so by the induction
hypothesis pg has an atom. Thus we have shown that for any n — 1 dimensional
subspace Ej of R™ the measure pg, has an atom. By the definition of pg this means
that for any nonzero vector v in R™ there is a segment [ in R™ parallel to v and
such that u(l) > 0. Hence there is an uncountable family A of pairwise nonparallel
segments in R™, each of positive u-measure. There is an infinite subfamily Ag of A
such that each segment in Ap has u-measure greater than some positive constant
c. Assuming that p has no atoms, we get that the measure of the common part
of any two elements of A is zero so |J Ao contains a subset of infinite y-measure
which contradicts the assumption y is finite.

LEMMA 4. Let S be a compact subset of the Euclidean space R™ and let M be
a finite codimensional closed subspace of C(S). Assume that any f in M has at
least one zero in S. Then there is an sg € S such that

M C {f €C(S): f(so) =0}

PROOF. Let measures py, ..., U, on S constitute a linear basis of (C(S)/M)*.
Put po = Y v, |pil. Let E be a one dimensional subspace of R™; by an appropriate
choice of coordinates we can assume F is the first coordinate axis. Put

Mg = {f € M: f depends only on the first coordinate}.

MgEg can be regarded as a finite codimensional subspace of C(rg(S)). Since
each element of Mg has at least one zero in 7g(S) C R by Lemma 2, a linear
combination of the measures (u;)g for i = 1,2,...,m gives a Dirac measure; so
at least one of the measures (u;)g has an atom and consequently (uo)g has an
atom. Since E was an arbitrary one dimensional subspace of R", Lemma 3 ensures
that uo, hence at least one of the measures ui,...,um, has an atom. We can
assume that u; = 8 + v, v({0}) = 0 and w;({0}) = 0 for ¢ = 2,...,m, where
8o is a Dirac measure concentrated at the point 0 = {0,...,0} € S C R™. Put
I={s=(s1,...,8.) € S: 81 =0}.

For any 0 <t < oo let o;: R™ — R™ be defined by

. n
©1(81,82,...,8) = <t2|3i| +sl,32,...,sn> .
i=2

Any such map is an automorphism of R™ and ¢, (I) Ny, (1) = {0} if t; # ta.
Hence there is to € R™ such that |u|(I) = 0 where u = |v| + |u1| + -+ + |pm]-
On the other hand any automorphism ¢ of R™ defines an isometric isomorphism
of M C C(S) onto M, = {fop: f € M} C C(p~!(S)). So by applying an
automorphism ¢y, (it is just a curvilinear coordinate) we can assume that

(1) [v|(I) =0 and |u;|(I)=0 forz=2,...,m.
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We end the proof of the lemma by an induction with respect to m = codim(M).
Put
M ={feC(S): pi(f)=0fori=2,...,m}.

M’ is an m — 1 codimensional subspace of C(S) so we have two possibilities:

1. Any element from M’ has at least one zero in S.

2. There is an fg in M’ without zeros in S.

If the first possibility holds, then by the induction assumption there is an sg €
S such that M C M’ C {f € C(S): f(so) = 0}, so we can restrict ourselves
to examining the second possibility. We assume that it prevails and deduce a
contradiction. There is no loss of generality in supposing that v is not contained
in the linear span of us,...,um (otherwise M C {f € C(S): f(0) = 0}). Then
there is a go € M’ with v(go) # 0 and we can assume ||go|| < infses |fo(s)]-
Moreover, in the case that v(fo) # 0 we can require ||go|| to be small enough that
|v(go)| < |v(fo)|- Therefore in any case we shall have v(go + fo) # 0. Put hy =
fo+g0 € M'N(C(S))~L. Notice that by putting {f/ho: f € M}, {f/ho: f € M'}
and hgv, hou; for 1 = 2,...,m in the place of M,M’, v and y,; for 7 = 2,...,m,
respectively, we can assume without loss of generality that

1eM and v(1)#0.

Let m be an orthogonal projection on the first coordinate, and put as before Mg =
{f € M: f depends only on the first coordinate}. By Lemma 2 there is a linear

combination
m

(2) Ao+ A1 - (V)E + Z/\i(ui)E =6

1=2

for some t € 7(S).

