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ANALYTIC OPERATOR ALGEBRAS

(FACTORIZATION AND AN EXPECTATION)

BY

BARUCH SOLEL

ABSTRACT. Let M be a <x-finite von Neumann algebra and {crtjtgT a periodic

flow on M. The algebra of analytic operators in M is {a € M: spQ(a) Ç Z+}

and is denoted H°°(a). We prove that every invertible operator a G H°°(a)

can be written as a = ub, where u is unitary in M and 6 £ H00(a)nH°°(o:)_1.

We also prove inner-outer factorization results for a G H°°(a).

Another result represents H°°(ot) as the image of a certain nest subalgebra

(of a von Neumann algebra that contains M) via a conditional expectation.

As corollaries we prove a distance formula and an interpolation result for the

case where M is an injective von Neumann algebra.

1. Introduction. In this paper we intend to study some aspects of analyticity in

operator algebras. In [1] W. Arveson presented the theory of subdiagonal algebras

as a noncommutative analogoue of the theory of weak* Dirichlet algebras.

In [6] R. Loebl and P. Muhly have shown that some subdiagonal algebras arise as

algebras of analytic operators with respect to a flow on a von Neumann algebras.

Similar results were obtained independently by S. Kawamura and J. Tomiyama

in [5]. Let M be a von Neumann algebra and {at}teR a c-weakly continuous

representation of R as *-automorphisms of M (i.e. a is a flow on M). Let i7°°(a)

be the set {a G M: spQ(a) Ç [0, oo)}, where spQ(a) is Arveson's spectrum of a with

respect to a.

It was shown in [6] that H°°(a) is an algebra and if M is R-finite, then H°°(a)

is a maximal subdiagonal algebra. This class of algebras, obtained in this manner

from flows on von Neumann algebras, contains the analytic crossed products (also

called nonsefladjoint crossed products) and the nest subalgebras (see [6] for details).

The structure of these algebras P°°(a) was further studied by several authors (see

[7-15]).
In this paper we continue the study of the algebras H°°(a) with the assumption

that the flow a is periodic and M is a cr-finite von Neumann algebra.

The main result of §3 is Theorem 3.10 which shows that every invertible operator

a G M can be written as a = ub, where u is unitary in M and B G H°°(a) n

H°°(a)~1. This result was proved in [1] for finite maximal subdiagonal algebras.

We, however, do not assume that M is finite. The result is also related to a

factorization result of an operator with respect to a nest algebra (see [3, Theorem

3.3]) and we will comment on this later (see the discussion following Proposition

3.7).
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On the way to the main result we prove some factorization results for vectors

in H (where M is represented on a Hubert space H with a separating and cyclic

vector £ such that a —> (a£, £) is an a-invariant state on M) that extend the

classical inner-outer factorization (when M — L°°(T) and a acts by translation,

H°°(a) is the classical Hardy space H°°(T)). This is also used to obtain results

on subspaces of H that are invariant under H°c(a) and are generated by a single

vector in H.

In §4 we introduce an expectation from a certain von Neumann algebra R'0 onto

M such that it maps a certain nest subalgebra of P¿ onto H°°(a). If H = L2(T),

M = L°°(T) and H°°(a) = H°°(T), then R0 = B(H) (the algebra of all bounded

operators on H) and this expectation is the one used by Arveson in [3, §5]. We

believe that this expectation might help to "carry" results that can be proved for

nest algebras, or nest subalgebras (of von Neumann algebras) to the algebra P°°(a).

As examples we prove a distance formula (Corollary 4.7) and an interpolation result

(Corollary 4.8).

2. Preliminaries. Let M be a cr-finite von Neumann algebra acting on a

Hilbert space H and let {at}teR be a periodic flow (i.e. a periodic <r-weakly contin-

uous representation of R as ^-automorphisms of M). We assume that the period

is 27T and write T for the interval [0,27r] identified with the unit circle. Since T is

compact, the map £o, defined by eo(x) = /0 at(x)dt, x G M, is a well-defined,

linear, a-weakly continuous map from M onto the fixed point algebra, Mo, of M

with respect to {at} (dt denotes the normalized Lebesgue measure on T). In fact,

£o is a faithful normal expectation from M onto Mo such that £o ° at = £o, t G T.

By choosing a faithful normal state <po of Mo and letting <p be 4>o° £o we get a

faithful normal state <p on M that is {at}-invariant (i.e. <p o at = <t>, í G T). Con-

sidering the Gelfand-Naimark-Segal construction of <j>, we may suppose that M has

a separating and cyclic vector £ G H such that (f>(x) = (x£, £) is an {at}-invariant

state on M. The algebra M, the flow a, the space H and the vector £, as above,

will be fixed throughout the paper.

We now define a canonical pair to be a pair {B, n} with the following properties:

(1) P is a (T-finite von Neumann algebra acting on H.

(2) £ is a separating and cyclic vector for P.

(3) {r)t}t€T is a periodic flow on B.

(4) <a£,0 = fat(a)É,0f°rieT, a G P.
The discussion above shows that {M, a} is a canonical pair. Property (4) (ap-

plied to {M, a}) shows that we can define unitary operators {Wt: t G T} such

that Wtat\ = at(a)tl, t G T, a G M. Let us now write R for the commutant of

M and let -7 be the flow on R defined by ^t(a) = WtaW¿, t G T, a G R. Then

{lt{a)i, 0 = (WtaWftl, 0 = (af, £), a G R. Hence {#,7} is a canonical pair.

The two canonical pairs {M,a} and {R,"j} will be fixed throughout the paper.

In the remainder of this section we will describe some of the structure of a canonical

pair and set up notation. Since we will be mostly interested in the pairs {M, a} and

{R, 7}, we will introduce the notation with respect to {M, a} and in parentheses the

analogous notation for {P,-/}. Of course, for all the results that will be introduced

or defined for {M,a}, there are analogous results for {R,^}.
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For each n G Z we define a rj-weakly continuous linear map en on M (and

analogously An for R) by

/•2tt

e„(i)= /     e~lt7lat(x)dt,        xGM.

Jo

Let Mn be en(M) (and Rn = Xn(R)). Then it is easy to check that Mn — {x G

M: at(x) = eintx, t G T}.

For each n G Z define a projection fn by

/„ = sup{m¿*: u is a partial isometry in Mn}

(gn = sup{uu*: u is a partial isometry in Rn}).

Then, by [12, Lemma 2.2] the /„ lie in Z(M0) (the centre of M0). The following

lemma appears in [11].

LEMMA 2.1.   (1) For every n,m G Z, MnMm Ç Mn+m, M* = M_„.

(2) Lei x G Mn and let x = v\x\ be the polar decomposition of x.

Then v G Mn and \x\ G Mo-

The following result can be found in [14, Proposition 2.3 and Theorem 2.4].

Although it was assumed there that the algebra M is finite, this assumption was

not used for the proof of this result.

PROPOSITION 2.2.   Fix n G Z.  Then there is a sequence {vn<m}m=i of partial

isometries in Mn with the following properties:

(!) <,mPn,j =0ifm¿j,

\^)  ¿-^m=lVn<mVn,m ~ Jn>

(3) Mn = J2m=ivn,mMo; i.e. every x G Mn can be written as J2m=ivn,mXm

for some xm G Mo, where the sum converges to the o-weak operator topology. (For

{R,l} we write {un,m}^=1 C Rn.)

