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ANALYTIC OPERATOR ALGEBRAS
(FACTORIZATION AND AN EXPECTATION)

BY
BARUCH SOLEL

ABSTRACT. Let M be a o-finite von Neumann algebra and {a: }tcT a periodic
flow on M. The algebra of analytic operators in M is {a € M:sp,(a) C Z,}

and is denoted H*(a). We prove that every invertible operator a € H>®(a)

can be written as a = ub, where u is unitary in M and b € H®(a)NH>(a)"!.

We also prove inner-outer factorization results for a € H*(a).

Another result represents H () as the image of a certain nest subalgebra
(of a von Neumann algebra that contains M) via a conditional expectation.
As corollaries we prove a distance formula and an interpolation result for the
case where M is an injective von Neumann algebra.

1. Introduction. In this paper we intend to study some aspects of analyticity in
operator algebras. In [1] W. Arveson presented the theory of subdiagonal algebras
as a noncommutative analogoue of the theory of weak* Dirichlet algebras.

In [6] R. Loebl and P. Muhly have shown that some subdiagonal algebras arise as
algebras of analytic operators with respect to a flow on a von Neumann algebras.
Similar results were obtained independently by S. Kawamura and J. Tomiyama
in [5]. Let M be a von Neumann algebra and {o;}tcr a o-weakly continuous
representation of R as *-automorphisms of M (i.e. « is a flow on M). Let H*®(a)
be the set {a € M: sp,(a) C [0,00)}, where sp,(a) is Arveson’s spectrum of a with
respect to a.

It was shown in [6] that H*°(a) is an algebra and if M is R-finite, then H*(a)
is a maximal subdiagonal algebra. This class of algebras, obtained in this manner
from flows on von Neumann algebras, contains the analytic crossed products (also
called nonsefladjoint crossed products) and the nest subalgebras (see [6] for details).
The structure of these algebras H* (o) was further studied by several authors (see
[7-15]).

In this paper we continue the study of the algebras H(«) with the assumption
that the flow « is periodic and M is a o-finite von Neumann algebra.

The main result of §3 is Theorem 3.10 which shows that every invertible operator
a € M can be written as a = ub, where u is unitary in M and B € H®(a) N
H>(a)~!. This result was proved in [1] for finite maximal subdiagonal algebras.
We, however, do not assume that M is finite. The result is also related to a
factorization result of an operator with respect to a nest algebra (see [3, Theorem
3.3]) and we will comment on this later (see the discussion following Proposition
3.7).
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On the way to the main result we prove some factorization results for vectors
in H (where M is represented on a Hilbert space H with a separating and cyclic
vector ¢ such that a — (a€, &) is an a-invariant state on M) that extend the
classical inner-outer factorization (when M = L*°(T) and o acts by translation,
H*(a) is the classical Hardy space H>(T)). This is also used to obtain results
on subspaces of H that are invariant under H*(a) and are generated by a single
vector in H.

In §4 we introduce an expectation from a certain von Neumann algebra R onto
M such that it maps a certain nest subalgebra of Ry onto H*(a). If H = L?(T),
M = L°°(T) and H*®(a) = H*(T), then R) = B(H) (the algebra of all bounded
operators on H) and this expectation is the one used by Arveson in [3, §5]. We
believe that this expectation might help to “carry” results that can be proved for
nest algebras, or nest subalgebras (of von Neumann algebras) to the algebra H>°(«).
As examples we prove a distance formula (Corollary 4.7) and an interpolation result
(Corollary 4.8).

2. Preliminaries. Let M be a o-finite von Neumann algebra acting on a
Hilbert space H and let {o; }+cr be a periodic flow (i.e. a periodic o-weakly contin-
uous representation of R as *-automorphisms of M). We assume that the period
is 2m and write T for the interval [0, 27] identified with the unit circle. Since T is
compact, the map g, defined by eo(z) = fg "ay(z)dt, z € M, is a well-defined,
linear, o-weakly continuous map from M onto the fixed point algebra, My, of M
with respect to {a;} (dt denotes the normalized Lebesgue measure on T). In fact,
€o is a faithful normal expectation from M onto My such that egoay = €o, t € T.
By choosing a faithful normal state ¢¢ of My and letting ¢ be ¢ o0 gp we get a
faithful normal state ¢ on M that is {a;}-invariant (i.e. poay = ¢, t € T). Con-
sidering the Gelfand-Naimark-Segal construction of ¢, we may suppose that M has
a separating and cyclic vector £ € H such that ¢(z) = (z¢, £) is an {oy}-invariant
state on M. The algebra M, the flow o, the space H and the vector £, as above,
will be fixed throughout the paper.

We now define a canonical pair to be a pair { B, n} with the following properties:

(1) B is a o-finite von Neumann algebra acting on H.

(2) ¢ is a separating and cyclic vector for B.

(3) {nt}tet is a periodic flow on B.

(4) <a£»£) = <77t(a)£) 5) fort€T,a€B.

The discussion above shows that {M, a} is a canonical pair. Property (4) (ap-
plied to {M,a}) shows that we can define unitary operators {W;: t € T} such
that Wiaé = at(a)é, t € T, a € M. Let us now write R for the commutant of
M and let v be the flow on R defined by ~(a) = WaW, t € T, a € R. Then
(ve(a)€, &) = WaWr €, €) = (a&, €), a € R. Hence {R,~} is a canonical pair.

The two canonical pairs {M,a} and {R,~} will be fixed throughout the paper.
In the remainder of this section we will describe some of the structure of a canonical
pair and set up notation. Since we will be mostly interested in the pairs { M, a} and
{R,~}, we will introduce the notation with respect to {M, a} and in parentheses the
analogous notation for {R,~}. Of course, for all the results that will be introduced
or defined for {M, a}, there are analogous results for {R,~}.
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For each n € Z we define a o-weakly continuous linear map &, on M (and
analogously A, for R) by

27
en(z) = /0 e “ay(z)dt, zT€EM.

Let M, be £,(M) (and R, = An(R)). Then it is easy to check that M, = {z €
M: ay(z) = ez, t € T}.
For each n € Z define a projection f, by

n = sup{uu®: u is a partial isometry in M,}
(gn = sup{uu*: u is a partial isometry in R,}).

Then, by {12, Lemma 2.2] the f, lie in Z(Mj) (the centre of Mp). The following
lemma appears in [11].

LEMMA 2.1. (1) For everyn,m € Z, MyMp, C Myymm, My = M_,,.
(2) Let z € M,, and let = = v|z| be the polar decomposition of z.
Then v € M, and |z| € M.

The following result can be found in [14, Proposition 2.3 and Theorem 2.4].
Although it was assumed there that the algebra M is finite, this assumption was
not used for the proof of this result.

PROPOSITION 2.2. Fizn € Z. Then there is a sequence {vn,m}5>_; of partial
tsometries in M, with the following properties:

(1) v m¥nj =04 m# 7,

(2) Xonm1 Vnm¥n m = fn,

(B) Mp = Y o UnmMo; i.e. every £ € M, can be written as Y o_ | Vn.mTm
for some z,, € My, where the sum converges to the o-weak operator topology. (For
{R,~} we write {unm}>-; C Ry.)

