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ESSENTIAL DIMENSION LOWERING MAPPINGS
HAVING DENSE DEFICIENCY SET

BY

MLADEN BESTVINA

ABSTRACT. Two classes of surjective maps /: Sm —* Sn that are one-to-one

over the image of a dense set are constructed. We show that for m, n > 3

there is a monotone surjection / : Sm —> Sn that is one-to-one over the image

of a dense set; and for 3 < n < m < 2n — 3, each element of 7rm(5n) can be

represented as a monotone surjection / : Sm —► Sn that is one-to-one over the

image of a dense set.

1. Introduction. The present paper should be considered as a continuation of

the study of surjective maps between spheres that are "one-to-one over the image

of a dense set". (A surjection /: X —> Y is one-to-one over the image of a dense

set if there exists a dense set D C X such that for each y G f(D), #/_1(y) = 1;

# = cardinality.)

First inconceivable examples of such maps were constructed by J. J. Walsh

[Wa 5]. Specifically, for any pair n > 3, d > 2 of integers, Walsh has built a

monotone, surjective map f:Sn —> Sn of degree d that is one-to-one over the

image of a dense set.

More recently, in [Be-Wa], it has been established that for any m, n > 2 there

is a surjection /: Sm —» Sn that is one-to-one over the image of a dense set.

By construction this map is not monotone and factors through a 1-dimensional

compactum, and hence it is null-homotopic; even more, it has no stable values. (A

point y G y is a stable value of a map f:X—*Y between metric spaces if there

exists an open cover U of Y so that for every Zi-approximation /' to /, y is in the

image of /'.)

In this paper we show:

(a) For m, n > 3 there is a monotone surjection / : Sm —► Sn that is one-to-one

over the image of a dense set.

(b) For 3<n<m<2n — 3 each element of TTm(Sn) can be represented as a

monotone surjection /: Sm —► Sn that is one-to-one over the image of a dense set.

In particular, if 3 < n < m < 2n - 3 and TTm(Sn) ¿ 0 (e.g., 7rn+1(Sn) = Z2), there

is a monotone, essential map / : Sm —> Sn that is one-to-one over the image of a

dense set (and hence, all values of / are stable).

The techniques used in the paper stem from D. Wilson [Wi 1, Wi 2] and

J. J. Walsh [Wa 1-Wa 5]. Mappings are constructed by making use of "defining

sequences". Although the necessary definitions are given, and in that respect the
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paper is self-contained, familiarity with [Wa 5] is desirable. We follow the notation

developed in that paper.

The author is obliged to J. J. Walsh for his immense willingness for endless

conversations about the problem. Without his unreserved support, the preparation

of this paper would be impossible.

2. Preliminaries. For any family P of subsets of a set X, and for any AC X,

we define

St(A, P) = \J{p GP:PnA^0}.

Following [Wa 5], by a (stratified) partition on a closed PL n-manifold N we

mean a collection P = {pi,... ,pk} of closed subsets of N that cover N with the

following properties.

(PI) Each p G P is a PL n-submanifold (with boundary) of N.

(P2) If Pi(i), ■ ■. ,Pi(t) are mutually distinct elements of P, then p^,) l~l • • • Dp¿(t)

is either empty or an (n - t + l)-dimensional PL submanifold of the boundary of

Pia) n---npi(t_i).
Observe that p»(i) D • • • D p¿(t) ^ 0 has empty boundary if and only if p n p¿(!) D

• • • n.pt(t) = 0 for all p G P - {piW,... ,Pi{t)}.

If L is any triangulation of N, by J^ denote the standard handlebody decom-

position of N associated with the ith barycentric subdivision ßxL of L:

J? = {St(v,ßi+1L):v is a vertex of ßlL}.

It is easy to see that Jf satisfies (PI) and (P2). For i > 1 and j = St(v,ßi+1L) G

J^, define the index of j, Ind(j), to be equal to k if v is the barycenter of a

fc-simplex in ßlL.

Let Mm,Nn be PL manifolds, and P, Q partitions on M, N respectively. We

say that a function T: P —> Q is admissible, provided:

(Al) T is a bijection;

(A2) for allp¿(i),...,p¿(() G P,

PiW n ■ • • npm ¿ 0=> T(Pl(i)) n • • • n T(Pt(t)) ¿ 0-

(A3) for ail p,p' G P,

p n p' ¿0=> T(p) n T(p') ± 0 .