For a flow n on a von Neumann algebra B, let BV(S) denote the spectral subspace

associated with S; i.e. Br>(S) = {x G B: sp^x) Ç 5}.

We write P°°(q) for Ma({n G Z: n > 0}) and H0x'(a) for Ma({n G Z: n > 0}).

(Similarly H°°(^) and H§°(i) are defined.)

We have, for n G Z, Ma({n}) = Mn and, for x G M, spa(x) = {n G Z: e„(x) ^

0}. When it causes no confusion we write H°° in place of H°°(a).

The following result appears in [12, Theorem 2.4].

PROPOSITION 2.3.   (1) H°°(a) = {x G M: en(x) =0forn< 0}.

(2) P°°(q) is the a-weakly closed subalgebra of M generated by Mo and all partial

isometries in \J{Mn: n > 0}.

In fact, by [9, Theorem 1] M is linearly spanned by IJ{M„: n G Z} in the cr-weak

operator topology.

For a subset S Ç H let [S] denote the closed linear subspace spanned by S.

For m t¿ n, a G Mn, b G Mm, we have (a£,¿>£) = (at(b*a)tl, f) for each í G T

and therefore (a£,&0 = (eo(b*a)tl, £) = 0. Hence {[M„£]}nez is an orthogonal

family of subspaces. Let En be the projection onto [Mn£]. Then En G M¿ and

Y^En = I (as £ is a cyclic vector for M and [M£] = ]Cn®[Mn£]). Note also

that Wt = Y^n°=-ao e%ntRn is the spectral decomposition of {Wt^gT (hence we also
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have that En is the projection onto \Rn£]) and Enat] = £„(a)£ for n G Z, a G M.

We write H2 for £~ 0 ®[M„£] and P02 for £"=1 ®[M„£]. Forn G Z we let Pn

be the orthogonal projection onto £™=n©[M„£]; i.e. Pn = ^=n£m (and Pn

is the projection onto [MQ[n,oo)£] = [P^fn,oo)£]). Then Pn+i < P„ for n G Z,

V~=Too ^n = /, and A~-00^ = 0.

With the partial isometries {vn¡m: n G Z, m > 1} defined as in Proposition 2.2,

we can define maps {ßn}nez on M¿ by the formula

00

Pn(T) =   zL Vn,mTvn^m
m=l

(and on R0,nn(T) = £~=1 W„,mT<im).

We summarize some of the properties of {/3„}„ez that will be used later in the

following (for its proof see [15, Lemma 2.4]).

LEMMA 2.4.   Fixn,mGZ.

(1) ßn is a well-defined *-homomorphism from Mq onto fnM0 whose restriction

to f-nMQ is a *-isomorphism onto fnM¿.

(2) Suppose Q G Mq is a projection.  Then

ßn(Q) = \J{uQu*: u G Mn is a partial isometry}.

(3) For TGM0, ßnßm(T) = fnßn+m(T).

(4) ForT GM0,T lies in M' (= R) if and only if ßj(T) = fjT for each j € Z.
(5) ßn(E0) = En (hence ßm(En) = ßmßn(E0) = fnEn+m and, consequently,

ßm(*n) — Jn*n+m)-

The following notation and definitions will be used later:

1. A projection Q G M0 is said to be an M-wandering projection if, for each

n G Z, Qßn(Q) = 0 (note that this implies that ßn(Q)ßm(Q) = 0 for n ± m). The

set of all the M-wandering projections in M0 will be denoted Pi.

2. For Q G Pi we let o(Q) be ££°=o Ai(Q) and we write P3 for a (Pi).

3. A closed subspace M of H is called invariant if ax G M for each a G H°°(a)

and x G M. Let us denote by P2 the set of all orthogonal projections whose range

is an invariant subspace (as Mo Ç H°°(a), P2 Ç M¿).

4. For P G P2 we let 6(P) be P - V{/3„(P): n > 0}.
The following lemma was proved in [14].

LEMMA 2.5.   If P G P2, then 6(P) G Pi and

P = <r(6(P))+ A   V ^rn(P).
n>0 m>n

The projection f\n>0 Vm>„ ßm(P) lies in M' and P G P3 iff A„>0 Vm>„ ßm{P) =
0.

Note that if Q, P G P2 and Q < P G P3 (= a (Pi)) then Q G P3 since

An>o \Jm>nßn(Q) < An>o Vm>n ßn(P) = 0. In particular any Q G P2 that

satisfies Q < Po (i.e. Q(H) is an invariant subspace, contained in P2) is in P3.

LEMMA 2.6. H°°(a) = Mil Alg{Pn: n G Z}; i.e. a G H°°(a) if and only if
a G M and PnaPn = aPn for each n G Z.

PROOF. Immediate from [6, Corollary 2.14].    O
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LEMMA 2.7. Let c(En) be the central support of En (as a projection in Mq).

ThenfTi = c(En).

PROOF. Since /„ G Z(M0) and fnEn = En we have /„ > c(En). Suppose

z is a nonzero projection in ii(Mo) such that zEn = 0 and z < fn. Then there

is a nonzero partial isometry v G Mn such that vv* < z. Since zEn — 0 and

v£ G En(H), zv£ = 0 and vv*v£, = 0. Hence vtl = 0. Since £ is a separating vector

and v/0we get a contradiction. Therefore /„ = c(En).    G

3. Factorization and invariant subspaces. For g G H let M(g) be [H°°g}

and P(g) be the projection onto M(g). Then P(g) G P2.

PROPOSITION 3.1.   For g G H the following two conditions are equivalent:

(i)P(g)eP3.
(2) There is a partial isometry U G R such that U*g G H2 and UU*g = g.

Moreover,

(3) If (2) is satisfied, then we can choose U in such a way that U*U G Ro and

M(U*g) = M(E0U*g).

(4) If (1) is satisfied and P(g) = a(Q), Q G Pi, then [M0Qg] = Q(H) and
ßn(Q)(H) = [MnQg] for n G Z.

PROOF. (2) implies (I). Suppose that / = U*g G P2 and Uf = g for some

partial isometry U G R. Then P(g) = UP(f)U*. But P(g) < P0, hence P(f) G P3.
Now if P(f) = o(Q), Q G Pi, then P(g) = o(UQU*) and UQU* G Pi.

(1) implies (2). Suppose now that P(g) G P3, hence P(g) = o(6(P(g))), and let

Q be 6(P(g)). Let a be in Mn for some n > 0. Then a = YLvn,m%m for some xm

in Mo and aQg = J2vn,mQxmg G ßn(Q)(H). Since Q is M-wandering, h — Qg is

a wandering vector in the sense that (ah, h) = 0 for o G M with £o(a) = 0. Hence

(ah, h) — (eo(a)h, h) for all a G M. The map a —» (ah, h) is a normal positive linear

functional on Mo- Consider Mo as acting on Eq(H) = [Mo£]; then £ is a cyclic and

separating vector for M0 and thus (by [4, Theorem 4, Part III, Chapter 1]) there

is some ho G [Ma£] such that (aho,ho) = (ah,h) for every a G Mo- For a G Mn,

n ^ 0, aho G En(H) and (aho,ho) — 0 (= (ah,h)). Hence (ah0,h0) = (ah,h) for

each a G M.