For a flow n on a von Neumann algebra B, let B"(S) denote the spectral subspace
associated with S; i.e. B"(S) = {z € B: sp,(z) C S}.

We write H°(a) for M*({n € Z: n > 0}) and H§"(a) for M*({n € Z: n > 0}).
(Similarly H>(~) and H§°(y) are defined.)

We have, for n € Z, M*({n}) = M,, and, for £ € M, sp,(z) = {n € Z: e,(z) #
0}. When it causes no confusion we write H* in place of H*°(a).

The following result appears in [12, Theorem 2.4].

PROPOSITION 2.3. (1) H®(a) = {z € M: e,(z) =0 for n < 0}.
(2) H° () 13 the o-weakly closed subalgebra of M generated by My and all partial
1sometries in | J{My,: n > 0}.

In fact, by [9, Theorem 1] M is linearly spanned by | J{M,: n € Z} in the o-weak
operator topology.

For a subset S C H let [S] denote the closed linear subspace spanned by S.
For m # n, a € My, b € M,,,, we have (a,b¢) = (az(b*a)é, &) for each t € T
and therefore (a¢,bf) = (eo(b*a)é, &) = 0. Hence {[M,€]}nez is an orthogonal
family of subspaces. Let E, be the projection onto [M,¢]. Then E, € Mj and
> En =T (as £ is a cyclic vector for M and [M¢] = Y, @B[Mné]). Note also
that W, = >0 '™ E,, is the spectral decomposition of {W;};ct (hence we also

n=-—0oo
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have that E, is the projection onto [R,¢]) and E,af = e,(a) forn € Z, a € M.
We write H? for Y o @[M,€] and Hg for 5 2° 1@[M €]. For n € Z we let P,
be the orthogonal projection onto Y°°°_ @M, ¢]; ie. P, = =Y . En (and P,
is the projection onto [M*[n,0)¢] = [R”’[n 0)¢]). Then P,y < P, for n € Z,
Vor wPrn=1Iand \)°_ P, =0.

With the partial isometries {v, m: n € Z, m > 1} defined as in Proposition 2.2,
we can define maps {3, }rnez on My by the formula

o0
*
= E vn,mTvn,m

(and on Ry, nn(T) = 31— unmTus, m)
We summarize some of the properties of {8, }ncz that will be used later in the
following (for its proof see (15, Lemma 2.4]).

LEMMA 2.4. Fizn,m € Z.

(1) Br is a well-defined *-homomorphism from M} onto f, My whose restriction
to f_n, My 1s a *-isomorphism onto f, M.

(2) Suppose @ € M{, is a projection. Then

6.(Q) = \/{uQu*: u € M, is a partial isometry}.

(3) For T € My, BnBm(T) = fnBntm(T).

(4) For T € My, T lies in M' (= R) +f and only +f 3;(T) = f;T for each j € Z.

(5) Bn(Eo) = En (hence Bm(En) = BmbBn(Eo) = fnEnim and, consequently,
Bm(Pn) = fnPn+m)'

The following notation and definitions will be used later:

1. A projection Q € M| is said to be an M-wandering projection if, for each
n € Z, QBn(Q) = 0 (note that this implies that 3,(Q)Bm(Q) = 0 for n # m). The
set of all the M-wandering projections in My will be denoted 7;.

2. For Q € P, we let 0(Q) be >_°  8,(Q) and we write P; for o(P,).

3. A closed subspace M of H is called invariant if az € M for each a € H® ()
and z € M. Let us denote by P, the set of all orthogonal projections whose range
is an invariant subspace (as My C H*®(a), P C M}).

4. For P € P, we let 6§(P) be P — V{B,(P): n > 0}.

The following lemma was proved in [14].

LEMMA 2.5. If P € P,, then 6(P) € P, and

+ AV Ba(P)

n>0m>n

The progection N5 Vm>rn Bm(P) lies in M’ and P € Ps iff Ao Vinsn Bm(P) =
0. - -

Note that if QP € P, and @ < P € P; (= o(P,)) then Q € P; since
Ans0 Vinsn Br(@) < AnsoVimsn Bn(P) = 0. In particular any Q@ € P, that
satisfies Q < Py (i.e. Q(H) is an invariant subspace, contained in H?) is in P;.

LEMMA 2.6. H®(a) = M N Alg{P,: n € Z}; i.e. a € H*®(a) if and only +f
a € M and P,aP, = aP, for eachn € Z.

PROOF. Immediate from [6, Corollary 2.14]. - O
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LEMMA 2.7. Let c(E,) be the central support of E, (as a projection in M).
Then f,, = c(En).

PROOF. Since f, € Z(My) and f,E, = E, we have f, > ¢(E,). Suppose
z is a nonzero projection in Z(Mp) such that zE, = 0 and z < f,. Then there
is a nonzero partial isometry v € M, such that vv* < z. Since zE, = 0 and
v€ € E,(H), zv€ =0 and vv*v€ = 0. Hence v€ = 0. Since £ is a separating vector
and v # 0 we get a contradiction. Therefore f, = ¢(E,). O

3. Factorization and invariant subspaces. For g € H let M(g) be [H>g]
and P(g) be the projection onto M(g). Then P(g) € P.

PROPOSITION 3.1. For g € H the following two conditions are equivalent:

(1) P(g) € Ps.

(2) There is a partial isometry U € R such that U*g € H? and UU*g = g.

Moreover,

(3) If (2) s satisfied, then we can choose U in such a way that U*U € Ry and
M(U*g) = M(EoU"g).

(4) If (1) is satisfied and P(g) = 0(Q), Q@ € Pi, then [MpQg] = Q(H) and
Bn(Q)(H) = [MnQg] for n € Z.

PROOF. (2) iémplies (1). Suppose that f = U*g € H? and Uf = g for some
partial isometry U € R. Then P(g) = UP(f)U*. But P(g) < Py, hence P(f) € Ps.
Now if P(f) = 0(Q), Q € P1, then P(g) = o(UQU*) and UQU* € P;.

(1) smplies (2). Suppose now that P(g) € P3, hence P(g) = o(6(P(g))), and let
Q be 6(P(g)). Let a be in M, for some n > 0. Then a = ) vn,mTm for some .,
in Mp and aQg = > Vn,mQZmg € Bn(Q)(H). Since Q is M-wandering, h = Qg is
a wandering vector in the sense that (ah,h) = 0 for a € M with g9(a) = 0. Hence
(ah, k) = (eo(a)h, h) for all a € M. The map a — (ah, h) is a normal positive linear
functional on Mp. Consider My as acting on Eo(H) = [Mo&]; then ¢ is a cyclic and
separating vector for My and thus (by [4, Theorem 4, Part III, Chapter 1)) there
is some hg € [Mpé] such that (ahg, ho) = (ah,h) for every a € My. For a € M,
n # 0, ahg € E,(H) and (ahg, ho) = 0 (= (ah, h)). Hence (ahg, ho) = (ah,h) for
each a € M.

