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ON CHEBYSHEV SUBSPACES IN THE SPACE
OF MULTIVARIATE DIFFERENTIABLE FUNCTIONS

BY

ANDRÁS KROÓ

ABSTRACT. In the present paper we give a characterization of Chebyshev sub-

spaces in the space of (real or complex) continuously-differentiable functions

of two variables. We also discuss various applications of the characterization

theorem.

Introduction. One of the central problems in approximation theory consists

in determining the best approximation; that is, in a normed linear space X with

a prescribed subspace U we seek for each / in X its best approximation p in U

satisfying ||/ — p|| = dist(/, U). If U is finite dimensional, then every element / in X

possesses a best approximant. This raises the very important and delicate question

of unicity of best approximation. The finite-dimensional subspace U is called a

Chebyshev subspace of X if for each / in X its best approximant in U is unique.

Chebyshev subspaces have been widely investigated in different functional spaces.

In case of approximation with respect to the supremum norm these investigations

were initiated by the classical works of Chebyshev and Haar.

Let G(if ) denote the space of real or complex continuous functions endowed

with the supremum norm on the compact Hausdorff space if. The celebrated

Haar-Kolmogorov theorem gives a characterization of finite-dimensional Cheby-

shev subspaces of C(K): the n-dimensional subspace Un C G(if ) is a Chebyshev

subspace of G(if ) if and only if it satisfies the so-called Haar property, i.e. each

nontrivial element of Un has at most n -1 distinct zeros at if. (This result was first

proved by Haar [6] in the real case, and then by Kolmogorov [7] in the complex

case.) Later Mairhuber [9] showed that in the real case C(K) possesses a Cheby-

shev subspace of dimension n > 1 if and only if if is homeomorphic to a subset of

the circle, i.e. the study of finite-dimensional Chebyshev subspaces of C(K) is, in

fact, restricted in the real case to functions of one variable.

It is natural to expect that requiring unicity only with respect to a smaller

subspace may lead to the extension of the family of Chebyshev subspaces. This ap-

proach is well known from the theory of Li-approximation. In case of Chebyshev

approximation such investigations were initiated by Garkavi [5] who gave a char-

acterization of Chebyshev subspaces in the space of real continuously-differentiable

functions endowed with the supremum norm on [a,b]. In a series of papers [1-3]

the analog of Garkavi's result was given for the real rational families.

In a recent paper [8] we characterized the finite-dimensional Chebyshev sub-

spaces in the space Cl[a, b] of real or complex continuously-differentiable functions

with supremum norm on [a,b].   In order to formulate this result we shall need
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the following definition: if Un is an n-dimensional subspace of G(if ), then the set

of m distinct points {xk}m=1 Ç if, where l<m<n+lin the real case and

1 < m < 2n + 1 in the complex case, is called an extremal set of Un if there exist

numbers ak ^ 0, 1 < k < m (real in the real case), such that

m

J2akg(xk) = o
fc=i

for any g G Un. The numbers {ak}rk=l (determined in general nonuniquely) are

called coefficients of the extremal set {xfc}™=1. (This definition is close to the notion

of extremal signatures, see e.g. [11].) It can easily be verified that Un Ç G(if)

satisfies the Haar property if and only if no nontrivial element of Un can vanish on

an extremal set of Un, which leads to another version of Haar-Kolmogorov theorem.

Then as it is shown in [8] in order that an n-dimensional subspace Un C G1 [a, b]

be a Chebyshev subspace of G1 [a, b] it is necessary and sufficient that there does

not exist an extremal set {xk}kn=1 of Un with coefficients {ak}kn=l and p G Un\{0}

such that p(xk) = 0 for all 1 < k < m and Reakp'(xk) = 0 for all xk G (a,b).

In the real case coefficients of extremal sets do not appear in the characterization

theorem since the relation Reakp'(xk) — 0 reduces to p'(xk) — 0. This reflects an

essential difference between real and complex cases.

Various examples given in [5 and 8] show that the family of Chebyshev subspaces

of G1 [a, b] is essentially wider than that of C[a, b] both in the real and complex cases.

On the other hand we cannot obtain further extension of the family of Chebyshev

subspaces assuming higher differentiability; that is, replacing Cx[a,b] by Cr[a,b],

where r is greater than 1.

The main goal of the present paper is extension of these considerations to mul-

tivariate functions. We shall consider the space of continuously-differentiable func-

tions on the unit disc and give a characterization of its finite-dimensional Chebyshev

subspaces. This problem for functions of two variables turned out to be more deli-

cate and complicated because of extension of boundary from a discrete set in case

of one variable to a continuum in case of two variables.

In the first part of the paper our main theorem is formulated and different

corollaries are given. In §2 we give a proof of the main result. Finally in §§3 and 4

we consider different applications for complex and real polynomials.