Now define a partial isometry U on H by extending the isometric map aho —* ah,

a G M. Then the initial subspace of U is [Mho] and the final subspace is [Mh].

Since, for b G M, Ubah0 = bah = bUah0, U G M' = R.

Since Wtah0 = at(a)Wth0 = at(a)h0 for a G M, t G T, Wt[Mh0] = [c*t(M)ho] =
[Mho] for each t G T. Hence WtU*UWt = U*U. Thus U*U G Rq. Let / be U*g.

It is left to show that, with this choice of U, we get M(f) = M(E0f). For this,

note that we have:

(a)

oo

[M0(l - Q)g] = (1 - Q)[M0g} Ç £ ßn(Q)(H)
n=l

(BB[H°°g] = Y,Z0ßn(Q)(H)Y
(b) [MoQg] ç Q(H).
(c) [Poff] Ç £~ j ßn(Q)(H) (as aßn(Q)g G ßn+k(Q)(H) for a G Mk).
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This implies that Q(H) = Q[H°°g] = Q[M0g} = [M0Qg] = [M0h). Also, for
n G Z, [M„h] = V{[vM0h}: v G Mn is a partial isometry} = ßn(Q)(H). Hence

[H°°g} = [H°°h}. But

M(f) = [H°°f] = [H°°U*g] = U*[H°°g] = U*[H°°h} = [H°°h0},

and
oo

f-hQ = U*(g- Qg) = U'(l - Q)g G U* £ ßn(Q)(H)
n=l

OO OO oo

= U* £ 0[Mna] = £ 0[M^o] Ç £ P„(P).
7t=l n=l ti=1

Hence h0 = E0f and [P°°/] = [ff°°h0] = [#°° £(>/]•    □
The following proposition shows the uniqueness of the above representation.

PROPOSITION 3.2. Suppose g G H and g = Uif1 = U2f2 such that, for
i = l,2,

(1) Ui is a partial isometry in R with initial subspace [Mf%\,

(2) [H°°p] = [H^EoP] Ç H2.
Then U^Ui and U\U2 lie in Ro-

PROOF. Since g has such a representation, P(g) = Yln^oßniQ) f°r some Q G

Pi. We first claim that U*Qg G E0(H), i = 1,2. Fix i = 1 or 2 and let h0

be U*Qg. Then h0 = U*Qg G U?[H°°g] = [H°°p] Ç H2. Using Proposi-
tion 3.1(4) we see that Q(H) = \M0Qg}, ßn(Q)(H) = [MnQg] for n G Z, and

W^g] = EZoßn(Q)(R) = [H°°Qg\. Hence [H°°E0f] = [H°°p] = U;[H°°g] =
U*[H°°Qg] = [H°°h0] and consequently

[H^EoP] = [H^lH^Eor}} = [H^lH^ho}} = [H^ho].

We then have [Moh0] = [MqEoP] since

[H°°Eof] = [MoEof] © [H^EoP]

and
\H°°ho\ = U;\H°°Qg} = U:([H^Qg\ © [M0Qg])

= [P0°°/io] © [M0ho] = [H^EoP] © [M0ho\.

In particular ho G Eq(H). Now,

oo oo

P-h0 = U;(l - Q)g G U; £ ßn(Q)(H) = U; £ ®[MnQg]
n=\ n=l

oo oo

= E©[M"/l0]C££n(#).
71=1 n=l

Hence h0 = Po/1-

Let F* be the projection onto [Mnh0]. Then Ui[Mnh0] = [M„Q<7] = ßn(Q)(H).

Hence PtF¿P* = /?„(Q). As the initial subspace of U% is [Mp\ = [M[H°°f1]] =

[M[P°°n0]] = [Mho] = Eñ=-oo*Í(H), UiEnU; = UzFnU* = ßn(Q). In partic-
ular UiEnU{ = U2EnU^ for each n G Z. Consequently í/iWWí = U2WtU^ for

each t G T and U¡UiWtU;Ui = U^WtU^Ui. But U¡Ui,U^U2 G Po, hence
U^UiWt = WtU^Ui, t G T. Thus P2*Pi G Pq.    G
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LEMMA 3.3. Suppose g lies in H2. Then there is a partial isometry U G H°°(7)

such that U*U G R0, U*g G H2 and M(U*g) = M(E0U*g).

PROOF. Since g G H2, P(g) G P3 and we can construct a partial isometry U G R

as in Proposition 3.1. It is left to show that U, as constructed there, lies in P°°("y).

Let P(g) be Yln°=o ßn(Q), f°r some Q G Pi, then, from the way U was constructed,

UEof = Qg where / = U*g. Therefore U[MnE0f] = [MnQg] Ç [MnH2] Ç
Pn(H). Since the initial subspace of U is £"=_„, 0[MnFo/], UEnU* < Pn and,

consequently, UPJJ* < Pn. Hence U G PH Alg{P„: n G Z} = P°°(7) (by Lemma

2.6).    G

COROLLARY   3.4.   Let g be in H2.    Then there are partial isometries U G

P°°(7), V G H°°(a), such that:

(1) U*g andV*g lie in H2.

(2)UU*g = VV*g = g.
(3) U*U GRo, VV g Mo.
(4) [H°°(a)U*g] = [P°°(a)P0P*g] and [H°°(>i)Vg] = [H^EoVg].

PROOF. The assertions for U follow from Lemma 3.3 and the assertions for V

follow from Lemma 3.3 applied to {P,i} in place of {M, a}.    G

Let M be the algebra L°°(T) acting on L2(T) and let {at}t€T be defined by

translations. Then H°°(a) is the classical algebra P°°. In this case M = R

and a = 7. An element / G P2 is called outer, in this case, if [H°°f] = H2.

But this is equivalent to [H°°f] = [H°°Eof] ^ 0 (note that in this case, E0f

is just the zeroth Fourier coefficient of /). Hence Lemma 3.3 is the inner-outer

factorization in the classical case. It is also known, in this case, that / G P2

is outer if and only if exp/log |/|df = |Po/| ^ 0. Since, by Szego's theorem,

exp/log l/l dt = inf{||/ - fflh 9 € [Po°/]}, / G P2 is outer if and only if |P0/| =
inf{1|/-ff||:gG[F0~/I}^0.

In our more general setting we say that / G H2 is R-outer if [H°°(a)f] =

[P°°(a)P0/] + {0} and M-outer if [R°°(i)f\ = [H°°{i)Eof] ¿ {0}. Also we
say that U G R is R-inner if U is a partial isometry in P°°(-y) with U*U G Rq

and VeMis M-inner if V is a partial isometry in H°°(a) with V V G M0.

Then Corollary 3.4 presents the M-inner-outer and the P-inner-outer factorizations

(which are the classical inner-outer factorization if M = L°°(T) and a acts by

translations). The next proposition is analogous to the characterization of an outer

function, mentioned above, in the classical case.

PROPOSITION 3.5.   For f G H2 the following conditions are equivalent:

(1) f is R-outer (resp. f is M-outer).

(2) [H°°(a)f] = NqH2, where No is a nonzero projection in Ro (resp. [H°°(^)f]

= N0H2, O^AqGMo).

(3) ||Po/|| = inf{||(l-a)/||: a G P0°°(a)} / 0 (resp. \\E0f\\ = inf{||(l-o)/||: a G

Hsrm í o).

PROOF. It will suffice to prove the P-version.