Now define a partial isometry U on H by extending the isometric map ahgy — ah,
a € M. Then the initial subspace of U is [Mhg| and the final subspace is [Mh].

Since, for b € M, Ubahg = bah = bUahg, U € M' = R.

Since Wyahg = a(a)Wiho = ax(a)ho fora € M, t € T, Wy [Mho| = [a:(M)ho] =
[Mhy)] for each t € T. Hence W, U*UW, = U*U. Thus U*U € Ry. Let f be U*g.

It is left to show that, with this choice of U, we get M(f) = M(Eyf). For this,
note that we have:

(a)
[Mo(1 - Q)g] = (1~ Q) Mag] € 3 Bu(@)(H)

n=1

(as [Hg] = 3 720 Bn(Q)(H)).
(b) [MoQg] € Q(H).
(c) [Hog] € 372, Bn(Q)(H) (25 aBn(Q)g € Br+k(Q)(H) for a € My).
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This implies that Q(H) = Q[H*g] = Q[Mog] = [MoQg] = [Moh]. Also, for
n € Z, [Mph] = V{{[uMoh]: v € M, is a partial isometry} = (,(Q)(H). Hence
[H®g] = [H*®h]. But

M(f) = [H®f] = [H®U"g) = U*[H*g] = U*[H**h] = [H*hy],
and

f-ho=U(g-Qg)=U"(1-Q)ge U Ba(Q)(H)

n=1

=U" > DIMah] =3 DI[Muho] C 3 En(H).

Hence hg = Eof and [H* f] = [H®ho| = [H®Epf]. O
The following proposition shows the uniqueness of the above representation.

PROPOSITION 3.2. Suppose ¢ € H and g = U;f! = Uyf? such that, for
1=1,2,

(1) U; 1s a partial isometry in R with initial subspace [M f Y,

(2) [H> 1] = [H* B ) C H?.

Then UzU; and UfU; lie in Ry.

PROOF. Since g has such a representation, P(g) = > o° B, (Q) for some Q €
Py. We first claim that UQg € Eo(H), 1 = 1,2. Fix 1 = 1 or 2 and let hg
be UQg. Then hy = UrQg € Ur[H®g] = [H®f!] C H? Using Proposi-
tion 3.1(4) we see that Q(H) = [MoQg], Gn(Q)(H) = [M,Qg] for n € Z, and
[H®g] = 5% fa(Q)(H) = [HQg]. Hence [H®Eofi] = |[H> ] = U:[H*g] =
U [H*®Qg] = [H®ho| and consequently

[HE* Eof*) = [HE°[H Eof*]] = [H§®[H>®ho]] = [H§®ho)-
We then have [Moho] = [MoEo f?] since
[H®Eof'] = [MoEof'] @ [HE Eof"]
e (H*ho] = U [H*Qg] = U ([H5°Qg] & [MoQg))
= [H§ho] ® [Moho] = [H§* Eof*] @ [Moho).
In particular hy € Eo(H). Now,

fimho=Ur(1-Q)geU; Y Bu(QH) =U; Y PIM. Qg
n=1

n=1

= i P (Mho) i E.(H).
n=1 n=1

Hence hg = Eo f*.

Let F! be the projection onto [Myho). Then U;[Mpho] = [MnQg] = Br(Q)(H).
Hence U;FiU} = B,(Q). As the initial subspace of U; is (M f*] = [M[H*> f*]] =
[M[H®hg)] = [Mho] = 3322 Fi(H), U;E,U} = U;FLU} = Bn(Q). In partic-
ular U, E,U; = UzE,U; for each n € Z. Consequently UyW U = U;W, U5 for
each t € T and U;U,W U;U, = UsU,W,UsU,. But UyU;,U3Uz € Ry, hence
UsU Wy =W UsUy,t € T. Thus UsU; € Ry. O
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LEMMA 3.3. Suppose g lies in H?. Then there is a partial isometry U € H®(y)
such that U*U € Ry, U*g € H? and M(U*g) = M(EoU*g).

PROOF. Since g € H?, P(g) € P; and we can construct a partial isometry U € R
as in Proposition 3.1. It is left to show that U, as constructed there, lies in H* (7).
Let P(g) be 3o Bn(Q), for some Q € P, then, from the way U was constructed,
UEof = Qg where f = U*g. Therefore UM,Eyf] = [M,Qg) C [M,H?] C
P,(H). Since the initial subspace of U is ) . @[MnEof], UE,U* < P, and,
consequently, UP,,U* < P,. Hence U € RN Alg{P,: n € Z} = H*(y) (by Lemma
26). O

COROLLARY 3.4. Let g be in H?. Then there are partial isometries U €
®(5), V € H®(a), such that:
(1) U*g and V*g lie in H?.
(2) UU*g=VV*g=g.
(3) U*U € Ry, V*V € Mp.
(4) [H=(c)U"g] = [H*(a) EoUg] and [H(~)V"g] = [H*(7) EV *g]-

PROOF. The assertions for U follow from Lemma 3.3 and the assertions for V'
follow from Lemma 3.3 applied to {R,~} in place of {M,a}. O

Let M be the algebra L>°(T) acting on L%(T) and let {o;}:cT be defined by
translations. Then H(a) is the classical algebra H*°. In this case M = R
and @ = 4. An element f € H? is called outer, in this case, if [H®f] = H?
But this is equivalent to [H®f] = [H®Eyf] # 0 (note that in this case, Eof
is just the zeroth Fourier coefficient of f). Hence Lemma 3.3 is the inner-outer
factorization in the classical case. It is also known, in this case, that f € H?
is outer if and only if exp [log|f|dt = |Eof| # 0. Since, by Szégo’s theorem,
exp [log|f|dt = inf{||f — g|: g € [H§f]}, f € H? is outer if and only if |Eo f| =
inf{||f — gll: g € [H§°f]} #0.

In our more general setting we say that f € H? is R-outer if [H®(a)f] =
[H®(a)Eof] # {0} and M-outer if [H™®(y)f] = [H*®(y)Eof] # {0}. Also we
say that U € R is R-inner if U is a partial isometry in H*°(~) with U*U € Ry
and V € M is M-inner if V is a partial isometry in H%°(a) with V*V € M,.
Then Corollary 3.4 presents the M-inner-outer and the R-inner-outer factorizations
(which are the classical inner-outer factorization if M = L*°(T) and a acts by
translations). The next proposition is analogous to the characterization of an outer
function, mentioned above, in the classical case.

PROPOSITION 3.5. For f € H? the following conditions are equivalent:

(1) f is R-outer (resp. f 1s M-outer).

(2) [H*®(a)f) = NoH?, where Ny is a nonzero projection in Ry (resp. [H®(v)f]
= N0H2, 0# Ny € M()).