We have again two possibilities:

1. A; =0,

2. A\ #0.

If the first one holds, then upon applying (2) to the function 1 € M’ we get the
contradiction

0= Aips(1) =) Ni(w)e(1) = 6(1) = L.
=2 1=2

If the second possibility holds, then from evaluating (2) at {0} we get via (1) that
t=0and A\; =1, and so

m
Y Xilw)e = —(v)e-
1=2
Then applying, as before, the above to the function 1, we get
m
0=> X(m)e(1) = —(¥)e(1) = —v(1) #0.
1=2
The contradictions above end the proof of the lemma and now we are ready to end

the proof of Theorem 2. We can assume S is a closed subset of some Tichonov cube
[0,1)7, where I is a set of indices. For any finite subset I of I let

M(Iy) = {f € M: f depends only on the coordinates from Iy}
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and
S(lp) ={s€ S:Vfe M) f(s) =0}.

Let I1,..., I, be any finite subsets of I and put Iy = |J/~, I;. We have S(Ip) C

™, S(I;). By Lemma 4 the set S(Io) is nonvoid and evidently compact. Hence
there is an so € ({S(Io): Io C I,card(Ip) < oo}. Notice that since C(S) =
{f € C(S): f depends on a finite number of coordinates only} is a dense subspace
of C(S) and M is a closed subspace of finite codimension, C(S) N M is a dense
subspace of M. But we have C(S)NM c {f € C(S): f(so) = 0} and hence
M c{feC(S): f(s0) =0}

PROOF OF THEOREM 1. Let S and M be as in the theorem and let sq,...,s; €
S be all of the common zeros of M. By Theorem 2, [ > 1. Assume [ < k and put
n = codim(M). We have M ¢ {f € C(S): f(s1) = -+ = f(s1) =0} son > I
Let u; = &8s,,...,i = b5, together with w;11,...,4n € ML be a basis in the
n-dimensional space [C(S)/M]* = M. We can replace each u; by

!
H]—le’j({s‘i})ési (.7=l+1a7n)
=1

and thereby assume without loss of generality that
n

(3) Y Imsl(snyeeeys}) =
Jj=l+1

Form

={feC(S): uj(f)y=0forj=1+1,...,n}.
If s were a common zero of M’, then é; would be in the linear span of {y4+1, ..., tn}
and then by (3), s € S\{s1,...,s:}. Since M’ D M, s would be an (I/+1)st common
zero of M, contrary to the definition of {. Hence no such s exists, so by Theorem 2
there is some invertible function fo in M’. Putting {f/fo: f € M} in place of M we
can assume, as in the proof of Lemma 4, that fo = 1. The measures yiy1,. .., 4n
are linearly independent elements of the dual space A = {f € C(S): f(s;) = 0 for
i=1,...,l}, so there are fi11,..., fn in A such that

wi(fi)=1 fori=101+1,...,n
and
pi(f;)=0 fore#7;4,5=104+1,...,n
Put K = max{||f;]|: {1 +1 < j < n}, fix e >0 withneK < 1andlet V C S be an
open neighbourhood of the set {s,...,s;} such that

o lml(vV)<e

j=l+1
By our assumption {sy,...,s;} is a Gs subset of S so there is a real valued,
continuous function gg on S such that
96 (1) = {s1,...,s1}, gols\v =0,

and

0<go(s)<l—c¢ Z |fi(s)] for se€V\{s1,...,s}.
j=l+1
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Put n
ho=1-go+ E 1;5(90) fj-
J=1+1
We have ho(s;) =0 for j =1,...,0 and (recalling that 1 € M’) p;(ho) = 0 for
j=1+1,...,n,s0 hg € M. To get a contradiction it is sufficient now to show that
ho has only [ zeros in S, namely s, ...,s;. We have
n
ho() 2 1= 3 usl(VIIfll >0 for s S\V
J=l+1
and n
lho(s)] > 1—go(s) —€ Y_ |f;(s)| >0 forseV\{sy,...,s}.
j=i+1
2.

REMARK. The assumption in Problem 2 that M is of finite codimension is
essential, as the following example, due to W. Zelazko, shows: Let A be a disc
algebra, i.e., A = P(D) where D is the closed unit disc in the complex plane and
put M = span{By, B} where B;, B; are nonconstant Blaschke factors with disjoint
zero sets. By the Rouché Theorem any element from M has a zero in D, but M is
not contained in any maximal ideal. Since A can be isometrically embedded into
C([0,1]), M can be also regarded as a two dimensional subspace of C([0, 1]).
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