(1) implies (2). Suppose / G P2 is P-outer. Then [H°°(a)f] = [H°°(a)E0f] =

T,ñ=o@[MnEof]-   Let F0 be the projection onto [M0P0/]-   Then ßn(F0)(H) =
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[MnEof] for all n G Z. Let N0 be En=-ooßn(Po)- Then

OO

ßm(N0) = fm   E   ßn+m(F0) = fmN0    for each m G Z.
n= —oo

Hence A0 G P. Also, as /3„(F0) < En for each n G Z, A0 G {F„: n < Z}'. Thus

A0 G Po- Now A0P2 = En=oßn(Fo)(H) = [H°°(a)Eof] = [H°°(a)f\.
(2) implies (3). Suppose [H°°(a)f] = N0H2. Then

[HST(a)f] = [HZ°(a)[H°°(a)f}} = [P0°»A0P2] = N0H2.

Hence

inf{||(l - o)/||: a G P0°»} = inf{||/ - g\\: g G N0H2}.

Since / = N0f,

inf{||(l - o)/||: a G H^(a)} = inf{||/ - 0||: g G H2} = ||P0/||.

If ||Po/|| = 0 then / G Pq2 and [H°°(a)f] Ç P2. Hence N0H2 Ç P2. But
A0F0 Ç Fo (as A0 G Po). Therefore

OO OO OO

N0=   Yl   N°E"=   E   Noßn(E0)=   E   ßn(NoEo) = 0.
n— — oo n=: —oo n= — oo

(3) implies (1). Suppose ||F0/|| = inf{||(l - a)/||: a G Po°(a)}. Let P be the

projection onto [P£°(a)/]. Then P < Px and (1 - P)f = E0f + (Pi - P)f. Hence

(inf{||(l - o)/||: a G H?(a)})2 = ||(1 - P)/||2 = ||F0/||2 + ||(Pi - P)/||2.

Thus Pi/ = Pf and E0f = (1 - P)/ G [P°°(a)/]. It is left to show that
/ G [H°°(a)E0f]. Let Fm be the projection onto [MmE0f]. Then Fm < Em

and £~=0Pm(P) = [H°°(a)Eof]. Suppose Fm/ e [P°°(a)F0/] for all 0 <

m < j (note that F0/ G [P°°(a)F0/]). Then for each a G H0x(a), Ejaf =

Em=-oo E3aEmf = Z^oEjaEmf. But aEmf G [P0~(a)[P~(a)F0/]] ç

[H°°{a)Eof]. Hence

OO

EjaEmf G EJ[H00(a)Eof] = E3 £ Fm(H) = Fj(H) C [P°°(a)F0/].
m=0

Therefore F,a/ G [H°°(a)E0f]. This induction argument shows that Ejof G

[H°°(a)fib/] for all a G H0x(a), j > 0. Hence [H§°{a)f] Ç [H°°(a)Eof]. Since

/ = F0/ + Pi/ = F0/ + P/ and Pf G [P£°(a)/j, we are done.    G

COROLLARY 3.6. Suppose g G H. Then the invariant subspace [H°°(a)g] can

be written as the orthogonal sum of a reducing subspace Mo (i-e. aMo Ç Mo for

all a G M) and a space of the form UH2, where U is a partial isometry in R with

U*U GRo.

PROOF. Let P(g) be the projection onto [H°°(a)g\. Then

oo

P(g) = E ßn(HP(g))) + Po,
n=0
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where Fo is a projection in P, orthogonal to Yln^-oo ßn{o~(P(g)))- Hence

oo

[P°°(a)(l - F0)g] = (1 - F0)[H°°g] = £ ßn(Q)(H)
71 = 0

(for Q = 6(P(g)) G Pi). Hence (1 - F0)g has a representation (1 - F0)g = Uf as

described in Proposition 3.1. Thus

[P°»(l - F0)g] = U[H°°(a)f] = U[H°°(a)E0f] = UH2

and

[H°°(a)g] = [H°°(a)F0g] © UH2 = F0(H) © UH2.    G

We now define a G M (resp. a G R) to be M-outer (resp. R-outer) if a£ is

M-outer (resp. P-outer).

PROPOSITION 3.7.   For a G M the following conditions are equivalent.

(1) There is a partial isometry U G M such that U*a G H°°(a) and UU*a = a.

(2) Let P be the projection onto [aH2]. Then P = X^Lo^W) for some R-

wandering projection Q G P0.

(3) 0>Pn(P)] = {0}.
(4) There is a partial isometry U G M such that U*a G H°°(a) is M-outer and

UU*a = a.
Moreover, if (4) is satisfied and Ui, U2 are two such partial isometries such that

the initial subspace of Ui is [U*aH], then U{U2 and U^Ui lie in M0.

PROOF. Note that [aH2] = [aH00^)^] = [P°°(7)a£] and [U*aH] = [P>P£] =

[RU*a£\. Hence the equivalence of (1), (2) and (4) and the uniqueness statement

follow from Propositions 3.1 and 3.2 (with {M,a} replaced by {P,-/}). We now

show that (2) is equivalent to (3). For this note that P = Zn^o^^Q) for some

P-wandering projection Q G P¿ if and only if Am=o Vn>m Vn(P) — 0 (Lemma 2.5).

But

\J Vn(P) —  \J  (\J{uPu*: u G Rn is a partial isometry} j

n>m n>m

— \J\ uPu* : u is á partial isometry in   I) Mn

1 n>m

Since R~i[m, oo) is generated by the partial isometries in Un>7n Mn (as a cr-weakly

closed linear space), \Jn>mVn(P) is the projection onto

[Ri[m,œ)P(H)] = [Rr>[m,oo)[H°°('1)at]] = [P^[m,oo)a£] = [aPm(H)]

for m > 0. Hence Am=0Mn>mVn(P) = 0 if and only if Ç\m>n[aPm(H)] = {0}.

Since V\m€Z[aPm(H)] = {0} if and only if Ç\m>o[aPm(H)] = {0}, we are done. G

The previous proposition presents the factorization for operators a G M and

its uniqueness. Consider now the nest algebra A = Alg{P„: n G Z} in R(H). In

[3, Theorem 3.3] Arveson presented a factorization for operators A in R(H) (that

satisfy a certain condition) as A = UB, where U is a partial isometry in B(H) with

U*U G An A* and P is outer (in the sense that [APn(H)] = [AH] n Pn(H) and

the projection onto [AH] lies in A n A*). The condition for A G B(H) to have such

a factorization is plnP^"^)] = {0}.   Hence Proposition 3.7 shows that a G M
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satisfies our condition for factorization if and only if it satisfies Arveson's condition

for factorization (with respect to A = Alg{P„: n G Z}). The next result shows that

b G H°°(a) is M-outer if and only if it is outer in Arveson's terminology.

PROPOSITION 3.8.   For b G H°°(a) the following statements are equivalent:

(1) b is M-outer.

(2) [bH2] = [e0(b)H2] ± {0}.

(3) [bPn(H)] = [e0(b)Pn(H)] for each n G Z and [e0(b)H2] ¿ {0}.
(4) [bH2] = QH2 for some nonzero projection Q G Mq-

(5)0^\\eo(b)a=^i{\\bt:-g\\:gG[bH2]}.
(6) The projection onto [bH] lies in M0 and, for each n G Z, [bPn(H)[ = [bH] n

Pn(H).