(3) |Eof|| = inf{||(1-a)f||: a € H§®(a)} # O (resp. | Eof| = inf{||(1-a)f||: a €
H§e ()} #0).

PROOF. It will suffice to prove the R-version.
(1) smplies (2). Suppose f € H? is R-outer. Then [H®(a)f] = [H®(a)Eof] =
Yo o DIMREyf]. Let Fy be the projection onto [MoEof]. Then B,(Fo)(H) =
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[MnEof] for all n € Z. Let Ng be Y 22 B,(Fp). Then

Brm(No) = fm Z Brnim(Fo) = fmNg for each m € Z.

Hence Ny € R. Also, as (3,(Fp) < E,, for each n € Z, Ny € {E,: n < Z}'. Thus
No € Ro. Now NoH? = 3> B,(Fo)(H) = [H*® () Eof] = [H®(a)f].
(2) implies (3). Suppose [H*®(a)f] = NoH?. Then

[H§® () f] = [H§® () [H* () f]] = [H§* () NoH?] = NoH?.

Hence
inf{[|(1 - a)f||: a € H§®(a)} = inf{||f - g]|: g € NoH?}.
Since f = Nof,

inf{||(1 - a)f: a € H§*(a)} = inf{||f - g]: g € H} = || EofII-

If |Eof|| = 0 then f € H? and [H®(a)f] C HZ. Hence NoH? C HZ. But
NoEy C Ep (as Ng € Rp). Therefore

Y NoEn = Z NoBn(Eo) = Z Bn(NoEo) = 0.

n=-—oo n=-—0oo n=-—oo

(3) implies (1). Suppose ||Eof|| = inf{||(1 — a)f||: a € H$*()}. Let P be the
projection onto [H§®(a)f]. Then P < P, and (1— P)f = Eof + (P1 — P)f. Hence

(inf{||(1 - a)fl: a € H(e)})* = |(1 = P)SI|* = | Eo fII* + (P — P)SII*.

Thus Pif = Pf and Eof = (1 — P)f € [H®(a)f]. It is left to show that
f € [H®(a)Eof]. Let F,, be the projection onto [M,,Eof]. Then F, < E,,

and ) oo o Fm(H) = [H®(a)Eof]. Suppose Enf € [H*®(a)Egf] for all 0 <
m < 7 (note that Eof € [H®(a)Eof]). Then for each a € H§(a), Ejaf =
S EjaEnf = Y EjaEnf. But aEnf € [H§(a)[H®(a)Eof]] C

m=—00

[H>®(a)Ep f]. Hence
EjaEnf € E;[H®(c)Eof]) = E; Y Fu(H) = F;(H) C [H*(a)Eo f].

Therefore Ejaf € [H*®(a)Eof]. This induction argument shows that Ejaf €
[H®(a Eof] for all a € HO (a), 7 > 0. Hence [H()f] C [H®(a)Eof]. Since
f=Eof + Pif = Eof + Pf and Pf € [H§°(a)f], we are done. O

COROLLARY 3.6. Suppose g € H. Then the invariant subspace [H*(a)g] can
be written as the orthogonal sum of a reducing subspace Mg (1.e. aMo C Mg for
all a € M) and a space of the form UH?, where U 1is a partial isometry in R with
U*U € Ry.

PROOF. Let P(g) be the projection onto [H*°(a)g]. Then

Zﬂn +FO,
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where Fj is a projection in R, orthogonal to D> B,(6(P(g))). Hence

[H(a)(1 — Fo)g] = (1 - Fo)[H®g] =Y _ Bn(Q)(H)
n=0

(for @ = 6(P(g)) € P1). Hence (1 — Fy)g has a representation (1 — Fo)g = Uf as
described in Proposition 3.1. Thus

[H(e)(1 ~ Fo)g] = U[H*(e)f] = U[H*(0) Eof] = UH?

and
[H®(a)g] = [H®(a)Fog) ® UH? = Fo(H)®UH?. DO

We now define a € M (resp. a € R) to be M-outer (resp. R-outer) if af is
M-outer (resp. R-outer).

PROPOSITION 3.7. For a € M the following conditions are equivalent.

(1) There is a partial isometry U € M such that U*a € H®(a) and UU*a = a.

(2) Let P be the projection onto [aH?]. Then P = Y.° (n.(Q) for some R-
wandering projection Q € Ry.

(3) NalaPa(H)) = {0).

(4) There is a partial isometry U € M such that U*a € H*(a) is M-outer and
UU*a = a.

Moreover, if (4) is satisfied and Uy, U, are two such partial isometries such that
the initial subspace of U; is [UaH), then UtU; and U3U; lie in M.

PROOF. Note that [aH?] = [aH®(v)¢] = [H®(v)a€] and [U}aH] = [U}aRE] =
[RU?aé]. Hence the equivalence of (1), (2) and (4) and the uniqueness statement
follow from Propositions 3.1 and 3.2 (with {M, a} replaced by {R,~}). We now
show that (2) is equivalent to (3). For this note that P = Y > 7n(Q) for some
R-wandering projection Q € Ry if and only if A,,_g V,.>m n(P) = 0 (Lemma 2.5).

But
V nn(P) = \/ (\/{uPu*: u € R, is a partial isometry})
n>m n>m
= \/ uPu”: u is a partial isometry in U M, ;.
n>m
Since R7[m, 00) is generated by the partial isometries in Uan M, (as a o-weakly

closed linear space), \/,,>,, 71n(P) is the projection onto
[R™[m, 00) P(H)] = [R[m, 00)[H**(7)a§]} = [R"[m, 00)al] = [aPm(H)]

for m > 0. Hence A,,_o Vpsm Mn(P) = 0 if and only if N, ,[aPn(H)] = {0}.
Since ,,ez[aPm(H)] = {0} if and only if (5 olaPm(H)] = {0}, we are done. O

The previous proposition presents the factorization for operators a € M and
its uniqueness. Consider now the nest algebra A = Alg{P,: n € Z} in B(H). In
[3, Theorem 3.3] Arveson presented a factorization for operators A in B(H) (that
satisfy a certain condition) as A = UB, where U is a partial isometry in B(H) with
U*U € AN A* and B is outer (in the sense that [AP,(H)] = [AH] N P,(H) and
the projection onto [AH] lies in AN 4*). The condition for A € B(H) to have such
a factorization is (), [AP,(H)|] = {0}. Hence Proposition 3.7 shows that a € M
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satisfies our condition for factorization if and only if it satisfies Arveson’s condition
for factorization (with respect to A = Alg{P,: n € Z}). The next result shows that
b€ H*(a) is M-outer if and only if it is outer in Arveson’s terminology.

PROPOSITION 3.8. For b€ H®(a) the following statements are equivalent:
(1) b s M-outer.

(2) [bHQ] = [eo(b)H?] # {0}.

(3) [bPo(H)] = [e0(b)Pn(H)] for each n € Z and [eo(b)H?] # {0}.

