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COVERS IN FREE LATTICES

BY

RALPH FREESE AND J. B. NATION1

Abstract. In this paper we study the covering relation ( u > v ) in finitely generated

free lattices. The basic result is an algorithm which, given an element w e FL( X),

finds all the elements which cover or are covered by w (if any such elements exist).

Using this, it is shown that covering chains in free lattices have at most five

elements; in fact, all but finitely many covering chains in each free lattice contain at

most three elements. Similarly, all finite intervals in FL( X) are classified; again, with

finitely many exceptions, they are all one-, two- or three-element chains.

Introduction. This paper was motivated by two questions about covers in free

lattices. (1) For a lattice term w with n variables, can one recursively decide if (the

element of FL(w) corresponding to) w covers any element in FL(n)? (2) Is there an

element w in FL(3) which neither covers nor is covered by any element of FL(3)?

The first problem was suggested to us by Q. F. Stout and the second by David Kelly.

Covers in free lattices are an interesting and important part of lattice theory.

Lattices of the form FL(n)/\p, where \p is the unique maximal congruence separating

u from v when u covers v in FL(w), are called splitting lattices. These lattices and the

corresponding coverings play an especially important role in the equational theory of

lattices; see McKenzie's paper [14].

Some of the best results on covers are: Ralph McKenzie's theorem that one can

recursively decide if u covers v for lattice terms u and v [14]; Alan Day's theorem

that FL(«) is weakly atomic (every proper interval contains a covering) [3]; R. A.

Dean's unpublished result that there are elements of FL(3) which do not cover any

element.

In this paper we answer questions (1) and (2) in the affirmative. We show that in

the first problem we may assume w is join irreducible. In fact we show that w has a

lower cover if and only if one of its canonical joinands does. We then show that

there is a bound on the complexity of the lower cover of w in terms of the

complexity of w. Thus there are only finitely many candidates for the lower cover.

This together with McKenzie's algorithm gives an algorithm for testing if w has a

lower cover.

Unfortunately, this algorithm is difficult to apply and we were unable to use it to

solve (2). Part of McKenzie's algorithm takes the generating set X of the free lattice
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FL(A') and alternately closes under joins and meets a finite number of times. The

result is a finite lattice and the procedure then asks certain questions about the

homomorphic images of this lattice. Unfortunately even if |A"| = 3, the first nontriv-

ial case, and we close under joins and meets each twice, the lattice has 677 elements.

We introduce a modification of this procedure. To each join irreducible w e FL(«)

we associate a set J(w) of join irreducible elements of FL(«). These elements

correspond (in a specified way) to certain subterms of the term representing w. Then

we close J(w) under joins and add a zero. The result is a finite lattice L(w). Then w

will have a lower cover if and only if L(w) is semidistributive. Even for moderately

complex terms L(w) is reasonably small. L(w) has many nice properties which are

given in §§3 and 4. In particular, if u e J(w), then L(u) is a homomorphic image of

L(w). It follows that if u has no lower cover then neither does w. From this and dual

considerations it is easy to find elements in FL(3) which have neither upper nor

lower covers. In fact, (x(y + z) + yz) (y(x + z) + xz) is such a word. In §4 we give

a table of some elements of FL(3) and their upper and lower covers.

§4 also gives purely syntactical algorithms for testing if w has a lower cover and

finding it if it does. These algorithms are efficient and we have implemented them on

a microcomputer using muLISP, a version of LISP for microcomputers. From our

algorithm we are able to show that if w is join irreducible and has a lower cover then

for each canonical meetand v of w all but exactly one of the canonical summands of

v is below w. At the end of the section a theorem which relates the canonical forms

of a completely join irreducible element and its lower cover is given.

In §5 we give a syntactic proof of Day's theorem. Day's original proof is based on

his doubling construction. This doubling construction is also in our proof, although

it is hidden. Given u > v in FL(A"), X finite, our proof effectively finds elements s

covering t with u > s > t > v. Moreover we show that such 5 and t can be found

whose complexity is bounded by the sum of the complexities of u and v. Examples

are given to show this bound is the best possible.