PROOF. The equivalence of (1), (2), (4) and (5) follows from Proposition 3.5

with the observations that

[bH2] = [6P°°(7)£] = [P°°(7)^],

[e0(b)H2] = [£o(6)P°°(7)£] = [ffoofrJeoOK] = [P°°(7)Po6£],

and

[bH2] = [bH0™(1)t:] = [H0~(1)bc:].

(2) implies (3).

[pPn(H)[ = [6P>,cx>)£] = [P>, oo)6£] = [P^[n,oo)[P00(7)K]]

= [P>,oo)[P°°(7)eo(&)£]] = [P>,oo)£0(6)£] = [e0(b)Pn(H)].

(3) implies (2) is trivial.

(3) implies (6). [bH] = \f{[bPn(H)]i n G Z} = \J{[eo(b)Pn(H)\. n G Z} =
[e0(b)H]. Hence the projection onto [bH] lies in M0. Also [6P]nPn(P) = Pn[bH] =

Pn[eQ(b)H] = [e0(b)Pn(H)] = ]bPn(H)].
(6) implies (4). Let Q G M0 be the projection onto [bH]. Then [bH2] = [bH] n

Po(P) = Q(H) n P0(P) = QPo(H) = QH2.   a

LEMMA 3.9. Suppose a G H°°(a) is invertible; then a is M-outer if and only

if a-1 G H°°(a).

PROOF. Suppose a"1 G H°°(a); then [aH2] = H2 and, hence, a is outer

by Proposition 3.8(4). Suppose now that a is invertible and M-outer. Then

H = [aH] = [e0(a)H]. Hence £ G [e0(a)H] and, as P0£ = £, £ G P0[e0(a)H] =

[£o(a)P2] = [aH2]. Hence there are {xn} Ç H°°(a) such that ox„£ —> £ and,

by applying o_1, x„£ —► a_1£. But x„£ G H2, hence o_1£ G H2. For n < 0,

£„(a^1)£ = FnO-^ = 0. Thus a^1 G H°°(a).    G

The following result was proved in [3] for nest algebras and in [1] for maximal

finite subdiagonal algebras.

THEOREM 3.10. Suppose a G M is invertible. Then we can write a = ub,

where u is unitary in M and b G H°°(a) D H°°(a)~1.

PROOF. First note that if x G f|„[«Pn(P)] = V\n{aV: V e Pn(H)}, then a~lx G

f]nPn(H) = {0}. Hence p|n[aPn(P)] = {0} and we can apply Proposition 3.7 to

write a = wc, where w is a partial isometry in M, w*wc — c and c G H°°(a) is M-

outer. Now let £o(c) = u|£o(c)| be the polar decomposition of £q(c), let b G H°°(a)
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be v*c, and let u be wv. The final projection of v is the projection onto [£o(c)P].

The initial subspace of w is [cH] and, since c is M-outer, [cH] = [eo(c)P]. Therefore

u = wv is a partial isometry in M with initial subspace [|£o(c)|P] and final subspace

[aH]. We have a = wc = bu and [6P2] = v*[cH2] = v*[e0(c)H2] = [£0(6)P2].

Hence b is outer and has the further propety that So(b) > 0.

Now note that, since a = ub is invertible, b is bounded below. Hence Kerb

(= {x G H: bx — 0}) — {0} and, for each closed linear subspace K Ç H, {bx: x G

K} is closed. If £0(6)x = 0 for some x G F0(P), then 0 f bx G Hl n [bH2] = [&P52]
(as b is M-outer) and, since [6Pq] = {bx: x G Hq}, there is some y G Pq such that

bx = by. Since Kerb = {0}, x = y = 0. Hence Ker£o(fe) = {0}.

Let y be in [e0(b)E0(H)] Ç [e0(b)H2] = [bH2] = {bz: z G H2}. Then y = bz

for some z G H2. But y G E0(H), hence y = e0(b)E0z G {e0(b)z: z G EQ(H)}.

Consequently the range of eo(b), as an operator on Fo(P), is closed. We know

also that Ker£o(6) = {0} and that So(b) > 0. Therefore £o(6) is invertible. Thus

P = [eo(b)H] = [bH] = {bx: x G H}. Hence b is invertible. By the previous lemma

6GP00(Q)nP00(a)-1.    a

COROLLARY 3.11. Every invertible positive operator a G M can be factored in

the form a = b*b, where b G H°°(a) r\H°°(a)~1.

PROOF. Let a1/2 be the positive square root of a. Then a}I2 is invertible and by

the last theorem we can write a1/2 = ub for some partial isometry u G M such that

u'ub = b and b G H°°(a) n H°°(a)-1. Hence a = all2a1'2 = b*u*ub = 6*6.    G

Note that, although most of our analysis depends on the special representation

of M that was chosen (with a cyclic and separating vector £ and such that {M, a}

is a canonical pair), Theorem 3.10 and Corollary 3.11 do not depend on the repre-

sentation and hold in general.

4. An expectation and its application. In this section we construct an

expectation from the von Neumann algebra P0 (that contains M) onto M that

maps the nest subalgebra P0 G Alg{P„: n G Z} onto Hoc(a). We will apply it to

prove two results (a distance estimate and an interpolation result).

Before constructing the expectation we want to replace a by another flow, a,

with a special property. For this we will need the following discussion which will

be summarized in Lemma 4.5.

For n G Z let cn G Z(M0) be defined as follows

{/n£m=o/m, U > 0,

0, n = 0,

-WEmlnfm, n < 0.

Let Wt, t G T, be the unitary operator ^^L.^ exp(¿íc„)Fn. Then, it was shown in

[15, Lemma 3.8] that {Wt}teT implements a flow à on M with ät(a) = exp(itcn)a

for a G Mn.

Let cn = Zm=-oorn^lrn,n be the spectral decomposition of cn, n G Z. Then

hm,n / 0 only if 0 < m < n. Also note that h0,n — 1 — fn- For a G Mn, a = fna

and one easily gets from this that sp5(a) Ç {1,2,..., n} (if n > 0), spâ(a) = 0 (if

n = 0) and sps(o) Ç {n,n + 1,..., -1} (if n < 0). The following lemma follows

immediately.
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LEMMA 4.1.   Hoo(a) = H°°(ä),H0x>(a) = H§°(à) and M&({0}) = M0.    G

We have

Wt = ]Texp(zícn)Fn = ^^exp(¿ím)/im,nF„ = ^Vtm ^/im,„Fn.

n 71        771 771 71

Hence, if we write En for the projection onto Ma({n}) (to be denoted by M„),

then {F„} are the spectral projections of Wt and we have

r-'m   =   /   ^ ^771,71 ^71 ■

71

(In fact Fm = E£Lm hm,nEn ii m > 0, Em = E^L-oo ^m-™-^ if m < 0 and

Fo = Fo.)

LEMMA 4.2.   For j, m, n G Z with m ^ n, j ^ 0, we /lave hj,mhjn = 0.

PROOF. We will assume that / > 0. The proof for j < 0 is similar. As j > 0

we can suppose that m > n > 0. Let q be hj,mhj,n. Then cmq = cnq = jq and

q < fnfm- But then

(m-l      \ (n-\      \ /m-1      \

¿=0      / \t=0      / \¿=n      /

/n—1     \ /n—1     \

^ E /» «+/»« = E /» 9+«
\¿=o    / \i=o

-77-1
and (E"=o fi)l = 31- This leads to a contradiction if q / 0.    G

LEMMA 4.3.   (1) E"=i hm<j > E"=i /im+i,3 forn>0 and m > 0.