(4) [bH?] = QH? for some nonzero projection Q € Mp.
(
(6

5) 0 # |leo(b)¢]| = inf{||b¢ — glI: g € [bHE]}.
) The projection onto [bH| lies in My and, for eachn € Z, [bP,(H)] = [bH|N
P.(H).

PROOF. The equivalence of (1), (2), (4) and (5) follows from Proposition 3.5
with the observations that

[bH?] = [bH*(v)€] = [H*(7)b¢],
[eo(D)H?] = [eo(B)HZ(7)€] = [H(7)e0(b)€] = [H* () EobE],

and
[bHG) = [bHG®()€] = [Hg® (v)bE).

(2) implies (3).
[pPn(H)) = [bR™[n, 00)¢] = [R7[n, 00)b¢] = [R”[n, 00)[H>(7)b¢]]
= [R"[n, 00)[H™ (v)eo(b)¢]] = [R™[n, 00)eo(b)€] = [e0(b) Pr(H)]-

(3) implies (2 ) is trivial.

(©) mplics (6). bH] = VIBE(): 0 € Z) = Vila(OP(H): n € 2) =
[80(b)H ]. Hence the projection onto [bH ] lies in My. Also [bH|NP,(H) = P,[bH] =
Prleo(b)H] = [e0(b) Pn(H)] = [bPn(H))-

(6) implies (4). Let @ € My be the projection onto [bH]. Then [bH?| = [bH] N

Po(H) = Q(H)N Po(H) = QPy(H) = QH?. O

LEMMA 3.9. Suppose a € H®(a) is invertible; then a is M-outer if and only
ifa~! € H®(a).

PROOF. Suppose a~! € H>™(a); then [aH?] = H? and, hence, a is outer
by Proposition 3.8(4). Suppose now that a is invertible and M-outer. Then

= [aH] = [eo(a)H]. Hence & € [eo(a)H] and, as Poé = &, € € Pyleo(a)H] =
[eo(a)H?] = [aH?]. Hence there are {z,} C H*(a) such that az,& — ¢ and,
by applying a~!, z,& — a~l¢. But z,& € H?, hence a='¢ € H2 For n < 0,

en(@ )¢ =Ena 1€ =0. Thusa™! € H®(a). O

The following result was proved in (3] for nest algebras and in [1] for maximal
finite subdiagonal algebras.

THEOREM 3.10. Suppose a € M 1is invertible. Then we can write a = ub,
where u is unitary in M and b€ H*(a) N H*(a) ™!

PROOF. First note that if z € (,,[aPn(H)] = N, {ay: y € Pa(H)}, then a~ !z €
N, P.(H) = {0}. Hence ), [aP,(H)] = {0} and we can apply Proposition 3.7 to
write a = wc, where w is a partial isometry in M, w*wc = ¢ and ¢ € H®(a) is M-
outer. Now let €g(c) = v|eg(c)| be the polar decomposition of €o(c), let b € H*®(a)




ANALYTIC OPERATOR ALGEBRAS 809

be v*c, and let u be wv. The final projection of v is the projection onto [eg(c)H].
The initial subspace of w is [cH] and, since ¢ is M-outer, [cH| = [eo(c)H]. Therefore
u = wv is a partial isometry in M with initial subspace [|eo(c)|H] and final subspace
[aH]). We have a = we = bu and [bH?] = v*[cH?] = v*[eo(c)H?] = [eo(b)H?).
Hence b is outer and has the further propety that eq(b) > 0.

Now note that, since a = ub is invertible, b is bounded below. Hence Kerb
(= {z € H: bz = 0}) = {0} and, for each closed linear subspace K C H, {bz: z €
K} is closed. If gg(b)x = 0 for some z € Eo(H), then 0 # bz € H2 N [bH?| = [bHE]
(as b is M-outer) and, since [bHZ] = {bz: x € HZ}, there is some y € H? such that
bz = by. Since Kerb = {0}, z = y = 0. Hence Kereo(b) = {0}.

Let y be in [go(b)Eo(H)] C [e0(b)H?] = [bH?| = {bz: 2 € H?}. Then y = bz
for some z € H?. But y € Eo(H), hence y = ¢9(b)Epz € {eo(b)2: z € Eo(H)}.
Consequently the range of ¢o(b), as an operator on Eg(H), is closed. We know
also that Kereg(b) = {0} and that eo(b) > 0. Therefore e¢(b) is invertible. Thus
H = [eo(b)H] = [bH] = {bz: = € H}. Hence b is invertible. By the previous lemma
be H®(a)NH*®(a)"'. O

COROLLARY 3.11. Every invertible positive operator a € M can be factored in
the form a = b*b, where b€ H®(a) N H*(a) ™.

PROOF. Let a!/2 be the positive square root of a. Then a!/? is invertible and by
the last theorem we can write a'/? = ub for some partial isometry « € M such that
u*ub=band b€ H®(a) N H*®(a)~!. Hence a = a'/2a'/? = b*u*ub = b*b. O

Note that, although most of our analysis depends on the special representation
of M that was chosen (with a cyclic and separating vector ¢ and such that {M, o}
is a canonical pair), Theorem 3.10 and Corollary 3.11 do not depend on the repre-
sentation and hold in general.

4. An expectation and its application. In this section we construct an
expectation from the von Neumann algebra Ry (that contains M) onto M that
maps the nest subalgebra Ry N Alg{P,: n € Z} onto H*(a). We will apply it to
prove two results (a distance estimate and an interpolation result).

Before constructing the expectation we want to replace a by another flow, &,
with a special property. For this we will need the following discussion which will
be summarized in Lemma 4.5.

For n € Z let ¢,, € Z(Mp) be defined as follows

fn Zzl_:lo my n> 0,
Cpn = O, n= 0»
— o fm, n<O.

Let Wy, t € T, be the unitary operator Y .o _
(15, Lemma 3.8] that {W,;};cr implements a flow & on M with a;(a) = exp(itcy,)a
for a € M,,.

Let ¢, = Zz=_°° mhp, n be the spectral decomposition of ¢,, n € Z. Then
hm,n # 0 only if 0 < m < n. Also note that hg,, = 1— f,. For a € M,, a = fpa
and one easily gets from this that sps(a) C {1,2,...,n} (if n > 0), sps(a) = 0 (if
n = 0) and spz(a) C {n,n+1,...,—1} (if n < 0). The following lemma follows
immediately.

exp(ttcn)E,. Then, it was shown in
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LEMMA 4.1. H®(a) = H®(&), H§®(a) = H®(&) and M&({0}) = My. O
We have

Wt Zexpztcn n—EZexpztm mon "_Zenmzhmn -

Hence, if we write E, for the projection onto M &({n}) (to be denoted by M,),
then {E,} are the spectral projections of W; and we have

= Z hm,n En

(In fact By = 300 AmnEn if m > 0, By = 35 hmnEy if m < 0 and
Eo = Eo)

LEMMA 4.2. For jmn€ Z withm # n, j # 0, we have h; mhjn = 0.