1. Main result. Set Y2 = {(x,y) G R2: x2 + y2 < 1} and let Cl(Y2) be the

space of real or complex functions f(x,y) such that the partial derivatives fx and

fy exist in a neighborhood of each (xo,yo) £ Y2 and are continuous at (xo,yo)-

As above this space of continuously-differentiable functions on Y2 is endowed with

the norm ||/||c = m^x,y)€Y2 \f(x,y)[- The following theorem characterizing the

finite-dimensional Chebyshev subspaces of C1(Y2) is our principal result.

THEOREM 1. Let Un be an n-dimensional subspace ofCl(Y2). Then Un is a

Chebyshev subspace of Cl(Y2) if and only if there does not exist an extremal set

{(zfc,2/fc)}fcLi Ç Y2 ofUn with coefficients {ak}1kn=i and p G Í7n\{0} such that for

all 1 < k < m

(1) p(xk,yk) = 0,

(2) Reakp'y(xk,yk) = Reakp'x(xk,yk) = 0    ifxk + yk<l,
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(3) xkReakp'y(xk,yk) = ykReakp'x(xk,yk)    ifx% + yl = l.

Since in the real case, for each 1 < k < m, ak ^ 0 are real we can derive the

following

COROLLARY 1. In the real case in order that Un be a Chebyshev subspace of

C1(Y2) it is necessary and sufficient that there does not exist an extremal set

{(zfciî/fc^fcLi °fUn and p G <7n\{0} such that for all 1 < k < m

(4) p(xk,yk) = 0,

(5) P'y(xk,yk) =p'x(xk,yk) = 0    ifx2k+yl<l,

(6) xkp'y(xk,yk) = ykp'x(xk,yk)    ifx\ + y2k = l.

Assume now that the functions in C1(Y2) are complex and elements of Un are

analytic in the disc {|2| < 1 + e} for some e > 0 (z = x + iy). Then for any pGUn

we have p'y = ip'x = ip' on {|z| < 1 + e}. Hence in this case (2) is equivalent to

p'(zk) — 0 while (3) is equivalent to lmakzkp'(zk) = 0 (zk = xk + iyk)- Thus we

obtain

COROLLARY 2. Let the functions in C1(Y2) be complex and assume that el-

ements of Un are analytic in {[z\ < 1 + e} for some e > 0. Then Un is a

Chebyshev subspace of C1(Y2) if and only if there does not exist an extremal set

{zk = xk + iyk}™^! Ç Y2 of Un with coefficients {ak}kn=l and p G £/n\{0} such

that for all 1 < k < m

(7) p(zk) = 0,

(8) p'(zk) = 0   l/|zfc|<l,

(9) lmakzkp'(zk) =0    if\zk[ = L

It can be seen that the essential difference between the cases of one and two vari-

ables consists in appearance in the multivariate case of certain boundary conditions

(see (3), (6) and (9)).

2. Proof of Theorem 1. We shall need an auxiliary lemma which is equivalent

to Theorem 1.3 of [12, p. 178].

LEMMA 1. Let Un be an n-dimensional subspace of C(K) and consider an

arbitrary f G C(K). Then in order that p G Un be a best approximant of f it is

necessary and sufficient that there exists an extremal set {xk}kn=1 Ç if of Un with

coefficients {afc}^ such that

f(xk) - p(xk) = ^ max \f(x) - p(x)\        (1 < k < m).
\ak\ xeK

Furthermore, the following elementary proposition will be used in the proof.

PROPOSITION 1. Assume that the real functions <p(x) andip(x) (x G (a,ß)) are

differentiable at Ç G (a,ß). If </>(£) = suvx€{aß) \(¡>(x)\, ip(£) = 0 and

(10) sup   \<p(x) - 4>(x)\ <    sup   \d>(x)\,
x€(a,/3) xe(a,ß)

then xp'(t:) = 0.
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Indeed,

4>(x) - rh(x) = 0(0 + «//(£)(* - i) + o(\x - CI) - ip(0 - 4>'(t)(x -0 + o(\x - £|)

=<Ko-no(x-<i)+o(\x-z\)
and this would contradict (10) if ip'(£) ^ 0.

Let us now verify the sufficiency in Theorem 1.

Assume that Un is not a Chebyshev subspace of C1(Y2). Then there exist

/ G C1(Y2) and p G Un\{0} such that 0 and p are best approximants of / in Un.