Let L be any triangulation of A. If T: P —► J is a triple satisfying (A2) and

(A3), where J = J-/1 is the handlebody decomposition of N associated with ßlL, by

an induced map we mean any map h: M —► N with h(p) Ç T(p) for all p G P. We

can define h by the "backward induction" on i, requiring that /i(p¿(i)fl- • np¿(t)) Ç

T(Pi(i)) D • • • n T(p¿(t)). Since each nonempty intersection of elements of J is an

absolute retract, the inductive step "goes through". The same fact establishes that

any two induced maps are homotopic (see [Wa 5]), which enables us to talk about

the induced map.

A sequence of triples {T¿: P¿ —> Ji}f^0 IS a defining seguence provided, for all

i >0:
(DS1) Jt = Jf is the handlebody decomposition of N associated with ßlL;

(DS2) Pi is a partition on M;

(DS3) Tt is an admissible function;
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(DS4) for all p G P, p' G Pi+X,

pnp' ¿0&int(pnp')¿0*>Tl(p)nTl+i(p')¿0.

The reader should find establishing the following result a useful exercise.

PROPOSITION 2.1 (SEE[Wa5]).   Let {T¿: P¿ -> Jt}-^0 be a defining sequence.

(i) Setting h~l(y) = Ç^Lo^(Pi,Pi) for any choice of pi G Pt with Ti(pi) 3 y
defines a surjective map h: M —► N. Moreover, IntSt(pj,Pj) 3 St(p¿+i,P¿+i)

(t = 0,1,2,...).
(ii) If hi: M —> N is the map induced by I¿: P¿ —► J¿, then h — lim^oo hi and

ho ~ hi ~ /i2 — • • ■ — h.
(iii) // each pG Pi, i>0, is connected, then h is a monotone map.

(iv) If for each i > 1 and each j G Jx with Ind(j') — n there exists a PL m-cell

RÇM with
Stp-'UlPi+i) ClntRÇ St(T~l(j),Pz),

then the points y G N for which h-1 (y) Ç M is a cellular set form a dense subset

ofN.

To construct interesting maps between manifolds using 2.1, we have to produce

defining sequences. The major step consists of generating a triple T¿+i : P¿+1 —>

Ji+i from a triple Ti\ Pi ^> Ji previously constructed. To make the notation easier,

the triple T, : Pt —> J¿ will be denoted by T: P —» J, and the triple 7¿+1 : P¿+i —>
Ji+i by T: P —> J. Coherently, we will rename the subdivision ßlL and again call

it L. Hence
J = {St(t>, ßL) : v is a vertex of L},

J = {St(v, ß2L) : v is a vertex of ßL}.

The construction of P is in two stages. We define an intermediate triple T: P ^>

J. Warning. P will be a partition of M, and T will satisfy (A2) and (A3), but not

necessarily (Al).

The elements of P will be indexed by the set S of all collections {p¿(i), •.. ,Pi(t)}

Ç P that have nonempty intersections. (These intersections, in Walsh's terminol-

ogy, are called the strata of P.)

The collection P = {ps, s G 5} will satisfy the following properties.

(HI) P is a partition on M.

(H2) Pa(i),... ,ps(t) S P have nonempty intersection if and only if (s(l),... ,s(t)}

Ç S is well-ordered with respect to inclusion.

(H3) For any p G P and ps G P,

p n ps t¿ 0o Int(p n ps) / 0o p G s.

(H4) For any p G P, p and p{p} are homeomorphic.

Still following [Wa 5], we construct the elements ps G P as follows (see Figure

1). Let ii be a triangulation of M so that each stratum f]s, s G S, is a full

subcomplex of K. Define the core of s G 5 by

c(5) = M | 7 : t is a simplex of ßK contained in |)5_¿M Qs)>.

Finally, set

ps = \J{St(v,ß2K): v G c(s) is a vertex of ßK}.
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Observe that, by choosing a sufficiently small triangulation K:

(H5) Given neighborhoods U(p) of p G P, we can arrange that St(p, P) Ç U(p)

for all pG P.

We can also define the function T: P —► J by T(ps) — St(t>, ß2L) G J, where v is

determined as follows. If s = {p¿(i),... ,Pi(t)} and T(p^r)) = St(vr,ßL), then v is

the barycenter of the simplex whose vertices are vi,... ,vt. Property (H2) implies

that T satisfies (A2) and (A3). It is evident that T is a one-to-one function (but

not necessarily a surjection).