PROOF. We will assume that j > 0. The proof for j < 0 is similar. As 57 >0
we can suppose that m > n > 0. Let q be h; nh; . Then ¢ng = cng = jg and

q < fufm. But then
m—1 n—1 m—1
(z f,-) ‘- (zfi) - (}: fi)q
1=0 1=0 =n
n—1 n—1
<Efi>Q+fnq= <Zfi) g+q
=0 1=0

and (Zz "o fi)a = 7q. This leads to a contradiction if ¢ #0. O

LEMMA 4.3. (1) 37 1hm]>§;;‘1 Rm+1,; for n >0 and m > 0.
(2) Z;n m— IJ_Z] —nhm,j forn <0 and m <O0.

PROOF. We will prove assertion (1) The proof of (2) is similar and will be
omitted. Fxx n>0,m>0and n>j>1 Then ¢cjhmyr; = (Mm+ 1)hmyy;. As

= f; 970 fx, we can wrlte hm+1; as a sum of orthogonal projections {ps}]_,
in Z(Mo) such that f](zk —o fK)Ps = (m+ 1)p, and f; Zk_ofk)Ps = mp,. Hence
fifs—1ps = ps and co_1ps = fo1(is fi)ps = fi(Xiep fe)ps = mpz. Thus
ps < hm,s—l < Zz:l m,i- As hm+1,] = 23_2 Ps» hm+l,] < Zz:l m,i- Since this
holds for each 1 < 5 < n we are done. O

Now recall that E =Y, hmnE, and let fn be the projections (in Z (M) =

Z(Mp)) defined by fn = sup{uu*: u is a partial isometry in M,}, n € Z. By
Lemma 2.7, fn = c(E ) and, thus, fn = Z hnjf;.

Forn > 0, fn = Ygeihng (as hnjy = hn;f; for n # 0) and for n < 0,

fn = ]—21_ oo Pnj. Also fo = I. Using Lemma 4.3 we immediately have

Jq

v

LEMMA 4.4. Forn >0, f~n+1 < fn and for n <0, fn an+l-

When a canonical pair {B,n} satisfies the property of Lemma 4.4 (for the cor-
responding projections) we say that it satisfies the roof condition.
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Now let P, be Z;‘in Ej for n € Z (or, equivalently, P, is the orthogonal pro-
jection onto [M&[n, 00)¢]). Then, for n € Z,

=J§;Ej S0 Y hiE = ;(Zh, )

—nz

Fix n > 0 and let r,-=2- o hjqand ¢ —'r,+V r;(1 = f;) for i > n (where
t, =75). Then, as E; < f, for each 7 € Z,

ﬁ’n = Z t,E;

From the definition of {c,, }, we have r; < f; and f; fi ki < riyk, for 2 > 0 and

k > 0. Hence, for: >nand k > 0, r; < ripi+ (1 — fiyr)rsi. It follows that ¢; < ¢,
for > n. Hence for n > 0,

(%) Pn:tnpn+(tn+l_tn)Pn+1+"'
For n < 0,

Pn=;(§h,,~)& i(i )E¢+Pn

1=—00

n—1 -1
Z (Z hj)i) E,+P,.

t=—00 \Jj=n

Let r; =Z]-_1nh“ Then we have r;_, < f;_x and f;fi_xri_, <rlfori<0,k>0.
Hence fir;_, <riand r,_, <r,+ (1 — fi)ri_.. Let t. be 7. +(1—f,)(VJ__c>c> ’
and, then, t; < t;,, for ¢ < -2 because r; < 7}, +( f,Jrl)rz < t;,, and, for
j<i,
(l—fi)’l‘;- S (1 fl) 1+1+(1_f’t)(1_f1+1)r <tz+l
As r}E; = t.E; we have,
n—1
(#%) Po= Y GEi+Py= (1=t )Pyt (t_;—t' 3)Puy+(tg—t_3)Pag+---.
1=—00
We wish now to get expressions similar to (*) and (**) with the roles of {P,}
and {P } mterchanged Since E,, = =Y hmanEn and by, jhm i = 0 for j # k,
we have E,E, = hmnEn = hm ,.Em. Hence E, = Y hmnEm and P, =
Yen(Xn P En) =3, (52n hom,j) )Em. Now fix n > 0. Then

Jj=n

Let gm, for m > 0, be 1 — Z hm,j. Then gmEm = 0 because E
o 1hmnEn and

n—1 n—1 00
Im + th,j =1- Z hm,j <1l- Z hm+1,j =Qgm+1 + Z hm‘jy
j=n 1=1 7=1 j=n
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where the inequality follows from Lemma 4.3. Let s, be g, + Z hm,j, m > 0.
Then

P, = Z SmEm = s1Py + (s2 — 1) Py + (53 — 59) Py + - -
m=1
forn > 0.
Now fix n < 0. We have

Let s}, be E n Pm,; for m < 0. Then we have, by Lemma 4.3, that s, _; < s,..
Hence

Po=(1-s_)Po+ (s, =5 o)P1+ (s g—53)P o+ - +s.P,
for n < 0.
We summarize all this in the following

LEMMA 4.5. There is a canonical pair {M &} with the following properties:

(1) H*(a) = H*(&) and M*({0}) = Mo (= M~({0})).

(2) & satisfies the roof condition (see Lemma 4.4).

(3) Forn e Z, P, = Yo tmnPn, where {tm n}2__ . is an orthogonal family
of projections in Z(My). Forn>0, P, < P,.

(4) Forn € Z, P, = $m.nPr, where {s,nn )}, is an orthogonal family of
progections in Z(My). Forn <0, P, < B,.

Consequently,

(5) RNAlg{P,:n€ Z} = RN Alg{P,: n € Z}.

(6) Mg N Alg{P,:n€ Z} = M, NAlg{P,:nc Z}.

(Here P, is the projection onto [M%|n,00)¢]).

Let B be a von Neumann algebra and let C be a von Neumann subalgebra of B.
An ezpectation of B onto C is a positible linear map 1 from B onto C such that
Y(I) = I and ¢(bc) = ¢(b)c for every be B, c € C.

If ¢: B — C is an expectation onto C, then 9 is bounded (in fact ||¢| = 1),
Wo1 =1, C is the set of fixed points of 1 and (b)*¥(b) < ¥(b*b) for b € B (see
[1, Appendix] for details).

THEOREM 4.6. There exists an expectation ¢: My — R (resp. ¥': Ry — M)
such that

Y(MiNAlg{P,:neZ})=RNAlg{P,:ncZ} (=H™(v))
(resp. ' (Ry N Alg{Pp:n€ Z}) = M NAlg{P,: n€ Z} = H*®(a)).