Bjarni Jónsson suggested another interesting question: Is there a bound on the

length of covering chains a0 > ax > • • • > ak in FL(X) [19]? The longest covering

chains we knew of were five-element chains at the top and bottom of FL(3), and

four-element chains at the top and bottom of FL(«) when « > 4 (§6).

This investigation led directly to a question which is interesting in its own right.

Call an element w e FL(.Y") totally atomic if, whenever u > w, there exists v with

u > v > w, and the dual property holds. What are the totally atomic elements in

FL(X)1 In §7 we show that the totally atomic elements in FL(.Y) are precisely the

elements having a certain simple form. In particular, each FL(«) (n e w) contains

only finitely many totally atomic elements. §8 contains several technical lemmas

relating totally atomic elements to Jónsson's question. The principal connection is

this: If a0 > ax > a2 in FL(A") and ax is, say, meet irreducible, then the (unique)

member of the canonical join representation of ax which is not below a2 must be

totally atomic.

Using this, we show in §9 that chains of covers in free lattices can have length at

most 4 and these only occur at the top and bottom of FL(3). Chains of length 3 also
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only occur at the top and bottom of FL(«). We show, however, that there are

infinitely many chains of covers of length 2 in FL(4). We also classify all finite

interval sublattices of free lattices. In FL(3) the interval xy + xz + yz/xyz is finite.

Every finite interval sublattice of a free lattice is isomorphic or dually isomorphic to

a sublattice of xy + xz + yz/xyz. Moreover, the only finite interval sublattices of

FL(w) which occur infinitely often are the one-, two- and three-element chains.

We conclude with some remarks on arbitrary intervals in FL( X). In particular, we

prove that every interval u/v in a free lattice is isomorphic to a projective lattice

which is generated by its doubly (meet and join) irreducible elements.

1. Preliminaries. We recall here some of the terminology and results which we will

be using. We say that a covers b in a lattice if a > b and there is no element c with

a > c > b. We write a > b. By a covering pair we mean a pair of elements a, b with

a > b. If a > b, then a is called an upper cover of b, and b is a lower cover of a.

We are concerned with finding covers of elements in free lattices. If X is infinite,

then FL(X) has no coverings. On the other hand, Day's result [3] shows that finitely

generated free lattices have many coverings. Our problem will be to find upper or

lower covers, if there are any, for a given element in a fixed finitely generated free

lattice FL(h).

Let J(L) denote the set of all nonzero join irreducible elements in a lattice L, and

M( L ) the set of all nonunit meet irreducible elements. For technical reasons related

to the fact that 0 has no lower cover, we exclude 0 from J(L) and often when we

refer to a join irredicible element of L we tacitly assume it is not 0. If w g /(FL( X)),

then w covers at most one element, which, if it exists, will be denoted by w*. If

w g J(FL( X)) has a lower cover, then w is completely join irreducible in that w is not

the supremum of any subset of FL(A^) not containing w. The converse is also

obviously true and thus we shall use the terminology " w has a lower cover" and " w

is completely join irreducible" interchangeably. If w* exists, then there is a unique

maximal element v G FL(X) such that v > w* but u ^ w [14]; this element will be

denoted by k(w). In the proof of Theorem 2.1 we will indicate how to find ic(vv)

when it exists.

If L is a finite lattice and/? g J(L), then/) has a lower coverp*, and there may or

may not exist a unique element KL(p) which is maximal with respect to being above

p* but not above p. In fact, we note that for a finite lattice L, KL(p) exists for every

p g J(L) if and only if L satisfies

(SDA) u = ab = ac   implies    u = a(b + c).

To see this, first assume that L satisfies (SDA) and let p g J(L). If K — [x g L:

px = />*}, then (SDA) implies E K g K, so that nL(p) = \ZK. On the other hand,

assume that L fails (SDA) with u = ab = ac < a(b + c). Let q be an element of L

which is minimal with respect to q < a(b + c) but q £ u. Clearly q g J(L) and

q* ^ u. Using q < a, we calculate qb = qc = q* whereas q(b + c) = q, which

means that nL(q) does not exist.

The dual of (SDA) is

(SDV) u = a + b = a + c    implies    v = a + be.
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A lattice which satisfies both (SDA) and (SDV) is called semidistributive.