We will "repair" the triple f: P -> j to get the triple f : P -> J, but the repa-
ration will depend on the desired properties of the function h: M —> N determine

by the defining sequence. The "reparation process", as well as the construction of

the triple To: Po —> Jo, is explained in detail in forthcoming sections.

REMARK. If the partiion P is the standard handlebody decomposition corre-

sponding to a triangulation K of the manifold M, then the partition P constructed

above is (up to an ambient isotopy) the standard handlebody decomposition of M

corresponding to the barycentric subdivision K' of K. This fact will be implicitly

used in the sequel.

3. Essential maps. The purpose of this section is to establish the following

PROPOSITION 3.1. Let f' : Sm -+ Sn be any map, and let3<n<m<2n-3.

Then there exists a surjective monotone map h: Sm —> Sn homotopic to f such

that the set {y G Sn: h~1(y) is cellular in Sm} is dense in Sn.

A routine consequence of 3.1 is the result announced in the Introduction.

THEOREM 3.2. For any map f : Sm -> Sn, 3 < n < m < 2n - 3, there exists a

surjective monotone map g: Sm —> Sn homotopic to f that is one-to-one over the

image of a dense set.

PROOF. Let h: Sm —» Sn be a map whose existence is promised by 3.1. We

"carefully shrink countably many cellular fibers of /i" in order to obtain the sought-

after map g: Sm —> Sn. The shrinking process can be described as follows.

Let Ui, U2,... be a countable basis of open sets of Sm. Choose a fiber F oí h with

F n Ui t¿ 0, and pick a cellular fiber C of h in a "small" connected neighborhood

V of F (here we use the fact that h is a monotone map). Let A: 5m —* Sm be

a surjection whose only nondegenerate point-preimage is C. We can arrange that

X(C) G Ui and A = identity off of V. Then gi — hX~l is a monotone surjection

"close" to h, and one of the fibers of rji is a point in U\. In a similar fashion we

produce monotone maps g?, gs,... such that gJ+i is "close" to gi, it agrees with gi off

of a "small" neighborhood of a fiber of gx, and <7¿+i has degenerate point-preimages

in each of the sets U\,...,Ui+i.

Exercising sufficient control on all choices made, and carefully interpreting the

quoted words in the preceding paragraph, we can arrange that the sequence </i,

¡72, • • • converges to a monotone map g : Sm —> Sn homotopic to h that is one-to-

one over the image of a dense set.

Before giving a proof of Proposition 3.1, we state and prove an interesting corol-

lary of Theorem 3.2.
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In what follows, Er denotes Euclidean r-dimensional space. Observe that the

homogeneity properties of Er establish that the set of all stable values of a surjection

f:X^Er is open in £r.

COROLLARY 3.3.   Letm,n>2 be integers.

(i) IfiTrn-i(Sn~i) = 0, then any surjection f : Em —» En that is one-to-one over

the image of a dense set has no stable values.

(ii) If3<n<m<2n — 3 and TTm-i(Sn~l) ^ 0, then there exists a proper

monotone surjection f : Em —* En that is one-to-one over the image of a dense set

and has all values stable.

PROOF, (i) In view of the observation made before the statement of Corollary

3.3, it suffices to prove that if #/_1(y) = 1, then y is not a stable value of /. Let

B be a "small" ball around f_1(y). The assumption about the homotopy group

reveals that f\dB is a null-homotopic map in a "small" deleted neighborhood of

y. Redefine/ in Int B, using the homotopy, to get an approximation /' to / whose

image misses y.

(ii) By Freudenthal's Suspension Theorem (see [Sp, p. 458]), 7rm_i(Sn_1) =

i^m(Sn). Application of 3.2 gives an essential monotone surjection /: Sm —> Sn

that is one-to-one over the image of a dense set. PickyG Sn such that #/_1(y) = 1.

Then // : Sm - f~l(y) -* Sn - y is a proper monotone surjection that is one-to-one

over the image of a dense set. All values of // are stable since the opposite would

violate the fact that / is essential.

PROOF OF 3.1. We construct a defining sequence {T¿: P% —> Jt}~0 with the

following additional properties.

(El) For mutually distinct elements p¿(i),.., ,Pi(t) G Pi,

ft(l) H • • • fi pi(t) Í 0 <* t < n + 1 and T^ n • • • fl T(pt{t))) ¿ 0

(i = 0,1,...).
(E2) Each element p G P¿ is (m — reconnected (* = 0,1,...).