By the above lemma there exists an extremal set {(xk, J/fe)}fcLi Q Y2 of Un with

coefficients {ak}kn=1 such that

(11) f(xk,yk) = ^-A[f[]c        (l<k<m).
\ak\

Let us verify that for the extremal set {(xk,yk)}kn=1, its coefficients {ßfcjfcLi and

p G Un\{0} the relations (l)-(3) hold. Using that

(12) ll/-Pllc = ||/||c
and relations (11) we have

(13)

0>\f(xk,yk)-p(xk,yk)\-\\f[\c
2

/lie - T-^p(xk,yk)

2|l/llcD„ „    ,     .., , , ,
ak\

Reakp(xk,yk) + \p(xk,yk)Y

Hence Reakp(xk,yk) > 0 for each 1 < k < m. Since by definition of extremal sets

XX=i °'kp(xk,yk) = 0 it follows that Reakp(xk,yk) = 0 (1 < k < m). Finally this
and (13) imply

(14) p(xk,yk) = 0       (l<k<m).

Thus condition (1) is satisfied.

Assume now that x\ + y2 < 1 for some 1 < k < m. Then setting (¡>(x) —

Reakf(x,yk), th(x) = Reakp(x,yk) (\x[ < sjl - y2k) and using (11), (12) and (14)

we can conclude that, for cf>(x),ip(x) and ^ = xk G (— \Jl — yk, \Jl — y'k), the

conditions of Proposition 1 are fulfilled. Hence ip'(xk) = 0, i.e. Reakp'x(xk,yk) = 0.

Analogously we can prove that Reakp'y(xk,yk) = 0. Thus (2) also holds.

Finally in the case x\ + y\ = 1 we set xk — costk, yk = sinifc, 4>(t) —

Reakf(cost,sint) and ip(t) = Reafcp(cosi,sint). Applying again Proposition 1

we arrive at i¡>'(tk) — 0 which is evidently equivalent to (3).

This completes the proof of sufficiency in Theorem 1.

Let us now verify the necessity of conditions imposed in Theorem 1.

Assume that there exist an extremal set {(xk,yk)}kn=1 Ç Y2 of Un with coef-

ficients {ak}1kn=1 and p G Un\{0} such that (l)-(3) hold. This will enable us to

construct a function / G C1(Y2) having nonunique best approximation in Un.

Consider the function

(15) W*(t)=U>(p'x,t) + M,t)-rt (t>0),
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where u(g,t) = max{\g(xi,yi) - g(x2,y2)\: (xuyi),(x2,y2) G Y2, (xi - x2)2+

(yi - yi)2 < t2} (t > 0) denotes the modulus of continuity of g G C(Y2). Further-

more, set

(16) ffO)

rt>

/   "*(*)'Jo

d - I       ut*(t)dt,
Jo

)dt, 0 < 4> < tt/2,

7t/2 < 4> < 7T,

where ci = 2/0 uj*(t)dt. (Here and in what follows ci,C2,... denote positive

constants depending only on p, the extremal set {(xk,yk)}kn=1 an^ its coefficients

{flfc}fcLi-) Obviously, g is a real positive continuously-differentiable function on

[0,7r] and

(17) f/(Q) = i7'(7r) = 0.

Consider the extremal set {(xk,yk)}kL=1 Ç Y2. Without loss of generality we

may assume that x\ + y\ < 1 for 1 < k < s and x\ + y\ = 1 for s + 1 < k < m

(0 < s <m). Let us introduce the functions

(18)
Fk(x,y)

\/ (x-xk)2 + (y-yk)'2

jJO

Ci(l —

oj*(t)dt,

- y2) + (x2 + y2)g l arceos

1 < k < s,

xxk + yyk

\Jx2 + y2

1 < k < m,

where (x, 1/) 6 R2, It can easily be shown that

(19)    Fk(xk,yk) = 0 and Fk(x,y) > 0 ii (x,y) G Y2\{(xk,yk)}       (1 < k < m).

Furthermore functions Fk are real and we claim that Fk G C1(Y2) (1 < k < m).

If 1 < k < s, then using that w*(i) —* 0 as t —> +0 we can derive that Fk(x,y)

is continuously differentiable at each point (x,y) G R2. Now let s + 1 < k < m.

Then, we can easily obtain from (18) that

(20)

(Fk(x,y))'x = -2cix + 2xg (arccos^±E| )

\ y/X2 +y2 )

, ( xxk + yyk\
+ g    arccos^===    ysign(xyk - yxk).

\ y/x2 +y2 J

The continuity of this function should be checked only at the line xyk = yxk. Since

\(Pk(x,y))'x\ <c2|x| + c3|2/|

it follows that (Fk(x,y))'x is continuous at the origin. Assume now that xyk =

yxk and x2 + y2 > 0. Then taking into account that x\ + y\ — 1 we obtain

[xxk + yVk\/\/x2 +y2 = 1. Therefore (17) yields that function (20) is continuous

at (x,y). Analogously it can be shown that (Fk(x,y))'y is continuous on R2. Thus

FkGC\Y2), l<k<m.
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After these preparations we can construct our counterexample. Set

Qk(h) = {(x, y)GY2:(x- xk)2 + (y - yk)2 < h2}        (0 < h< 1/2, 1 < k < m),

where h is chosen small enough so that the closures of these sets are disjoint.