PROOF. It will suffice to prove the existence of ¢. Using Lemma 4.5 (and its
notations) we have M%({0}) = Moy, My N Alg{P,: n € Z} = M| N Alg{P,: n € Z}
and RN Alg{P,:n € Z} = RN Alg{P,: n € Z}. Hence we can prove the theorem
for & in place of a or, equivalently, assume that « satisfies the roof condition (i.e.,
frni1 < fnform >0and f,_y < f, for n < 0). In the rest of the proof we will
assume that o satisfies the roof condition and we write fi for A{fn: n > 0}, f-
for A{fn:n <0} and fo for fy V f_.
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Since Z is an amenable group we can assign to each g € [*°(Z) a number
m(g) € C such that g — m(g) is a linear functional, inf{g(n): n € Z} < m(g) <
Sup{g(n): n € Z} for each real valued g € [°°(Z) and m(gx) = m(g), where
gk(s) = g(k+s), k, s € Z. In fact, we can choose a state p on the algebra [*°(Z)/co
and let m(g) be the value of p on the coset, in [*°(Z)/co, of ¢’ € 1°°(Z, ), where
g(n) = (1/(2n + 1)) > _,9(1), n > 0. If for some real valued g € [*(Z),
g’'(n) > a(n) for n > 0 and a(n) — ap € R as n — oo, then m(g) = p(¢’ + co) >
pla + co) = p(ao + co) = ao.

Since |g'(n)| <Sup |g(2)|, n > 0, we see that

Im(g)| = lo(g" + co)l < llg’ + coll < llglloo-

Now let T be an operator in My and z,y vectors in H. Then g, 4(n) =
(Bn(T)z,y) defines a function g, 4 € 1°°(Z) (as ||Bn(T)|| < ||IT|). For each z,y € H
let [z,y] be m(gz,y). Then

llz, 9]l = Im(gz,y)| < llgzylloo < 1T 1] 1y]l-
Hence there is an operator 1o(T) on H such that (¢o(T)z,y) = m(gs,y) for z,y €
H, and |%o(T)|| < ||T|-

For a unitary operator u € My, (u*¢o(T)uz,y) = M(Guzuy) = M(9z,y) =
(Yo(T)z,y) as Guz,uy = (Bn(T)uz,uy) = (ubn(T)z,uy) = gsy, for all z,y € H.
Hence o(T) € M.

To find Bm(¥0o(T)) for m € Z, consider the operator Vrn kU kBm (Yo(T)) =
U, k%o(T)vy, , for k > 1. Then

(Vm k%0 (T)vm k2, y) = (Yo(T)vm kT, vy kY) = m(g),
where
9(n) = (Ba(T)050 2, Vi ) = (U BTV k2, Y) = (U Vi B (B (7)), )
= (fmBm+n(T)T, Vm kVp kY) = (Brmtn (T)T, Vm kVp, kY)-
Hence, as m(g) is translation-invariant,
(O 0 (T3 2, 1) = (DT, U 05 49) = (U Vi Y0(T), ).

Since this holds for all z,y € H, vm kv}, 1Bm(%o(T)) = vm,kv;‘n,kd}o(T) for each

k > 1. Hence Bm(%0o(T)) = fmBm(¥o(T)) = fm¥o(T). By Lemma 2.4(4), 4o(T) €
R.

Since each S, is positive and linear and so is m, 1 is a positive linear map from
Mj into R.

Suppose T € My N Alg{P,: n € Z}. Then, for n,m € Z,

ﬂn(T)P =,3n(T)fn =,3n(T)ﬁn(Pm n)_ﬂn(TP —~ ) ﬂn( m— nTPm n)
= Bn(Pm—n)Bn(T)Bn(Pm-n) = PmBn(T)Pm.

Consequently, for z,y € H and m € Z, (¢o(T)Pnz,y) = m(g), where g(n) =

(Bn(T)Pmz,y) = (Bn(T)PrmX, Pmy). Hence ($o(T)Pmz,y) = (bo(T)Pmz, Pny).
It follows that

Yo(MyNAlg{P,:n€ Z}) C RNAlg{P,: n€ Z}.




814 BARUCH SOLEL

Suppose now that T' € R and S € My. Then, for n € Z, 3,(TS) = TB,(S) and,
therefore (1o(T'S)z,y) = m(g), where g(n) = (TB.(S)z,y) = (Bn(S)z, T*y). Thus
Yo(T'S) = Teo(S).

Note, however, that 19 need not be an expectation since we might have o(I) # I
(one can easily find examples where sp(a) is finite and then vy (I) = 0 since 3, (I) =
0 for all but finitely many n’s). As I € Alg{P,} N (Alg{P.})*, ¥o(I) € Alg{P,,} N
(Alg{Py,})* = {Pp: n € Z}'. Hence vo(I) € Ry. Also ¢o(I)T = ¢o(T) = Teho(I)
for T € R; hence yo(I) € M N Ry = Z(Mp) N Ry.

We now let g; be f;—fi11if¢ > 0and f;y1—f;if1 <0. Then I = Y22 i+ f+ =
Zi_:l_oo gi+ f-. For >0, 7 <0 let g;; be gig;. Then

Z qij = Zqz (ZQJ) Z‘h[ f 1_f+)( f—)=1_foo-

12>0,7<0 >0 7<0 120
Also note that, for© > 0, 7 < 0 and n € Z,

*) Gjfn = (fi = fix1)(fix1 — fi)fn = {

0 ifn>iorn<y,

qij if j<n<.

Now, for fixed 1 > 0, j < 0 and z,y € H, (g;;%0(I)z,y) = m(g), where g(n) =
(qijfnzyy>’ But

N
1 17
Z (qukz y) = <q1'_7'13,y> —0 as N — oo.
IN+1, &~ 2N +1
Hence (g;;40(I)z, ) m(g) = 0. This holds for all z,y and, therefore, g;;1o(I) =0
for each 7 > 0, 7 < 0. Summing over 7,7 we find that (1 — fo)®o(I) = 0. Hence

Yo(I) = footbo(I).
For z € H we have (yo(I)f+z,z) = m(g), where g(n) = (fnf+z,z). For n >0,
g(n) = (f+z, ) and, therefore

N
/

g'(

L (N +1)(fy2,2) — §<f+a:, z) as N - co.

>
T 2N +1

Thus (Yo(1)f+2,2) > §(f+%,3). Hence vo(I)f; > 4 f. Similarly go(1)f- > -
and consequently foo%o(I) > 3 foo. In particular fo, is the range projection of i (1)
(hence lies in Ry). Therefore there is some h € Z(Mp) N Rp such that (1) = foo
(and h > 0).

Let ¢, (T) be ho(T) for each T € M. Then ¢, has the following properties
(which follow from the properties of ¥ and h):

(1) ¥ is a linear, positive map from M}, into R (note: ¢, (T) = h'/24o(T)h/2).

(2) ¥1(ST) =1(S)T for T € R, S € M.

(3) ¥1 maps M{ N Alg{P,: n € Z} into RN Alg{Pn:n € Z}.

(4) Y1 (T) = fooT for T € R.