A finitely generated lattice L is lower bounded if for every homomorphism /:

FL(X) -> L (where X is finite) and every a g L, [u g FL(A'): f(u) > a) either is

empty or has a least element. Equivalently, L is lower bounded if there exists an

epimorphism /: FL( X) -» L such that every a g L has a least preimage. (See [14,

Lemma 5.4, or 13, Theorem 4.2].) Upper bounded is defined dually, and L is bounded

if it is both lower ai       ->per bounded.

For nonempty fini ibsets U and F of a lattice L, we say that U refines V if for

every u g U there exists v g V such that u < u. We write [/ <sc K for this, t/ » K is

defined dually: for all u g f/ there is a t; g F with u ^ v. We call K a join-cover of

aGLifa<EK A join-cover F is nontrivial if a ^ f for each u g K. K is a minimal

join-cover of a if whenever a ^¿ZUand Í/refines K, then V Q U.

We will now describe a particularly simple algorithm, due to Bjarni Jónsson, for

determining whether a finitely generated lattice is lower bounded. Let D0(L) denote

the set of join prime elements of L, i.e., those elements which have no nontrivial

join-cover. For k > 0, let a g Dk(L) if every nontrivial join-cover V of a has a

refinement U C Dk_x(L) which is also a join-cover of a. Then a finitely generated

lattice L is lower bounded if and only if \Jk>0Dk(L) = L. (We will sketch one

direction of the proof below, for the converse and more details, see [13].)

Observe that, from the definition, D0(L) ç DX(L) Q D2(L) C ■ ■ •. If L is lower

bounded and a g L, we define the D-rank p(a) to be the least integer k such that

a g Dk(L). It is easy to see that if U is a finite nonempty subset of Dk(L), then

LU g Dk + X(L). Thus a finite lattice L will be lower bounded if and only if

J(L) ç Dn(L) for some n.

To test for upper boundedness, we define D'k(L) and the D'-rank p'(a) dually to

the above.

Let L be a finitely generated lattice, and let/: FL^) -» L (with X finite) be an

epimorphism. If L is lower bounded, then for a g L we let ßf(a) denote the least

preimage of a. If L is upper bounded, then af(a) denotes the greatest preimage of a.

The subscripts will be omitted when there is no danger of confusion. The proof that

Jónsson's algorithm works in fact tells us how to findß(a). Assume Uk>0 Dk( L) = L.

For all a g L, define

ß0(a) = U{x^X:f(x)^a}.

If a G D0(L), it is not hard to see that ß(a) = ß0(a). Assume we have found ß(b)

for all b G Dk(L), and let a G Dk + X(L). Let C(a) denote the set of all minimal

nontrivial join-covers of a. By the definition of Dk + X(L), we have U ç Dk(L)

whenever U g C(a). By Lemma 3.1 of [13], Dk(L) is finite, so C(a) is finite. Also,

every nontrivial join-cover of a in L refines to a join-cover in C(a). Let

ß(a) = ß0(a)    fi      Lß(b).
CEO«) /XEÍ7

The reader can now check that for all w g Fh(X), f(w)^a if and only if

w > ß(a). Since / is onto, this means that ß(a), as defined above, is the least

preimage of a. Finally, since we are assuming that Uk>0Dk(L) = L, this process

inductively defines ß(a) for every a G L, which shows that L is lower bounded.
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If L is a finite, lower bounded lattice and /: FLiX) -» L (with X finite) is an

epimorphism, then /îy is a join-preserving embedding of L into FL( X). In particular,

it suffices to compute ß(a) only for all a g J(L), and in practice this is what we

shall do.

If a > b in a lattice L, then by Dilworth's characterization of lattice congruences

there is a unique congruence ^ah on L which is maximal with the property

(a, b) G \¡/ah. One of the main results of McKenzie [14] is that if u > o in FL(n),

then FL(n)/\pul, is a finite, subdirectly irreducible, bounded lattice. (We will give a

new proof of this in §4.) Lattices with these properties are called splitting lattices.

Conversely, every splitting lattice is isomorphic to FL(n)/i[> Ul, for some covering pair

in a free lattice.