Furthermore there exists a function ip G C1(Y2) such that \\ip\\c = 1 and

(21) %l)(x,y)=äk/[ak\    if (x,y) G Qk(h),        1 < k < m.

(An explicit formula for ijj can easily be established; we omit the details.) Then the

needed function can be given by

(22) f{x,y) = ip(x,y){l-c4F0(x,y)),

where F0(x,y) = UT=iPk(x,y) and c4 = 1/||F0||C. Obviously, / G Cl(Y2),

||/||c = 1, and by (19) and (21)

(23) f(xk,yk) = 4>(xk,yk) =W|afc|       (1 < k < m).

It follows by Lemma 1 and the above relations that 0 is a best approximant of /

in Un. We state that for £ small enough ep is best approximation, too. Thus we

should verify that ||/ - £p||c — 1 if £ G R is small enough.

Consider an arbitrary (xn,yo) £ Y2. Assume at first that (x0,yo) £ Y2\Q(h),

where Q(h) = U™=1 Qk(h). Since Fk vanishes only at (xk,yk) (see (19)) it follows

that l/l < n < 1 on Y2\Q(h). Therefore setting |e| < (1 - r?)/||p||c we have

(24) \f(xo,yo) -ep(xo,yo)\ <r) + l-T/ = l.

Now let (xo,yo) £ Q(h), i.e. (x0,yo) G Qk(h) for some 1 < k < m. Using again

that Fk vanishes only at (xk,yk) we can easily derive that for any (x,y) G Qk(h)

m

(25) Fo(x,y) = l[FJ(x,y)>c5Fk(x,y)    (1 < k < m).

j = i

Therefore by (22) and (21) for each (x,y) G Qk(h)

i

\f(x,y)-£p(x,y)\2 1 - c4F0(x,y) - |—,akp(x,y)
Ofc

(26) = (1 - c4F0(x,y))2 - 2(1 - CiFo(x,y))j—Reakp(x,y) + £2\p(x,y)\2

2|c|
< l-c6Fk(x,y) + -^-\\Reakp(x,y)\+£2\p(x,y)\2,        l<k<m.

\ak\

Now we shall give upper bounds for the two last terms in (26). Let us consider two

cases.

Case 1. (xo,yo) £ Qk(h), where 1 < k < s. Obviously for any (xi,yi), (x2,y2) G

F2 we have

(27) [p(xi,yi)-p(x2,y2)\2 < c7{(x2 - x,)2 + (y2 - yi)2}.

Furthermore, by definition of Fk for 1 < k < s (see (18))
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Since p(xk,yk) =0we have by (27) and (28)

(29) |p(x0, yo)\2 < c7{(xk - x0)2 + (yk - yo)2} < 4c7Ffc(x0, î/o).

Now set q(x,y) = (l/|ofc|)Reofcp(x,y).   Then q is a real function belonging to

Cl(Y2). Moreover, by (1) and (2)

q(xk,yk) =q'x(xk,yk) = q'y(xk,yk) =0.

Therefore applying this and (28) we have

i—r|Reafcp(x0,yo)| = \q(xo,yo)\ = \q(xo,yo) - q(xk,yk)\
\ak\

< \/(xo - Xfc)2 + (y0 - yk)2 |w (q'y, y/(xQ - xk)2 + (y0 - yk)2J

+w (q'x, y/(x0 - Xfc)2 + (y0 - yk)2) J

< \/(xo - Xfc)2 + (y0 - yk)2 jw (p'y, sj(x0 - xk)2 + (y0 - yk)2J

+w (p'x, V(xo-xk)2 + (y0-yk)2J }

< \/(xo - Xfc)2 + (y0 - 2/fc)2^* (y{x0 - Xfc)2 + (y0 - yk)2)

<4Ffc(x0,yo)-

Applying this and (29) in (26) we arrive at

(301 l/(xo,yo) -£p(x0,yo)|2

< l-c6Ffc(xo,2/o) + 8k|Ffc(xo,yo) + 4£2c7Ffc(xo,yo) < 1

if 8|e| + 4c7£2 < C6-

Case 2. (xo,yo) e Qk(h) for some s + 1 < k < m. Then x\ + y\ - 1, hence

we may set xfc = cos0fc, yk = sin chk; x0 = r0cos(<pk + </>0), yo = r0sin((j)k + (f>o)

(0 < r0 < 1). Since (x0,yo) € Qk(h), where 0 < h < 1/2, it follows that r0 > 1/2

and \(po[ < 7r/2. By definition of Fk in case s + 1 < k < m (see (18) and (16)) we

have

Ffc(x0,yo) > ci(l - Xq - yl) + ¿g(arccoscosr>o)

> c8(l - x2o - yl + g([<po[)) > c9(l -x2o-yl + |0o|w*(|^,|)).