(E3) If JGJi, lnd(j) = n, then T'1 (j) is a PL m-ball (i = 1,2,...).
As announced in §2, we construct the defining sequence by induction. Suppress-

ing indices, we start with an admissible function T: P —► J satisfying (El) and

(E2) (produced following the inductive analysis). Let K be a triangulation of Sm

such that all strata of P are full subcomplexes of K. Let T: P —► J be the triple

constructed in §2, P = {ps, s G S}. Observe that (El) implies that T satisfies

(A1)-(A3). Also, (H2) implies that f satisfies (El).

We now "repair" the triple T: P —» J to get another triple T: P —> J which

satisfies (E2) and (E3). We want to maintain all properties that T: P —» J already

satisfies. For all s G 5 choose p(s) G s; if possible, choose p(s) so that Ind T(p(s)) =

n. A quick remark: each s G S contains at most one p with Ind T(p) — n. We

interrupt the proof to introduce some notation.

For a compactum X, denote by C(X) = X x [0, l]/(xi, 1) ~ (x2,1) the cone over

X. We identify X = X x {0} ç C(X). Name \C(X) = Xx[0,|]c C(X) the

bottom half of the cone over X. If A is a subcomplex of K, by A^ we denote the

r-skeleton of A with respect to K. Finally, "ss" means "PL homeomorphic".

For all s G S with #s > 1 choose a polyhedron Xs Ç Sm containing c(s) with

the following properties.
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(a) Xs Çp(s)n(psUlntp{p(s)});

(b)Xsndp(s)=c(s);

(c) (Xs,XsnPs,c(s)) ^ ((c(s))öC((c(s)Ym-^),c(s)D ÍC((c(S)Ym-^),c(s)),

and

(d) if si ^ s2, then XSl n XS2 = 0.

Sets X$ exist, since dimC(c(sYm~n^) < m — n + 1, and 2(m — n + 1) < m.

The same inequality, coupled with (c) and the fact that each ps with #s = 1 is

(m - reconnected (see (H4)), testifies that P{P(s)}\lJ{^s': s' € 5, #s' > 1} is

still (m — reconnected for all s G S.

Let if' be a subdivision of K such that all mentioned subsets of Sm are full

subcomplexes with respect to K'. Let Ns be the second derived neighborhood of

Xs in p(s) with respect to K'. Define

jpsL)Ns    if #s > 1,

Ps      \Ps\(J{lntNs,, s'GS, #s'>1}    if#a = l.

The reader can easily verify that P = {ps, s G 5} is a partition on Sm, that

T: P —> J defined by T(ps) = T(ps) is an admissible function, and that the triple

T: P -^ J satisfies (El) and (E2). (Note that ps collapses to c(s); by adding the

cone over c(s)(m_"), we "killed" first (m — n) homotopy groups).

If #s = n + 1, then ps is a regular neighborhood of Xs % C(c(s)) (since

dim(c(s)) = m — n), and hence ps is an m-ball. This establishes (E3). From

(a) and (H3), it easily follows that T and f satisfy (DS4).

Observe that, by our choice of p(s), s G S, we have St(p, P) = St(p, P), for all

p G P with Ind T(p) = n. Thus, taking into account (H5), we get:

(E4) Given neighborhoods U(p) of p G P with Ind T(p) = n, we can arrange

that St(p, P) Ç U(p) for all such p.
If h: Sm —> Sn is the map associated with a defining sequence {T¿ : P¿ -» Jt}^0

satisfying (E1)-(E3), then, by 2.l(iii), h is a monotone surjection, and using 2.1(iv),

together with (E4), we see that we can arrange that the set {y G Sn : h~l(y) is

cellular} is dense in 5™. Indeed, let Bj be a regular neighborhood of T~l(j)

contained in St(T¿_1(j),P¿). By (E3), Bj is an m-ball. By (E4) we can arrange

that St(TjJf1(y),Pi+1) Ç IntP,.
To finish the proof of 3.1, in view of 2.1(h), we need to construct a triple

To : Po —> Jo satisfying (El) and (E2) such that the induced map ho : Sm —> Sn

is homotopic to /. By Freudenthal's Suspension Theorem [Sp, p. 458], there is

a map /': 5m_1 —> Sn~l whose suspension £/': Sm —» 5" is homotopic to /.