Free lattices satisfy the following lattice condition due to Whitman [17]:

n m

(W)    a = Y\ a, < H h/ = b implies there is an i with a¡ < b or ay with a ^ b¡.
Í-1 y_i

Whitman's solution to the word problem also implies that every element « of a

free lattice can be represented by a term of minimal length which is unique up to

commutivity and associativity. This term is either a variable or join or a meet of

simpler terms. If it is a join of simpler terms, none of which is formally a join, then

the elements of the free lattice corresponding to these terms are called the canonical

joinands of u and denoted CJ(w). In the other case, w is join irreducible and

CJ(w) = (u). We shall repeatedly use the following fact which semantically defines

CJ(w): ;/ CJ(w) = U and u = EV, then U refines V [17]. Canonical meetands are of

course defined dually and denoted by CM(w). We will use the phrase "« = ux ■ ■ ■ um

canonically" to mean that {ux,...,um} are the canonical meetands of u. We will also

say ux ■ ■ ■ um is in canonical form.

Whitman has a simple algorithm to test if a lattice term is in canonical form. The

corresponding semantical statement for elements of Fh(X) is this: if w = wx ■ ■ ■ wn

in FL( X), where each wi is meet irreducible, then wx,... ,wn are the canonical meetands

of w if and only if (wx,...,wn) is an antichain and if u G CJ(h>,), then u Jfe w,

i = 1,...,«.

2. Decidability. We are looking for an algorithm which, given a lattice term

t(xx,... ,xn), determines recursively whether the element w g FL(«) corresponding

to t has a lower cover. If w is joint irreducible in FL(«), then w has a lower cover if

and only if it is completely join irreducible. If w has a lower cover w* then, as

mentioned above, there is a unique largest element k(w) above h>* but not above w.

It is easy to see that k(w) is completely meet irreducible with unique upper cover

k(w)* = k(w) + w. Our first theorem shows that k defines a rank preserving

bijection from the completely join irreducible elements of FL(n) to the completely

meet irreducible elements.

The (join) rank function p defined in the previous section has a particularly simple

form in FL(«). Let .y denote the join closure operator; that is, if A is a subset of a

lattice thenS/?(A) is the set of joins of all finite, nonempty subsets of A. &is defined
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dually. A straightforward induction shows that Dk(FL(X)) = (0iy)k0>(X) and

D'k(FL(X)) = (V@)kif(X); see [13]. Thus the Z)-rank function p and the Z»'-rank

function p' are measures of complexity.

Theorem 2.1. The map k defines a bijection from the completely join irreducible

elements to the completely meet irreducible elements. If w is completely join irreducible,

then p(w) = p'(k(w)).

Proof. Suppose w is completely join irreducible and w > w*. To see that k(w)

exists let w>„ = 11m, be in canonical form. There must be an i, say / = 1, with

w, Jfe w. Now suppose wv = w* for some v. Then wv = w* =Y\ u¡ and so by (the

dual of) the refinement property of §1 we must have ux ^ w or ux > v. Hence

ux > v; that is, k(w) = ux.

It is easy to see that k(w) is completely meet irreducible with upper cover

k(w)* = k(w) + w. Also if we apply the dual procedure to ic(w) we retrieve w. Thus

k is bijective.

For the statement about ranks we need a lemma.

Lemma 2.2. Let f: FL(n) -» L be a lower bounded epimorphism. Then for all a g L,

p(a) = p(ß(a)).

Proof. The proof of Theorem 4.2 of [13] shows that ß(a) g Dk(FL(X)) implies

a g Dk(L). A straightforward induction proves the converse.   D

Now suppose w is completely join irreducible and w > w*, and let p(w) = k. Let

/: FL(«) -» L = FL(n)/\^WWt be the canonical map, and recall that / is bounded.

(Our proof of this in §4 will not use any result from this section.) Since ßf(w) = w,

by Lemma 2.2 we have p(f(w)) = k. Now L, being bounded, is semidistributive, so

Theorem 5 of [5] applies to yield p'(icL(f(w))) = k. We may then use the dual of

Lemma 2.2 to obtain p'(a(KL(f(w)))) = k. Now it follows easily from the defini-

tions that

K(w) = a(KL(f(w))).