(31)    ~ "v-"'»"^ — "'V-       ~u       "\)>   '   4

> C8(l - X2o - l

Consider the function

*(0) = 1—rReofcp(cos(0 + <?i>fc),sin(c!>-|-(/)fc))        (\qb\ < ir).
\ak\

It follows from (1) and (3) that ¿(0) = i'(0) = 0. This immediately implies that

|i(0o)|<|</>ol     max     |í'(0-í'(í7)|
\í-n\<\<t>a\

<cio[4>o[Hv'y,\4>o\) + oj(p'x,\(¡>o[) + \U)

= cio|0o|w*(|0o|).



846 ANDRÁS KROÓ

Hence and by (27) and (31)

i—r|Reofcp(xo,J/o)| < i—-AReakp(cos(4>k + 4>0),sin((f>k + 4>o))\
\0.k\ \CLk\

,32) + \p(xo,Vo) - p(cos(4>k + <t>o),sin((t>k + (po))\

<[t(<t>o)\ + V¿~7(l-^x2+y2)

< cii(l -xl-y$ + |0o|w*(|^o|)) < ci2Ffc(x0,2/o)-

Analogously using (27), (1) and (31) we have

\p(xo,yo)\2 < 2\p(x0,yo) - p(cos(4>k + 4>o),sin((f>k + <po))\2

+ 2\p(cos((j)k + 0o),sin(^fc + (po))\2 < 2c7(l - \Jx20 + yl)2

(33) +2|p(cos((/)fc+(/)o),sin(0fc + </'o)) -p(cos0fc,sin<?l)fc)|2

< 2c7(l - x2 - y2) + 2c7<t>l < 2c7(l - xg - yl + M"*(\M))

<ci3Fk(x0,yo)-

Applying estimations (32) and (33) in (26) we again obtain that

l/(zo,î/o)-£p(:ro,yo)|2

< l-c6Ffc(x0,j/o) + 2ci2|£|Ffc(xo,2/o)+ci3£2irfe(2;o,yo) < 1

provided 2ci2|e| + Ci3£2 < c%. Finally, (24), (30) and the above estimation imply

that ||/ - £p||c < 1 if |e| < C14. Thus / G C1(Y2) has nonunique best approxima-

tion, i.e. Un is not a Chebyshev subspace of C1(Y2).

The proof of Theorem 1 is completed.

3. Application for complex polynomials. In this section we shall discuss

possible application of Theorem 1 and in particular, Corollary 2 in the complex case.

We shall establish a wide family of polynomial Chebyshev subspaces of C1(Y2)

which do not satisfy the Haar condition, i.e. are not Chebyshev in C(Y2). The space

of linear polynomials Ei = {az: a G C} is a simplest example of non-Haar space

which is Chebyshev in C1(Y2). (Throughout this section we consider functions

of complex variable z = x + iy.) Indeed, any p G £'i\{0} can vanish only at the

origin while p'(0) ^ 0. Thus conditions (7) and (8) cannot hold and it follows by

Corollary 2 that £, is Chebyshev in Cl(Y2).

Let Pn — {Xw=o àjZ3 : äj G C} be the space of algebraic polynomials of degree

at most n — 1. Evidently Pn satisfies the Haar condition, hence it is Chebyshev in

C(Y2). Let us delete from Pn some basis functions different from 1 and zn~l and

consider the resulting space of lacunary polynomials

Ps=\Sy£bjZ«:bjGC

[3=0

where 0 = go < 9i < ■ • • < 9s-1 — n — 1 are fixed integers and 2 < s < n. Then

dimPs = s < n - 1 while p*(z) = zn~l - 1 G Ps has n - 1 distinct zeros at

Y2. Hence, for each choice of integers qj, Ps is not Chebyshev in C(Y2). On the

other hand, our next result implies that under an additional assumption Ps is a

Chebyshev subspace of Cl(Y2).
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THEOREM 2. If Pa 2 Pr, where r = [(3n - l)/4], then Ps is a Chebyshev
subspace of C1(Y2) (n > 4).

That is, if we preserve the first [(3n - l)/4] powers z3 (0 < j < [(3n - l)/4] - 1)

and delete in an arbitrary way some of the remaining n—[(3n—1)/4] basis functions

of Pn, then the resulting space of lacunary polynomials will still be Chebyshev in

C1(Y2). This shows that in the complex case the family of Chebyshev subspaces

of Cl(Y2) is essentially wider than that of C(Y2).

In order to apply Corollary 2 (namely condition (9)) we need some information

on coefficients of the extremal sets. The needed information is provided by the

following lemma of Vidensky (see [13, pp. 441, 442]).