(2) E7=« hm-i,j < E7=n hm,j forn<0 and m< 0.

PROOF. We will prove assertion (1). The proof of (2) is similar and will be

omitted. Fix n > 0, m > 0 and n > j > 1. Then Cjhm+ij = (m + l)hm+i¿. As

c3 = fj Efc=o /fc' we can write hm+i,j as a sum of orthogonal projections {ps}^=2

in Z(M0) such that /j(Efc=o /fc)P*> = (m + *)?« and /¿(Efc=o /*)Ps = mP«- Hence

fjfs-iPs = Ps and cs_ips = /s-i(Efc=o/fc)P* = /;(Efc=o/fc)ps = mP2- Thus

ps < fem.s-i < E"=i hm,i- As /im+i,¿ = J2l=2Ps, hm+i,j < E"=i 'W- Since this
holds for each 1 < j < n we are done.    G

Now recall that Em = Zn ^m,nEn and let /„ be the projections (in Z(Mq) =

Z(M0)) defined by /„ = sup{wu*: u is a partial isometry in Mn}, n G Z. By

Lemma 2.7, /„ = c(F„) and, thus, /„ = J^j hn,jfj-

For n > 0, /„ = Eíli^nj (as hn,j = hnjfj for n ^ 0) and for n < 0,

/„ = E7=-oo hnj- Also fo — P Using Lemma 4.3 we immediately have

LEMMA 4.4.   For n > 0, fn+i < fn and for n < 0, fn < fn+i-

When a canonical pair {P, n} satisfies the property of Lemma 4.4 (for the cor-

responding projections) we say that it satisfies the roof condition.
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Now let Pn be Eyl« Pj for ^ G Z (or, equivalently, Pn is the orthogonal pro-

jection onto [MQ[n, oo)£]). Then, for n G Z,

oo oo /   OO \

pn = Y.Éj = EE^« = E E^ Ei-
j=n j=n    i i      \ j=n J

Fix n > 0 and let r, = Evln hj,i and f¿ = r¿ + V}=n rj(l - /i) for i > n (where

tn = r-n)- Then, as F¿ < /¿ for each ¿ G Z,

^71 /    v W ^i •

From the definition of {cTO}, we have r, < ft and /¿/¿+fer¿ < r¿+fc, for z > 0 and

fc > 0. Hence, for i > n and k > 0, r¿ < rî+fc + (1 - /¿+fc)r¿. It follows that í, < í¿+i
for i > n. Hence for n > 0,

(*) Pti = tnPn + (tn+1 — ín)Pn+l + " ' ' •

For n < 0,

(OO \ 77—1       /    OO \

X>>,< U = E   Efc;.«H* + P*
7=n / î= —co   \j=n /

n-1      / -1

= E   E^ ^ + jP"-
i= —oo  \7=n

Let r- = Ejin fy»,«- Tnen we nave r¿-fc < /i-fe and fifi-kr[_k < r ■ for i < 0, fc > 0.

Hence /<<_, < r< and r\_k < r\ + (1 - P)r[_k. Let t\ be rj + (1 - /¿XV^-oo r^)

and, then, £, < £¿+1 for z < -2 because r\ < r'i+1 + (1 - /¿+i)r¿ < t'i+l and, for

7 <C t

(1 - /,>; < (1 - P)r'l+1 + (1 - P)(l - ft+i)r>3 < t'i+1.

As r¿F¿ = t\Ei we have,

n-1

(**)   Ax=     E    ̂ +^n = (l-í'-l)^ + (í'_l-í'_2)P„-1+(í'_2-í'_3)P„-2 + ----
i= —oo

We wish now to get expressions similar to (*) and (**) with the roles of {Pn}

and {Pn} interchanged. Since Fm = £m /im,„Fn and hm,jhm,k = 0 for j ^ fc,

we have FmFn = hm,nEn = hm,nÈm- Hence F„ = ^m/im,n£m and P„ =

Er=n(E„ V,Fn) = EmíE^^A- Now fix n > 0. Then

oo     /   oo

^n —   2_>       E ^m'J  J ̂ m'
m = l   \J=n J

Let qm, for m > 0, be 1 - E~ i hm,j-    Then qmËm  = 0 because F„

E^=i hm,nEn and

oo n —1 n-1 oo

9m + 2_, ^m,j = 1 — ¿^r ^m>J  — ^ ~ E 'lTn+1-J = 9m+l + ¿^ ^m,j,

j=n 7 = 1 j = l i=n
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where the inequality follows from Lemma 4.3. Let sm be qm + E?ln b-m,j, m > 0.

Then
00

Pn=   >      SmEm = SiPi + (s2 - Si)P2 + (S3 - S2)P3

771=1

for n > 0.
Now fix n < 0. We have

p« = po + E E h™¿ ¿m = po + E E ^j ]&»■
777 = 71    \y = 71 / 7Tl = 7l    \ j — n I

Let s'm be EJ=ti hm,j for m < 0. Then we have, by Lemma 4.3, that s'rn_1 < s'm.

Hence

Pn = (1 - s'.JPo + (s'_i - s'_2)P_i + (s'_2 - s'_3)P_2 + • • • + s'nPn

for n < 0.

We summarize all this in the following

LEMMA 4.5.   There is a canonical pair {M, a} with the following properties:

(1) Hoc(a) = H°°{a) and Mâ({0}) = M0 (= Ma({0})).

(2) a satisfies the roof condition (see Lemma 4.4).

(3) For n G Z, P„ = Zm^nPn, where {tm,n}m=-oo îS an orthogonal family

of projections in Z(Mo). For n > 0, Pn < P„.

(4) For n G Z, Pn = E^n-Pi, w/iere {sm,7i}m=_oo IS an orthogonal family of

projections in Z(Mo). For n <0, Pn < Pn.

Consequently,

(5) P G Alg{Pn: n G Z} = P n Alg{Pn: n G Z}.

(6) Mon Alg{Pn: n G Z} = M¿ n Alg{Pn: n G Z}.
(Here Pn is the projection onto [Ma[n,oo)£]).

Let P be a von Neumann algebra and let C be a von Neumann subalgebra of P.

An expectation of B onto C is a positible linear map V from P onto C such that

ip(I) = i and t¡j(bc) = ?/>(6)c for every b G B, c G C.

If ?/>: P —» C is an expectation onto C, then t/> is bounded (in fact ||^|| = 1),

ip o i¡) = ip, C is the set of fixed points of ip and ip(b)*tp(b) < ip(b*b) for 6 G P (see

[1, Appendix] for details).

THEOREM 4.6. There exists an expectation ip: M0 —> P (resp. tp': P¿ —> M)

site/i í/iaí

^(M¿ n Alg{P;: n G Z}) = P H Alg{Pn: n G Z}    (= P°°(7))

(resp. ^'(P¿ n Alg{Pn: n G Z}) = M D Alg{P„: n G Z} = P°°(a)).