Thus p'(k(w)) = k, as desired.   D

The above formula for k(w) will be used below.

Our next theorem shows that to decide if w has a lower cover it suffices to

consider join irreducibles.

Theorem 2.3. Let w = Ef_iW, canonically in FL(n). Then w has a lower cover if

and only if some wi G CJ( w) has a lower cover.

Proof. Suppose w > u. Then some element of CJ(vv), say wx, is not below u. We

claim that wx > wxu. For if wxu < v ^ wx, then v < u, so u + v = w. From this it

follows that for each w¡ g CJ(vv), either w: < u or w¡ < v. As wx ̂  ", we have

wx < v, whence wx = v. Thus wx > wxu.

Conversely, suppose wx g CJ(h>) has a lower cover wxt, which will be unique as

wx g J(FL(n)). We claim that w > wk(wx). Note first that for i > 1, w¿ < k(wx). For

if w¡  £ k(wx) for some z'0 > 1, then by the definition of ic(wx) we would have
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wx < wx*+ w¡, implying w = w1¡|t + Ef=2w,, contradicting the refinement property

at the end of §1. Now let wk(wx) < u < w. Then u > w1Nt, but u ~£ wx because

u > wk(wx) > w¡ for every i > 1. Thus w < «(h'i), whence « = wk(wx). We conclude

that w > wk(wx).    D

When we start trying to actually determine what the lower covers of a given

element in FL(«) are, it will be useful to have the following formulation of what we

have just proved.

Corollary 2.4. Let w = Ef=1 w¡ canonically in FL(n). Ifwi has a lower cover, then

w > wk(wt). If Wj does not have a lower cover, then w has no lower cover above E,#j w¡.

Theorems 2.1 and 2.3, combined with Whitman's solution of the word problem for

free lattices [17] and McKenzie's algorithm for testing whether u < v in a free lattice

(Theorem 6.2 of [14]), show that the predicate "w has a lower cover in FL(«)" is

recursive. For, given w, we need only test whether any wi g CJ(h>) has a lower cover.

If Wj g (3P£f)k3P(X), then we can use McKenzie's algorithm to check whether

w¡u < w¿ for any u g (y@)kSf(X). Notice that these arguments show that we can

effectively find all the lower covers of w. While this process is simple enough in

principle, we will develop in §4 a modification of McKenzie's algorithm which will

be considerably easier to use.

We note in passing that Theorem 2.1 tells us something about splitting equations.

Let W(X) denote the lattice word algebra on X, and for o g W(X) let ä denote the

evaluation of a in FL^). If L is a splitting lattice, then the splitting equation for L

can be written in the form a < t, where & = w and f = k(w) for some w g J(FL(X))

with a lower cover. Theorem 2.1 says that p(a) = p'(r). (Also, recall that by Day's

theorem [3] every nontrivial lattice equation implies a splitting equation.)

3. Bounded lattices. In this chapter we show that associated with each lower

bounded epimorphism of FL(.Y) onto a finite lattice L is a finite set J of join

irredicible elements of FL( X). This set J satisfies a certain natural closure condition.

Conversely, any finite closed set of join irredicible elements of FL(A^) gives rise to a

finite lower bounded lattice. We show that these finite closed subsets form a lattice

under set union and intersection which is dually isomorphic to the filter of

Con(FL(A')) of congruences corresponding to finite lower bounded lattices. At the

end of the section we show that a finite lower bounded lattice is also upper bounded

if and only if each element of the associated J has a lower cover.

Our ideas are based on the simple observation that if/: FL(^) -» L is a lower

bounded epimorphism, then /Lis a join-preserving embedding of L into FL( X).

If F is a finitely generated lattice and A is a subset of F, let yo(A) denote

y (A) U {0}, that is, the set of all joins of finite subsets of A, including E 0 = 0. If

A is finite, lhen£fQ(A) is of course a lattice, with the join operation inherited from F

and the meet in£/'0(A) defined by

a Aè = ^ (cGi:c<aMnf }.
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We will be considering lower bounded epimorphisms /: F -» L, where L is finite

and F satisfies the condition

.   . for each a g F there is a finite set T(a) ç F such that every

join-cover of a refines to a join-cover U ç T(a).