Without loss of generality, we may assume that /' is a surjective simplicial map,

with respect to some triangulations Ko,Lq of S"1-1,^71-1 respectively. Then the

map S/' : EÄq —» SLo is simplicial. To suppress unnecessary symbols, rename it

as / : K —> L. Let

Pv — LJ{St(w, ßK) : f(w) = v, w is a vertex of K}

and set P = {pv : v is a vertex of L}. Then P is a partition on Sm, and the function

T: P ^ J0 given by T(pv) = St(v,ßL) satisfies (A1)-(A3) and (El).

We now "repair" the triple T: P —» Jo to get a new triple T0 : Po —> Jo satisfying,

in addition, (E2).  The strategy is the same as for obtaining T from T.  Observe
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that if a is a suspension vertex of L, then pa is an m-ball. Moreover, pCT intersects

all elements of P except for pT G P, where r is the other suspension vertex. If

p G P - {Po,Pt}, then p collapses to p n pa. For each p G P — {p<t,Pt} choose a

polyhedron Ap G pf)pc such that dim Ap < m — n and the pair (p fl pa,Ap) is

(m — reconnected. We can arrange that Ap(i ) fl Ap(2) =0 if p(l) ^ p(2). (We can

take Ap to be the (m — n)-skeleton of a shrunk copy of p fl pa.) Next, embed the

cones C(AP) into pa to obtain polyhedra Y(p), p G P - {P(t,Pt}- We can arrange

that Y(p) fl dpa = Ap for all p G P — {Pa,Pr} and, by general positioning, that

y(p)nY(p') =0 for p ^ p' (we are in the range of dimensions where 2(m —n + 1) <

m). Let if' be a subdivision of K such that all mentioned subsets of Sm are full

subcomplexes of if'. If Nv is the second derived neighborhood of Y(PV) in pa, set

p„U^,        v is a vertex of ifo,

pa - lj{lntpv, v' is a vertex of ifo},        v — o,

Pt,        v = t.

Then Po = {pv : v is a vertex of if} is a partition on Sm, and To : Po —> Jo defined

by T0(pv) = T(pv) satisfies (Al)-(A3), (El) and (E2). If h0: Sm -» 5" is a map

induced by To : Po —► Jo, then ho and / are ¿/-close, where U = {St(_?', Jo), j G Jo}

is a closed cover of Sn such that each nonempty intersection of elements of U is

an absolute retract (in fact, it is a PL ball). Hence (see [Wa 5]) ho and / are

homotopic maps.

This finishes the proof of 3.1.

4. Monotone maps. In §3 we have shown that, in certain range of dimen-

sions, there exist essential, monotone maps /: Sm —► Sn that are one-to-one over

the image of a dense set. In this section we show how to construct monotone

(inessential) surjections / : Sm —► Sn that are one-to-one over the image of a dense

set for any m,n > 3. If m > n > 4, the existence of such maps follows from 3.2.

Indeed, let /¿: Sl —> S1"1 be a monotone surjection that is one-to-one over the

image of a dense set (i = n+1, n + 2,..., m). Let gi : Sl —> S' be a homeo-

morphism intermingling the two pertinent (countable) dense subsets of Sl (i —

n+1, n + 2,...,m-l). Then the composition fn+ign+i ••• fm-i9m-ifm ■ Sm ->

Sn is a map with the desired properties. However, we want to present an indepen-

dent proof that also works for 3 < m < n or n = 3.

THEOREM 4.1. For any m,n > 3 there exists a monotone surjection h: Sm —►

Sn that is one-to-one over the image of a dense set.

In the proof we need

LEMMA 4.2. Let h: X —> Y be a surjective map between compact metric spaces.

If each nonempty open set in X contains a fiber of h, then h is one-to-one over the

image of a dense set.

PROOF. Suppose not. Let Fe = \j{h~l(y): yGY, d\amh~l(y) > e}. Then Fe

is a closed set for any e > 0, and \J{Fe,e > 0} has nonempty interior. By Baire's

Category Theorem [Du, p. 250], there exists e > 0 such that F£ has nonempty

interior. Let U Ç Fe be a nonempty open set with diam U < e. Then U does not

contain any fibers of h, contrary to the hypothesis.
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PROOF OF 4.1. We construct a defining sequence {T¿: P2 -» Ji}°Z0 with the

following properties.

(Ml) Each p G P% is connected, i = 0,1,2,....

(M2) If Pi(i),Pi(2),Pi(3),Pi(4) G Pi are mutually distinct elements, then p¿(i) n

p¿(2) np,(3) npi(4) =0.