PROOF. It will suffice to prove the existence of if). Using Lemma 4.5 (and its

notations) we have Mó({0}) = M0, M¿ n Alg{P„: n G Z} = M¿ n Alg{Pn: n G Z}

and R G Alg{P„: n G Z} = P D Alg{Pn: n G Z}. Hence we can prove the theorem

for à in place of a or, equivalently, assume that a satisfies the roof condition (i.e.,

fn+i < fn for n > 0 and /n_i < /„ for n < 0). In the rest of the proof we will

assume that a satisfies the roof condition and we write /+ for ¡\{fn'. n > 0}, /_

for A{/ti: n < 0} and /«, for /+ V /_.
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Since Z is an amenable group we can assign to each g G l°°(Z) a number

m(g) G C such that g —> m(g) is a linear functional, mi{g(n): n G Z} < m(g) <

Sup{o(n): n G Z} for each real valued g G /°°(Z) and m(gk) = m(g), where

gk(s) = g(k+s), k, s G Z. In fact, we can choose a state p on the algebra /°°(Z+)/c0

and let m(g) be the value of p on the coset, in /°°(Z+)/co, of g' G Z°°(Z+), where

g'(n) = (l/(2n + l))ET=i_niKi), n > 0. If for some real valued g G Í°°(Z),

g'(n) > a(n) for n > 0 and a(n) —» oo G R as n —> oo, then m(o) = p(g' + Co) >

p(a + c0) = p(aQ + c0) = a0-

Since \g'(n)\ <¿Sup \g(i)\, n > 0, we see that

Mff)l = W + co)| < lb' + coll < Hfflloo-

Now let T be an operator in M¿ and x,y vectors in P. Then gIi3/(n) =

(ßn(T)x,y) defines a function gx,y G l°°(Z) (as ||/3„(T)|| < ||r||). For each x,y G H

let [x,y] be m(gIiy). Then

\[x,y]\ = |m(gXi!/)| < Hffx.Jloo < ll^ll INI ||j/||-

Hence there is an operator i¡>o(T) on P such that (i})o(T)x,y) = m(gx,y) for x,y G

P, and H^Cnil < ||T||.
For a unitary operator u G Mo, (u*ipo(T)ux,y) = m(gUXtUy) = m(gx<y) =

(ipQ(T)x,y) as gux,uy = (ßn(T)ux,uy) = (ußn(T)x,uy) = gx,y, for all x,y G H.

Hence ip0(T) G M¿.

To find ßm(ipo(T)) for m G Z, consider the operator »m,^ kßrn(ipo(T)) =

«m,fcVto(T)Cfc for fc > 1. Then

(v77i,fc^o(^X,fca:,2/) = (^o(T)v*mkx,v*mMy) = m(g),

where

g(n) = (ßn(T)v*m^kx,v*m}ky) = (vm<kßn(T)v^kx,y) = (vm,kVm,kßm(ßn(T))x,y)

= (fmßm+n(T)x,Vrn,kV*mky) = (ßm+n(T)x, Um,fc<i,fc2/)-

Hence, as m(g) is translation-invariant,

(vm^ki¡)o(T)v*mkx,y) = (tpo(T)x,vmtkv^:ky) = (vm,kv^kip0(T)x,y).

Since this holds for all x,y G H, vm,kV*m kßm(i>o(T)) = vm¿v*m kip0(T) for each

fc > 1. Hence ßm(4>o(T)) = fmßm(MT)) = UM?)- By Lemma 2.4(4), tfo(T) G
P.

Since each ßn is positive and linear and so is m, ipo is a positive linear map from

M¿ into P.

Suppose T G M¿ n Alg{Pn: n G Z}. Then, for n,m G Z,

Pn\-t )*m = Pn(-t )Jn*m = Pn\-t )Pn(*m — n) — Pn(-t *m — n) = Pn\"m—n^  "m — n)

= ßn(Pm-n)ßn(T)ßn(Pm-n) = Pmßn(T)Pm.

Consequently, for x,y G H and m G Z, (i¡)o(T)Pmx,y) — m(g), where g(n) =

(ßn(T)Pmx,y) = (ßn(T)PmX,Pmy). Hence (MT)Pmx,y) = (ipo(T)Pmx,Pmy).
It follows that

ipo(M'o H Alg{Pn: n G Z}) Ç P G Alg{Pn: n G Z}.
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Suppose now that T G R and S G M0. Then, for n G Z, ßn(TS) = Tßn(S) and,

therefore (i/>o(TS)x,y) = m(g), where g(n) = (Tßn(S)x,y) = (ßn(S)x,T*y). Thus

MTS) = TifoiS).
Note, however, that r/'o need not be an expectation since we might have tpo(P) i= I

(one can easily find examples where sp(o) is finite and then ipo{P) — 0 since ßn(I) —

0 for all but finitely many n's). As i G Alg{Pn} G (Alg{Pn})*, i>ü(I) G Alg{Pn} G

(Alg{Pn})* = {Pn: n G Z}'. Hence </>o(i) G Po. Also xpo(I)T = fo(T) = 7>fo(J)
for T GR; hence Vo(i) G M G Po = Z(M0) G Po.

We now let o¿ be /¿-/l+i if i > 0 and /î+1 - fl iii < 0. Then I = ££„ gt + /+ =

EiL-oo 9» + /-■ For » > 0, / < 0 let o2J be o^. Then

E m = E* f E%• ] = E*(7 -/-) = (!- /+)(! - /-) = i - /oo-
7>o,j<o ¿>o     \j<o    y      7>0

Also note that, for i > 0, j < 0 and n G Z,

/*\ í       it      t     \it t\r        J°      if n > z or n <j,
(  ) Oijfn =(fi-fi+l)(fi+l-fj)fn-< q..     if y < n < ,-.

Now, for fixed i > 0, j < 0 and x,y G H, (qijipo(P)x,y) — rn(g), where g(n) =

(qijfnx,y). But

2iV + 1   E (Viif&'V) = 2N + i^x'^ ~* °   ^ ^ -* °°-
fc = -N

Hence (ql3ib0(I)x, y) = m(g) = 0. This holds for all x, y and, therefore, qijtpo(I) = 0

for each i > 0, j < 0. Summing over i,j we find that (1 - foo)ipo(P) = 0. Hence

V>0(i) - /ooV'o(i).
For x G P we have (ip0(I)f+x,x) - m(g), where g(n) = (fnf+x,x). For n > 0,

i?(n) — (/+xi x) an(l, therefore

1 N

7l = -Af

> ^^I(A + l)(/+x,x)-.^(/+x,x)    asA^oo.

Thus (Vo(i)/+x,x) > ¿</+x,x>. Hence îAo(/)/+ > §/+. Similarly <fo(I)/_ > ±/_

and consequently fooi>o(I) > 5/00- In particular /œ is the range projection of V>o(i)

(hence lies in P0). Therefore there is some h G Z(M0)C\Ro such that /#o(-0 = /oo

(and /i > 0).
Let ipi(T) be hip0(T) for each T G M¿. Then V>i has the following properties

(which follow from the properties of V'o and h):

(1) ipi is a linear, positive map from M¿ into R (note: ipi(T) = hl/2i})o(T)h1/2).

(2) ̂ i(ST) = ^i(S)T for T G P, 5 G M¿.
(3) tpi maps M¿ G Alg{Pn: n G Z} into P G Alg{P„: n G Z}.