Property (E) holds in all finite lattices (clearly) and all projective lattices [9], and

hence in all free lattices. Note that if F satisfies (E), then every nontrivial join-cover

of a g F refines to a minimal nontrivial join-cover U of a with U ç T(a).

Moreover, it is not hard to see that if F satisfies (E) and a g Dk(F), then we can

choose T(a) so that T(a) ç Dk_x(F) U {a).

Our fundamental result about lower bounded epimorphisms onto finite lattices

can now be stated as follows.

Theorem 3.1. (1) Let f: F -» L be a lower bounded epimorphism, where L is a finite

lattice and F is finitely generated. Let J = (ß(p): p G J(L)}. Note J ç J(F). Then

L = yo(7), andJ satisfies the closure condition

,     , for each a g J, every join-cover of a refines to a join-cover

contained in J.

(2) Conversely, let F be finitely generated. If J is a finite subset of J(F) satisfying

(CL), then there is a lower bounded epimorphism f: F -» ¿f0(J) with ßf(w) = w for all

w g J, given by

/(") = H{v g7: v < u)

for each u g F.

Proof. (1) Since ß preserves joins it is easy to see that ß is an isomorphism from L

onto^0(J).

To see that (CL) holds, let a g J (so a = ßf(a)) and let U be a join-cover of a in

F. If a < u for some u g U, this refines to [a] ç J, so w.l.o.g. the cover is

nontrivial. Then a < E U implies/(a) < }Zf(U), and since L is finite the cover/(t/)

of f(a) refines to a cover V ç J(L). Then ß(V) = {ß(v): v g V) ç J and a =

ßf(a)^'Lß(V), while V «: /(£/) implies ß(V) <sc ßf(U) <k U. Thus / satisfies

(CL).
(2) Now let F be finitely generated and let y be a finite subset of J( F ) satisfying

(CL). Then Sf0(J) is a lattice, with operations which we will denote by A and V,

and J is the set of join irreducible elements in£fa(J).

Define a map/: F -» yo(J) by

/(") = E{f e^"i w}-

This map will occur repeatedly; we call it the standard epimorphism. It is clear that

each element of yo(J) is the least preimage of itself under/, so that / is lower

bounded. We need to verify that / is in fact a homomorphism. Observe that / is

order-preserving, and that f(u) < u for all u g F. Hence for m g F and w g J,

w < u if and only if w ^ f(u).
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To see that / preserves meets, we calculate (using the above observation)

/(«)A/(o)-£{weJ:w</(iO/(o)}

= S { w G •!'■ w ** uv) = f(uv)-

For joins, we have immediately f(u + v) > f(u) + f(v). To get the reverse inclusion,

it suffices to show that if w g J and w < u + v, then w < f(u) + f(v). If w < w or

w < i>, this is clear. In the remaining case, {u,v} is a nontrivial join-cover of w.

Since J satisfies (CL), this refines to a minimal nontrivial join-cover T ç J. For each

f g J we have f = /(/) by the definition of/. Thus w < ET = ¿ZteTf(t) < /(w) +

/(o), as desired.    D

In free lattices there is a simple syntactic description of subsets of J(FL(X))

satisfying (CL). If w G J(FL(X)), then w is either a generator or meet reducible, so

the canonical form of w is w = ï\i(Y.Jwlj)ï\kxk, where each w,7 g J(FL(X)) and

each jca g X. (Empty meets are simply omitted.) For each w g J(FL(X)), define

J(w)Qj(FL(X)) as follows:

({w} ifwG^(^),

( *'     \ {w} u U,Uy( Wjj)    if w - n, (E, w0)nA xA canonically.

Lemma 3.2. Le/ w g 7(FL(X)) with w = n,(E7 w,. On*. xA. canonically.

(1) For each i, {w¡::j = l,...,n¡) is a minimal nontrivial join-cover of w.

(2) If U is a nontrivial join-cover of w, then U can be refined to a join-cover of w lying

in J(w).