As in §3, we show first how to construct the triple T¿+1 : Pî+1 —> J¿+1 from the

triple T : P¿ —> J, already constructed. As before, we suppress indices, starting

with an admissible function T: P —> J satisfying (Ml) and (M2). Let T: P —> J

be the triple constructed in §2. Observe that, although it is one-to-one, T will never

be onto (this is the whole point of the construction).

We have to create new elements of P that will correspond to elements of J—Im T,

as well as make all elements of P connected. Observe that if j G J with Ind(j) < 1,

then (by (A3)) j G Imf ; and if Ind(j) > 3, then (by (M2)) j <£ Imf.
First "connect up" all components of elements of P. The only important property

of P we use here is that for each disconnected ps G P there is a connected element

p G P such that each component of ps intersects p. (If p G s, p = p{p} would

do; see (H4).) Fixing a triangulation if' of Sm such that all pertinent subsets of

Sm are (full) subcomplexes, for each disconnected p G P choose a PL arc ap lying

in a connected element c(p) G P such that ap il dc(p) is a finite set intersecting

each component of p. We can also arrange that different arcs are disjoint, and lie

in the complement of the (m — 2)-skeleton of if' (here we use m > 3). Choose a

subdivision if" of if' such that ap's are subcomplexes with respect to if", and let

A^p be the second derived neighborhood of ap in c(p). Finally, set

o      j p U Np    if p G P is disconnected,

) P ~~ {J{Np> : p' G P is disconnected}    if p G P is connected.

Set P° = {p°, PG P}. Then f°: P° -> j defined by T°(p°) = f(ps) is a triple
satisfying (A2), (A3), (Ml) and (M2).

Now, we create new elements so that T° can be extended to a bijection.

Let J — ImT° = {ji,j2, ■ ■ ■ ,jr}- We can order this set so that k < I implies

Ind(jfc) < Ind(ji). We define a sequence {Tk : Pk —* J}k=i of triples satisfying

(A2), (A3), (Ml), (M2) and

(afc) J-Imffc = {jk+i,jk+2,...,jr};

(bfc) for any p G P,p' G Pk,

p n p' ^ 0 o lnt(p n p') ^ 0^> T(p) n fk(p') / 0 .

Clearly, f°:P°^J satisfies (a0) and (b0). Finally, we set {T: P -+ J} =
{fr : Pr -» J}.

An argument for the inductive step is as follows. Assume the triple Tk~l : pk~1

-r J satisfies (A2), (A3), (Ml), (M2), (afe_,) and (bfc_i). Define

R = \J{Pe Pk~l■ fk-1(p)njk ¿0}.

Claim 1. R is connected.

Indeed, let pi,p2 G Pfc_1 with fk~1(pi) C\ jk ¿0, i = 1,2. Let vi,v2 be the

two vertices of ßL such that Tk~1(pi) = St(vi,ß2L), i = 1,2.  Similarly, let v be
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the vertex of ßL, such that jk = St(v,ß2L). Let o,oi,o2 be the simplexes of L

whose barycenters are v, vi,v2 respectively. Since St(v,ß2L) (1 St(vi,ß2L) / 0, a

and Oi are comparable simplexes, i — 1,2 (i.e. one is a face of the other). Choose

a sequence xvi,xu2,... ,wi of vertices of o, such that lui is a vertex of o\, and wi

is a vertex of a2. Say, <7i = (w\ ,a\,...,aq), o2 = {xvi, 61,..., bu). In the sequence

(wi,ai,...,aq-i,aq), (wi,ai,... ,aq-i), ■ ■ ■, (wi,ai), (wi), (wi,w2), (w2), (w2, w3),

(1Ü3),..., (wi-i,xvi), (xvi), (wi,bi),..., (wi,bi,.. .,bu) any two consecutive simplexes

of L are comparable. Let jl,j2, ■ ■ ■ ,jx be the corresponding sequence of elements

of J (determined by the barycenters of the simplexes in the sequence). Note that

(1) any two consecutive elements in this sequence intersect, (2) we can arrange

the vertices of 01 and a2 so that each element in the sequence intersects jk, and

(3) by our choice of indexing elements of J - Im T° and the fact that Ind(j') < 1

implies j G ImT0, each element in the sequence is in ImTfc_1. Now by (A3) and

(Ml), (ffc-1)-1(71),(ffc-1)-1(j2),..-,(Tfe_1)-1(ix) is a sequence of connected

sets whose union contains pi,p2 and itself is contained in B such that any two

consecutive elements intersect. Hence, B is connected.