LEMMA 2. Let {zk}1kn=1 C Y2 be an extremal set of Pr with coefficients {afc}£L,

(r + 1 < m < 2r + 1).  Then there exists u G Pm_r\{0} such that

(34) ak=u(zk)/u)'(zk)        (l<k<m),

where u>(z) = njLi(2 ~ zj)-

PROOF OF THEOREM 2. Assume to the contrary that Ps is not a Chebyshev

subspace of C1(Y2). Then by Corollary 2 there exist an extremal set {zk}1kn=l C Y2

of Ps with coefficients {afc}fcLi and p G Ps\{0} such that relations (7)-(9) hold.

Since p(zk) = 0, 1 < k < m, and p G Ps C Pn it follows that m<n—l<2r+l.

On the other hand Ps D Pr, hence it is obvious that {zk}kn_1 is an extremal set

of Pr with coefficients {ak}kn=l and r-r-l<m<2r-f-l. Therefore by Lemma 2

there exists u G Pm_r\{0} such that (34) holds. Further, assume that \zk] = 1

for 1 < k < mo and |zfc| < 1 if mo + l<fc<m(0< mo < m). By (7) and (8)

p(zk) = 0 (1 < k < m) and p'(zk) = 0 if mo + 1 < k < m. Hence

(35) m0>2m-n+l>2r-n + 3

and
m

p(z) = W(Z)       Y[      (Z~ Zk)P(z),

k=rriQ-\-l

whereo;^) = Y¥JLi{z~zj) ^^P ^ -fn-2m+mo\{0}- Using the above representation

we have
m

(36) p'(zj)=u'(zj)    Yl    (zj - zk)p(zj)        (l<y<m).
k=mo + í

Furthermore (9) implies that lmajZjp'(z0) — 0 for each 1 < j < mo- This together

with (34) and (36) yield

m

0 = 1ma,jZjp'(zj)= ImZju(zj)    Y[    (zj ~ zk)P(zj)
Í3') fc=m0 + l

= lm p*(zj)        (l<j<m0),

where p*(z) = zu(z)l\kn=mo+1(z - zk)p(z) G P„_,.\{0}. Moreover Imp*(e'*) is a

trigonometric polynomial of degree at most n — r — 1 while (37) and (35) imply

that it has at least 2r — n + 3 distinct zeros on [0,2-n). Furthermore p* is not a

constant function, hence lmp*(el't>) cannot be identically zero.   This yields that
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2r - n + 3 < 2n - 2r - 2, i.e. r < [(3n - l)/4] - 1, a contradiction. The theorem is

proved.

EXAMPLE 1. Set n = 4. Then r = [(3n - l)/4] = 2. Thus applying Theorem 2

we may conclude that P3 = span{l, z, z3} is a Chebyshev subspace of C1(Y2). On

the other hand if we delete one more basis function and consider P2 = span{l, z3},

then the condition of Theorem 2 does not hold, and we can show that P2 is not

Chebyshev in C1(Y2). Indeed, {e27™/3ie~2'™/'3} is an extremal set of P2 with

coefficients ai = 1, a2 = —1. Moreover, for p(z) = z3 - 1 G P2, the relations

(7)-(9) evidently hold. Hence by Corollary 2, P2 is not a Chebyshev subspace of

C1(Y2). This example shows that the condition of Theorem 2 is in a certain sense

sharp.

The above result presents a significant area of application of Theorem 1 in the

complex case. As it was already mentioned there are not spaces of lacunary com-

plex polynomials having Chebyshev property in C(Y2). Nevertheless Theorem

2 establishes a sufficiently wide class of lacunary complex polynomials which are

Chebyshev in C1(Y2). This justifies the importance of investigation of Chebyshev

subspaces in C1(Y2). It would be especially interesting to give a direct character-

ization of those spaces of complex lacunary polynomials which are Chebyshev in

CX(Y2).

4. Application in the real case. Let us denote by G¿ (Y2) the space of real-

valued functions in C1(Y2). In this section we shall discuss possible application of

our main result in the study of Chebyshev subspaces of Cq(Y2).

Consider the space ¿3 = {ax + by + c: a,b,c G R} of linear polynomials of

two variables. Corollary 1 immediately implies that L3 is a Chebyshev subspace

of Cq(Y2). Indeed, each extremal set of L3 consists of at least 3 points, hence if

(4)-(6) were true for some p G L3\{0}, then the differential of p would vanish at

one of the points of extremal set. The Chebyshev property of ¿3 in C¿(Y2) was

discovered in an earlier paper of Collatz [4].