(4)Vi(T) = /oorforT€P.
Next we construct another map, ip2, from M¿ into R with properties (l)-(3) as

above (with tjji replaced by ip2) and

(4') V2(T) = (l-/oo)TforTGP.
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The sum ipi + ip2 is the required expectation from M¿ into P.

Now fix T G M0, i > 0 and j < 0. Let Tq be (l/(i-j)) Er?=-oo ßn(T)qij. By (*)
the sum has at most i - j nonzero terms and it defines an operator Tij G qijMóqtJ

(note that ßn(T)qij = qijßn(T)). Define tp2(T) to be ip2(T) = Ei>o,j<oTiJ- As

{qij-. i > 0, j < 0} is an orthogonal family of projections, and TV, G qijM^qij,

ip2(T) is a well-defined operator in M¿ and ip2(T) = (1 - foo)4>2(T)(l - /oo) (since

1-/00 = Eiij)-
For m G Z, T G M¿, i > 0 and j < 0 we have

00

ßm(Tij) = —-.     £    /WW/WftiWrn^E^W^/Mftj)-

But

J   7l=-0O J       71

/M&j) = ßm(qiqj) = ßm((fi ~ fi+l)(fj+l - fj))

= Jm(Ji+m ~ Ji+m+l)(jj+m+l ~ Jj+m)

_ Í frnQi+mJ+m    if ¿ + m > 0, j + m<0,

J 0 otherwise.

Hence, for — i < m < —j,

Pm(-tij) = /m~        : /   , Pm+n\-t )qi+m,j+m = Jm-ti+mJ+m
1 — 1 L—*

J    n

and for m > —j or m < —i, ßm(Tij) = 0.

Suppose that m > 0. Then (by (*)) fmqi+m,j+m = 0 if — m < i < 0 and,
therefore,

ßm(^2(T)) =     ^2     fmTl+m,j+m
i>0,j<0

/ „ fmTi+m,j+m = fm^2(T)-
i+m>Q,j-\-m<0

Similarly ßm(ip2(T)) = fm^i(T) for w < 0. Hence ^(T) € P for each T e M¿.

Suppose now that T G M¿ G Alg{Pn: n G Z}. Then, for ¿ > 0, j < 0, Tij G

Alg{Pn: n G Z} (since, as was shown before, ßm(T) G Alg{P„: n G Z} for each

m G Z and qij G M0). Hence ip2(M'0 G Alg{Pn: n G Z}) Ç R G Alg{Pn: n G Z}.

For T G P, ßN(T) = fnT for each n G Z. Hence

Tij = t—- ¡T) fnPqij = -rr- E /««¿r

for each i >0,j< 0. Using (*),

1        ¿
îij = ^ _ •   2-r   'fo    = i*JJ

7   71=J + 1

Hence ^2(T) = (1 -/oo)r.
Therefore tp2 satisfies the following properties:

(!') ip2 is a positive linear map from M¿ into P.
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(2') i)2(ST) = i>3(S)T for S G M¿, T G R as

ip2(ST)qtJ = (1-j)-1 J2ßn(ST)qil = (1 -j)"1 Y,ßn{S)Tqt] = i>2(S)Tqij.
n

(3') ip2(M'o n Alg(Pn: n G Z}) Ç P G Alg{Pn: n G Z}.

(4') ip2(T) = (1 - /oo)P for PGP.

Then x¡) = ipi + ip2 is the required expectation.    G

Suppose P¿ is an injective von Neumann algebra. Then there is an expectation

4> from R(H) onto P¿. Since {Pn: n G Z} Ç P¿, 0 maps Alg{Pn: n G Z} onto

P¿ G Alg{P„: n G Z}. Let 0o be the map tp' o <f> (where i¡j' ¡s the expectation from

Rq onto M whose existence was proved in Theorem 4.6). Then (f>o is an expectation

onto M and </>0(Alg{Pn: n G Z}) = H°°(a).

COROLLARY 4.7. Suppose P¿ is injective. Then, for a G M, dist(a, H°°(a)) =

||(l-Po)aP0||. (Here dist(a,H°°(a)) is ini{\\a - b\\: b G H°°(a)}.)

PROOF. As Arveson shows in [3], for any algebra A (Ç R(H)) and operator

a G B(H), dist(a,A) > Sup{||(l - P)aP||: P G Lat A} (where Lat = {P: P is a

projection such that P6P = 6P for all 6 G A}). Hence

||(1 - Po)aP0|| < Sup{||(l - Pn)aP„||: n G Z}

< Sup{||(l - P)aP||: P G Lat P°°(a)} < dist(o, H°°(a))    for aGM.

It will suffice, therefore, to show

||(1 - P0)aP0|| > Sup{||(l - Pn)aP„||: n G Z} > dist(o, P°°(a)).

Let <f>o be the expectation from P(P) onto M as in the discussion preceding this

corollary. By Arveson's distance formula [3],

dist(o, Alg{Pn: neZ}) = Sup{||(l - P„)aP„||: n G Z}.

Let us write t for the right-hand side of this equation and, for e > 0, we can

find a£ G Alg{Pn: n G Z} such that ||a — ae|| < t + e. Applying (¡>o we get

||a - 4>o(ae)\\ — ||0o(a - oe)|| < \\a - aE\\ < t + e. As (po(as) G H°°(a) and, the

choice of £ > 0 is arbitrary, we have dist(o, H°°(a)) < t.

Now fix £ > 0. Then there are n G Z and x G Pn(H) such that ||(1 - Pn)ax|| >

t - £ and ||x|| < 1. Let F be the orthogonal projection onto [H°°(a)x]. Then

F < Pn and t - s < ||(1 - P„)ax|| < ||(1 - F)aFx||.

By Corollary 3.6 there is a partial isometry U G R such that U*U G Rq and

F = UPoU* (since F < Pn, F G P3). Hence

t - £ < ||(1 - F)aFx\\ = ||(1 - PP0P*)aPP0P*x|| = ||P(1 - P0)P*aPP0P*x||

= ||P(1 - Po)aPotTx|| < ||(1 - Po)aP0||.

Since £ > 0 was arbitrary, t < ||(1 — Po)aPo||.    G

COROLLARY 4.8. Suppose R'0 is injective. Let {a%: 1 < i < N} in H°°(a)

satisfy, for some e > 0,

N

£||(l-P„Kx||2>£2||(l-Pn)x||2

7=1
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for all n G Z, x G H. Then there are {6¿: 1 < i < N} Ç H°°(a) (that can be chosen

so that [\bi\\ < 4Ne~3 if \\ai\\ < 1 for each 1 < i < N) such that E»=i bio-i — I-

PROOF. Consider {ai}^=1 as elements of Alg{Pn: n G Z}. Then by [3, Theorem

4.3] there are {6^1 (with ||6'J < 4A£"3 if \\ai\\ < 1 for each 1 < t < AT) such that

E&i0i = I and {6^}^! Ç Alg{Pn: n G Z}. Applying the expectation (po (from

P(P) onto M, as in the discussion preceding Corollary 4.7) we get Yl 4>o(b't)a% — I

and ||</>o(6^)|| < ||6¿||. Let 6¿ be (j>o(b'i) and we are done.    G

REMARK. Note that R'o is injective if and only if M is. Indeed, if M is injective

then so is P. But Po = £o(P) and consequently Po and PÓ are injective von

Neumann algebras. On the other hand if Pq is injective, then it follows from

Theorem 4.6 that M is injective too.
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