Claim 2. If p G P and if T(p) C\ jk ¿ 0, then Int(P C\p)^0.
Indeed, if jk = St(i;,ß2L), and if v is a barycenter of a simplex o — (ai,...,a¡)

of L, then T(p) — St(a¿,/3L) for some i, 1 < i < I. But then

p' = (fk-1)-1(St(al,ß2L))CB

andlnt(p' Dp) ^0 (by (bk-i)).

Following the well-established pattern, once again choose a triangulation Kk of

Sm such that all relevant subsets of Sm are (full) subcomplexes. Let a be a PL

arc in Int B that intersects all sets of the form p or Int(P fl p') for some p G Pfc_1

with fk-1(p)C\jk ^ 0 or some p' G P with T(p')njk ^0. By Claims 1 and 2 such

an arc exists. We can also arrange that it misses the (m — 2)-skeleton of iffc. Let

K'k be a subdivision of iffc such that a is a subcomplex, and let N be the second

derived neighborhood of a (in B). Define A (p) — p—Int N for allp G Pfc_1. Setting

Pk = {A(p): p G Pk~1} U {N} and fk(A(p)) = fk~l(p), Tk(N) = jk defines a

triple Tk: Pk —> J. The reader should observe that this triple satisfies (A2), (A3),

(Ml), (M2), (afc) and (bfc).

We now proceed with the description of a number of improvements on the con-

struction of a triple T: P —* J. For convenience, we use the following notation. If

P¿(i), • • -,Pi(t) G P with n*=i T(Pi(r)) ¥= 0, then by A(pi{i},.. .,pl{t)) we denote

the element of P such that

T(A(pi(1),...,pî(t))) = St(i;,/32L),

where v is the barycenter of the simplex of L whose vertices are determined by

"centers" of T(pî(1),...,T(pî(t))).

(i) Given p¿(i),pt(2),P¿(3),P¿(4) e P with T(pi(1)) DT(pt(2)) nT(pt(3)) nT(pi(4))

t¿ 0, we can arrange that there exists a PL arc a C Intp¿(i) such that a inter-

sects the interior of each of the following elements of P, and no other elements of

P- A(pi(i)),A(pi{2),pi{2)),A(pi{i),pi{2),Pi(3)),A(pi(i),Pii2),pl{3),p^4)).
The trick is first to specify an arc a C Intp^i) that meets "right" elements of

P. In the process of "connecting up", we can choose arcs to miss a, and (choosing
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a small triangulation of Sm) we can arrange that the "connecting tubes" miss

a. Consequently, a hits the "right" elements of P°. In the inductive process of

constructing partitions P1,... ,Pr = P, we can choose the relevant arcs either to

hit or to miss a (according to the nature of the partition element that is about to

be constructed).

(ii) Along with the hypotheses as in (i), assume that U is an open set in Sm and

U npi(i) 7^ 0. Then we can arrange that a (which satisfies the conclusion of (i)) is

contained in U.

Indeed, if a is any arc as in (i), we can find a PL homeomorphism xp: Sm —> Sm

such that xp = identity off of Intp¿(i) and xp(a) C U. Then P' = {xp(p): p G P}

and a' = xp(a) satisfy all conclusions of (ii).

(iii) Given p¿(i),p¿(2),P¿(3),Pí(4) G P as in (i) and an arc a C Ut=iIntPi(t)

intersecting each Int p¿(t), t = 1,2,3,4, we can arrange that A(p¿(1),p¿(2))P¿(3),P¿(4))

is contained in a prechosen neighborhood U of a.

Using an argument of the same type as in (i), we can arrange that a has all prop-

erties as an arc serving as a guide for constructing A(p¿(i),p¿(2),p¿(3),p¿(4)). Then

it remains to choose a small triangulation of 5m to get the required containment

(in the inductive process, already "born" elements cannot "grow").

The improvements (ii) and (iii), applied to

J4(P¿(l))i^(P¿(l)iP¿(2)),A(p¿(i),p¿(2),p¿(3)),A(pí(1),pi(2),P¿(3),P¿(4)),

coupled together yield the following (here we use n > 3).

(iv) For any nonempty open set U Ç Sm, in the construction of the defining

sequence {T¿: P¿ —> J¿}¿^0' whenever P¿ is given, we can arrange (by carefully

choosing P¿+i and P¿+2) that P¿+2 contains an element contained in U.