Now let Un be an arbitrary n-dimensional subspace of C¿(Y2) and assume that

p G Un\{0} has n distinct zeros di,... ,dn G Y2. Then the evaluation functionals

Edi G U* given by Ed<(g) = g(di) (g G Un), 1 < i < n, are linearly dependent

on Un, i.e. the set {d¿}"=1 or a proper subset of it is an extremal set of Un. If,

in addition, the differential of p also vanishes at di,...,dn, then it follows from

Corollary 1 that Un is not a Chebyshev subspace of C¿(F2). Thus elements of

a Chebyshev subspace of Cq(Y2) may have at most n — 1 "double" zeros. This

statement proved originally by Rivlin and Shapiro [10] implies that the set of

quadratic polynomials ¿6 = {J2j+k<2ajkX3yk': ajk G R} is not Chebyshev in

Gq(F2). Thus in contrast to the complex case it is very unlikely that there exists

a wide class of Chebyshev subspaces of C¿(Y2). It is not even clear whether there

can be found Chebyshev subspaces of C¿(Y2) of arbitrary finite dimension. Col-

latz 's result on linear polynomials presents a 3-dimensional Chebyshev subspace of

Cq(Y2). We shall now establish a 4-dimensional Chebyshev subspace of G¿(F2).

Set L4 = {axy + bx + cy + d: a,b,c,d G R}.

PROPOSITION 2.   ¿4 is a Chebyshev subspace ofC¿(Y2).
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PROOF. Assume the contrary. Then by Corollary 1 there exist an extremal set

{(xfc, yk)}kn=1 Ç Y2 of L4 and p(x, y) = axy + bx + cy + d G L4\{0} such that (4)-(6)

hold. Evidently, m > 3 and a ^ 0. Furthermore, the differential of p vanishes only

at (—c/a, —b/a).

Assume at first that m = 3. Then

3 3 3

(38) ]P afc = ^2 akxk = Y2 flfc^fe = °
k=l fc=l fc=i

and

3

(39) ]P akxkyk = 0,
fc=i

where ak ^ 0, 1 < k < 3, are the corresponding coefficients of the extremal set

{(xk,yk)}k=i- Relations (38) imply that for some 6¿, 1 < i < 3, we have

(40) bi + b2xk + b3yk = 0        (l<fc<3, 62 + 62>0).

If 6263 7^ 0, then all yk = -61/63 - (b2/bz)xk, 1 < k < 3, are distinct. Moreover,

by (38) and (39)

3 3 /     h h        \ h    .3.
0 = V afcXfcj/fc = V afc ( -ri - 7^2/fc ) yk = ™ V afc^,

Si ¡s   v ^2   62 y       62^

i.e. YLk=\ aky\ = 0. This and (38) imply that ai = 02 = 03 = 0, a contradiction.

Thus either 62 or 63 should be zero. Assume for example that 62 = 0 and 63 ^ 0.

Then we can derive from (40) that 2/1 = 2/2 = 2/3 = -61/63, where |6x/&3[ < 1.

Furthermore, it follows from (4) that p(xk, —61/63) = 0, 1 < k < 3, where all

xk, 1 < k < 3, should be distinct. Therefore p(x,y) = (ax + c)(y + 61/63), i.e.

p'x(xk, -61/63) = 0, 1 < k < 3. Using that Xfc 7^ 0 if x2 + y2 = 1 we obtain by (5)

and (6) that p'y(xk, -61/63) = 0, 1 < k < 3. But this is a contradiction since the

differential of p vanishes only at one point.

Consider now the case when m > 4. By (5) the differential of p should vanish at

each interior point of the extremal set, hence it follows that at least 3 points of the

extremal set {(xk,yk)}1k=1 are on the unit circle x2 + y2 = 1. This together with

(4) and (6) yields that the trigonometric polynomial of degree 2 given by

t((j>) = p(cosqb,sin<p) — - sin 20 + 6cos0 + csin</> + d

has at least 3 distinct double zeros on [0,2rr), a contradiction. The proposition is

proved.

Now we are going to show that methods developed in this paper can be used in

the study of Zolotarjov type extremal problems for polynomials of two variables.

Let P* be the set of real algebraic polynomials of one variable of degree at most

n> Pn,m = {S"=o X^=o bi,jXly3 : bij G R} denotes the real polynomials in x and y

of degree n and m, respectively. Consider an arbitrary polynomial p„ G P* and let

Pfc G Pk be its best Chebyshev approximation on S = [—1,1] out of Pk (k < n).

Analogously taking a polynomial pm G Pm we denote by ps G P* its best Chebyshev

approximation on S out of P* (s < m). Set P*s + Pk*m = {p + q: p G P*s, q G

P¿m}, m,n G N; 0 < k < n; 0 < s < m.   Then by a result of Shapiro [11,
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p. 35] the polynomial pn(x)ps(y) + pk(x)pm(y) - pk(x)ps(y) is a best Chebyshev

approximation of pn(x)pm(y) on S2 = [-1,1] x [-1,1] out of P^s + Pkm. Now we

give a sufficient condition for unicity in the above approximation problem.