Next we construct another map, 5, from M} into R with properties (1)-(3) as
above (with 1; replaced by ) and

(4") ¥2(T) = (1 = foo)T for T € R.
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The sum 9; + 93 is the required expectation from M} into R.

Now fix T € My, ¢ > 0and j < 0. Let T;; be (1/(i—7)) > no _ . Ba(T)gi;- By (*)
the sum has at most 7 — j nonzero terms and it defines an operator T;; € ¢;; M{g;;
(note that B.(T)gi; = ¢ijBn(T)). Define 2(T) to be $2(T) = 3,50 icoTij- As
{gij: 1 > 0, j < 0} is an orthogonal family of projections, and T;; € ¢;; M{gi;,
¥2(T) is a well-defined operator in M{ and 92(T) = (1 — foo)¥2(T)(1 — fo) (since
1- f oo = Z qi5 )

FormeZ, T € My, i>0and j <0 we have

1
i—J

1

,Bm(Tij) = 'i—j

f: ﬂmﬂn(T)ﬂm(Qij) = fm

Z Brtm(T) B (Qij)-
But
Bm(ai5) = Bm(9i95) = Brm((fi = fix1)(fi+1 = 7))
= fm(fi+m = firm+1)(fitme1 = fiem)
_ { fmlitmjtm Hi+m>0, j+m <0,
0 otherwise.

Hence, for —1 < m < —j,
1
Bm(Ti;) = fmm ZﬁM+n(T)‘1i+m,j+m = fmTitm,j+m
n

and for m > —j or m < —1, B (T3;) = 0.
Suppose that m > 0. Then (by (*)) fmGitm,j+m = 0 if —m < i < 0 and,
therefore,

Bn@2(T) = Y frmTipm,jtm

120,5<0

- 3 ImTitmjtm = fmt2(T).

i+m2>0,7+m<0

Similarly 8., (¥2(T)) = fm2(T) for m < 0. Hence ¥%2(T) € R for each T € M.
Suppose now that T € My N Alg{P,: n € Z}. Then, for i > 0, j < 0, T €

Alg{P,: n € Z} (since, as was shown before, B,(T) € Alg{P,: n € Z} for each

m € Z and ¢;; € Mp). Hence ¢2(My N Alg{P,: n € Z}) C RN Alg{P,: n € Z}.
For T € R, BN(T) = f,T for each n € Z. Hence

1 1
;= — anTQij = anQijT
l-j n z—] n

for each ¢ > 0, j < 0. Using (x),

. d
T; = =7 Z ¢;; T = q;;T.
n=j+1

Hence ¢2(T) = (1 - foo)T.
Therefore 1) satisfies the following properties:
(1') 92 is a positive linear map from M, into R.
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(2") ¥2(ST) = ¢3(S)T for Se My, TE R as
(ST)qU 1_.7 Z,Bn ST (h] = 1 - Zﬂn S)TQzJ = 1/)2( )Tq11'~

(8') Y2(My N Alg(P,:n € Z}) C RN Alg{P,:n € Z}.

(4') ¥2(T) = (1 = foo)T for T € R.

Then ¥ = 91 + 12 is the required expectation. O

Suppose Ry is an injective von Neumann algebra. Then there is an expectation
¢ from B(H) onto Ry. Since {P,: n € Z} C Ry, ¢ maps Alg{P,: n € Z} onto
R{N Alg{P,: n € Z}. Let ¢o be the map ¢’ o ¢ (where ¢’ is the expectation from
R}, onto M whose existence was proved in Theorem 4.6). Then ¢ is an expectation
onto M and ¢o(Alg{P,: n € Z}) = H®(a).

COROLLARY 4.7. Suppose Ry is injective. Then, for a € M, dist(a, H®(a)) =
(1 — Po)aPy]|. (Here dist(a, H*(a)) is inf{||a — b||: b€ H®(a)}.)

PROOF. As Arveson shows in [3], for any algebra A (C B(H)) and operator
a € B(H), dist(a,A) > Sup{||(1 — P)aP|: P € Lat A} (where Lat = {P: P is a
projection such that PbP = bP for all b € A}). Hence
(1 = Po)aPo|l < Sup{[|(1 - Pn)aPn|: n € Z}
< Sup{||(1 — P)aP|: P € Lat H* ()} < dist(a, H*®(a)) for a € M.

It will suffice, therefore, to show
(1 = Po)aPo| > Sup{||(1 — Pn)aP,|: n € Z} > dist(a, H*(a)).

Let ¢o be the expectation from B(H) onto M as in the discussion preceding this
corollary. By Arveson’s distance formula (3],

dist(a, Alg{Pn: n € Z}) = Sup{||(1 — Pr)aP,|: n € Z}.

Let us write t for the right-hand side of this equation and, for ¢ > 0, we can
find ac € Alg{P,: n € Z} such that ||a — a.|| < t + €. Applying ¢ we get
lla = do(ae)ll = ll¢o(a — ac)ll < lla —ac|]l < t+e. As ¢o(ac) € H*®(a) and, the
choice of € > 0 is arbitrary, we have dist(a, H*®(a)) <t

Now fix € > 0. Then there are n € Z and z € P,,(H) such that ||(1 — P,)az| >
t — e and ||z|| < 1. Let F be the orthogonal projection onto [H*(a)z]. Then
F<P,andt—e<|(1- P,az|| <||(1- F)aFz|.

By Corollary 3.6 there is a partial isometry U € R such that U*U € Ry and
F =UPyU* (since F < P,,, F € P3). Hence

t—e<||(1-F)aFz| = ||(1 - UPRU*)aUPoU*z| = |U(1 — Po)U*aUPyU" z||
= lU(1 - Po)aRoU z|| < ||(1 - Po)aPoll.
Since € > 0 was arbitrary, t < ||(1 — Py)aPp||. O

COROLLARY 4.8. Suppose R} s injective. Let {a;: 1 < ¢ < N} in H®(a)
satisfy, for some € > 0,

N

DI = Po)asz||* > €2[|(1 — Po)z)?

=1
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foralln € Z, x € H. Then there are {b;: 1 <1 < N} C H®(a) (that can be chosen
so that ||b;|| < 4Ne~3 if |la;|| < 1 for each 1 <1 < N) such that Zf’:l bia; = 1.

PROOF. Consider {a;}¥ , as elements of Alg{P,: n € Z}. Then by [3, Theorem
4.3) there are {b/}N ;| (with ||| < 4Ne~3 if ||a;|| < 1 for each 1 < i < N) such that
S-bla; = I and {b}}N, C Alg{P.: n € Z}. Applying the expectation ¢o (from
B(H) onto M, as in the discussion preceding Corollary 4.7) we get > ¢o(b})a; =T
and ||@o(;)|| < ||b;||. Let b; be ¢o(b;) and we are done. O

REMARK. Note that Ry is injective if and only if M is. Indeed, if M is injective
then so is R. But Ry = €o(R) and consequently Ry and R{ are injective von
Neumann algebras. On the other hand if Ry is injective, then it follows from
Theorem 4.6 that M is injective too.
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