(v) Given p G P and an open set U Ç Sm with p Ç U, we can arrange that

St(A(p),P)CU.
Indeed, using (H5), we can arrange that St(p, P) Ç U. In the "connecting up"

process, we choose c(p') to be P{p»} for some p" G P. In this way we get St(p, P°) Ç

U where p = P{p}- Since p is connected, we have p° Ç p and hence St(p°, P°) Ç U.

Inductively assume that St(pfc_1, Pk~1) C U, where p G Pfc_1 "comes" from p G P.

If jk n fk-1(pk'1) = 0, we have St(pfe,Pfe) Ç St^"1,^"1) Ç U. So assume

that jk n Tk~1(pk~l) í¿ 0. The corresponding set B defined along the inductive

argument can be written as B = Pi U B2, where Pi = (J{p' G Pfc_1 : p' C B, p' C\

pfc-i ^ 0}, and P2 = U{P' <= pk~U- P' n Pfe~1 = 0}- Then P, ç U and each

p' Ç P2 hits Pi. Consequently, if we replace the set B in the inductive argument

by the set B' = Pi U {the collection of all components of P2 fl U that hit Pi}, the

constructed element N will be contained in U, and hence St(pfe,Pfc) Ç U.

Improvements (iv) and (v) give the following:

Let {Ui,U2,U3,...} be a countable basis of open sets for the topology on Sm.

Then we can arrange that, for each i, there exists p(i) G pj¿ with St(p(r), P3i) Ç í/¿.

Since by 2.1(i) each of the sets of the form St(p, P), p G P, contains a fiber of

the map h : Sm —> Sn determined by such a defining sequence, we conclude that h

satisfies the hypotheses of 4.2, and hence it is one-to-one over the image of a dense

set. (Ml) implies that h is monotone.
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To finish the proof of 4.1, we need to construct a triple To : Po —► Jo satisfying

(Al)-(A3) and (Ml), (M2). As in §3, we take advantage of the fact that spheres

are suspensions.

Let L' be any triangulation of 5"_1. Then there exists a partition P of 5m_1

and an admissible map T: P ^ J, J = {St(u, ßL') : v is a vertex of L'} such that if

Pi(i))Pi(2),P»(3) S P are distinct, then pi(1) np¿(2) np¿(3) = 0. We now "suspend"

the triple T: P ^> J. Let Jo be the standard handlebody decomposition of Sn

corresponding to the triangulation L = SL'. P is a partition of Sm~1 C Sm. Let

Pq be the partition of Sm consisting of slightly "thickened" copies of p G P together

with two m-balls corresponding to the suspension points. Defining T¿ : P¿ —> J0

in the obvious way, the reader should realize that this triple satisfies (A1)-(A3)

and (M2). It remains to "connect up" elements of P¿. Observing that both m-

balls in Pq, corresponding to two suspension points, intersect all components of all

disconnected elements of P¿, the author leaves this as an exercise.

This completes the proof of 4.1.

REMARK 4.3. In [Be-Wa] it is shown that a map f:Sm->S2 that is one-to-

one over the image of a dense set is far from being monotone. Using the technique

of this section, one can construct a map /: Sm —> S2 that is one-to-one over the

image of a dense set, thus giving an alternative proof of the result in [Be-Wa]. One
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finds a defining sequence {T¿ : P¿ —» Ji}¿^o with the additional property:

(U) If Pi(i),p¿(2)iP»(3) € P are mutually distinct, then pi(1) npi(2) npl(3) = 0.

The argument is slightly easier than the one given in the case of monotone maps,

since one does not have to worry about "connecting up" various components.

REMARK 4.4. Maps h: Sm —> Sn constructed in 4.1 and 4.3, are totally unstable

(i.e. they have no stable values). In fact h: Sm —» Sn can be approximated by a

map hi : Sm —> Sn induced by the admissible function Tí: Pi ^> Ji, which, in turn,

can be approximated by a map h[: Sm —► Sn induced by the triple T : P¿ —> J¿.

If T¿: Pi —> Ji satisfies (M2), then Im/i¿ is contained in the union of all elements

j of Ji with lnd(j) < 2, and hence it is contained in a regular neighborhood of

the 2-skeleton of ßzL. Consequently, h: Sm —> Sn constructed as in 4.1 can be

approximated by maps that factor through 2-dimensional polyhedra.
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