THEOREM 3.   Let n,m G N; 0 < k < n; 0 < s < m, and assume that

(41) min{2fc + 2 - n, 2s + 2 - m) > 0.

Furthermore, consider arbitrary polynomials pn G P*, pm G P„\ and let pk G

Pk and ps G P* be their best Chebyshev approximants on S out of P£ and P*,

respectively. Then pn(x)ps(y) + pk(x)pm(y) - Pk(x)ps(y) G P*^s + Pkm is the

unique best Chebyshev approximation of pn(x)pm(y) on S2 out of P*   + Pkm.

This theorem immediately gives explicit unique solutions to certain Zolotarjov

type extremal problems. For example, if we set k = n — 1 and s = m — 1, then

it follows that the polynomial Tn(x)Tm(y), where Tn(x) = 2~™+1 cosnarceosx

denotes the Chebyshev polynomial of degree n, is the unique polynomial of the

form

n     m

(42) p(x,2/) = ^E^^V
¿=oy=o

with 6nm = 1 having minimal Chebyshev norm on S2. This result was originally

proved by Zeller and Ehrlich [14]. Analogously setting k = n — 1, s = m — 2

(n > 1, m > 3) and denoting by Zm,c the Zolotarjov polynomial of degree m

we obtain that Tn(x)ZmtC(y) is the unique polynomial having the least Chebyshev

deviation on S2 among all polynomials of the form (42) with 6„jTO = 1 and 6n,m_i =

—c. This proposition seems to be new. (Recall that Zm^(y) has the minimal

Chebyshev norm on S among polynomials ym — cym~l + YlT^o biy1', where c € R

is fixed.)

PROOF OF THEOREM 3. We shall only outline the proof because it goes es-

sentially along the same lines as that of Theorem 1.

Let {xi}^2 C S and {y^Yj^2 C S be points of Chebyshev alternation of the

functions pn — pk and pm — ps, respectively. That is

(43) pn(x,) - pk(xt) = r,(-iyd        (l<i<k + 2;r¡ = ±l)

and

(44) Pm(yj)-Ps(yj) = t(-l)Jh        (l<J<s + 2;e = ±l),

where ci and h are the Chebyshev norms of pn -pk and pm - ps on S, respectively.

Moreover, it can easily be verified that there exist ai > 0 and bj > 0 (1 < i < k + 2,

1 < j < s + 2) such that

k+2

£(-1)^=0        (0<r<fc),
i=i

s+2

^(-1)^=0       (0</<s).

.7 = 1
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Then for any t G P*<a + P£m

s-r2fc+2

(45) ÉÉ(-l)i+J«»M(a:*.%) = 0.
i=i¿=i

Consider now the function g(x,y) — (p„(x) - Pk(x))(pm(y) - Ps(y))- It follows by

(43) and (44) that

(46) g(xi,yj) = r,t:(-iy+3 dh,        l<i<k + 2, 1 < j < s + 2,

where dh is equal to the Chebyshev norm of g on S2. Now, in order to prove

the needed statement we have to show that 0 is the unique best approximant of

g on S2 out of P*>3 + Pkm. If we assume that, for some t G P*¡s + P¿,m\{0},

max(XjV)€s2 \g(x,y) — t(x,y)\ < dh, then using (45), (46) and the same arguments

as in the proof of Theorem 1 it can easily be shown that

(47) t(xi,yj) =0       (1 < i < k + 2, 1 < j < s + 2),

(48) t'x(xi,y3) = 0       (2 < i < k + 1, 1 < j < s + 2),

(49) t'y(xi, y3) = 0       (l<i<k + 2,2<j<s + l).

Furthermore t(x,y3) G P* (1 < j < s + 2), while (47), (48) and (41) imply that

t(x,yj) has at least 2k+ 2 > n zeros counting with multiplicities. Thus t(x,y3), 1 <

j < s+2, are identically zero. Analogously it can be shown that t(x%,y), 1 < i < k+

2, are zero polynomials. Therefore the polynomial flt=i (x—X{) Ylj=i (v~Vj) should

be a divisor of t. But this contradicts our assumption that t G P^s + Pk m\{0}.

The theorem is proved.

Now we give an example showing that condition (41) cannot be dropped in

general.

EXAMPLE 2. Set n = 2, m = 1, k = s = 0, i.e. (41) is false. Consider the

polynomials x2 + 4x — 1 and y (x,y G S). Then 0 is the best approximant of

x2 + 4x - 1 and y by constant functions. On the other hand, we can verify by easy

calculations that for any 0 < |a| < 1, a(x2 -1)6 ^2,0 + ^0,1 's a Dest approximation

of (x2 + 4x - 1)2/ on S2 out of P2*0 + P0* i-
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