Proof. The proof of (1) is a straightforward application of Whitman's condition

(W); cf. [9]. We give a sketch. Canonical form clearly implies {w¡¡: j = 1,... ,n,} is a

nontrivial cover of w. To see that it is minimal suppose U refines {w¡.} and w < E U.

Then U is a nontrival join-cover and so by (W) there is a t with E; wtJ < E U (since

xk is join prime). But E Í/ < E,■ w¡j. Hence t = i and E U = E7 w/7 = w,. Since { w¡j}

is the set of canonical joinands of w¡ we have {wu} ■« t/.

To prove (2), let t/ be a nontrivial join-cover of w. Then by (W) there is an / such

that w¡j < ¿ZU for ally. If the latter is a nontrivial covering, then by induction there

is a VjQj(w,j) with Vj •« i/ and EJ^S*w/y. If w,7 < Ei/ is trivial, then let

vj = {w,j}- Let ^ = U Vj. Then K « t/, F£ J(w) and w < EK, completing the

proof.    D

In particular, Lemma 3.2(2) shows that FL(X) satisfies the condition (E).

Corollary 3.3. (1) In a free lattice FL(A'), condition (CL) is equivalent to

(C) ifw &J,thenJ(w)Qj.

(2) Ifw G J(FL(X)), then J(w) is the smallest subset of J(FL(X)) containing w and

satisfying (CL).

Most important for our purposes is then the following

Corollary 3.4. A finite lattice L is lower bounded if and only if L = ^(J) for

some finite set J ç /(FL( X)) satisfying (C).
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x( V +xz)

0

Figure 1

As an example, let J = [y, xz, x(y + xz)) ç /(FL(3)). Then J satisfies (C), and

yo(J) = (0, y, xz, x(y + xz), y + xz} is isomorphic to N5, the five element non-

modular lattice (see Figure 1).

Theorem 3.5. Let J be a finite subset of /(FL(Ar)) satisfying the condition (C). If

J' Q J also satisfies (C), then there is a homomorphism g: yo(J) -» 6^0(J'). Moreover,

every homomorphic image ofSf0(J) may be obtained in this way.

Proof. Let J and J' be as given above. Then there are lower bounded epimor-

phisms /: FL(X) -*y0(J) and /': FL(JV) -» S?0(J'), defined as in the proof of

Theorem 3.1. We need to show that ker/ ç ker/'.

Let u, v G FL(A') with/(h) = f(v). Because/(w) = E{»v G /: w < u) < u, for

every w G J we have w < u if and only if w </(«). Hence f(u)=f(v) implies

w < m if and only if w < v. As /' ç /, this means

f'(u) = Y.{w &J''-W ^u) =Y,{w ^J':w ^v) = f'(v).

Thus ker/ ç ker/'.

Now let g: L ^» L/6 be an epimorphism. Because every homomorphism between

finite lattices is bounded, the map gf: FL(A') -» L/0 is lower bounded. Moreover,

since the least preimage of a join irreducible element must be join irreducible, we

have

/'= {ßg/(p):p^J(L/8)}cz {ßf(q):q<=J(L)}=J.

By Theorem 3.1(1), J' satisfies (C) and L/6 = S?0( J').    D

Note that a homomorphic image of a finite lower bounded lattice is lower

bounded, and a subdirect product of finitely many lower bounded lattices is again

lower bounded. Thus [<p g Co^FLî^)): FL(X)/(p is a finite lower bounded

lattice} is a filter in Con(FL(A')). On the other hand, {J ç J(FL(X)): J is finite and

satisfies (C)} is closed under finite unions and intersections. Theorem 3.5 shows that

there is a dual isomorphism between these two lattices. Thus we obtain the following

Corollary 3.6. Let X be finite. Then [cp g Con(FL(A')): FL(X)/<p is a finite

lower bounded lattice} is a filter of Con(FL( X)) which is dually isomorphic to the

lattice { J ç J(FL( X))\ J is finite and satisfies (C)} under union and intersection.
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In particular, if J¡ (1 < ; < n) are finite subsets of J(FL(X)) satisfying (C), then

yo(U"=x J¡) is a subdirect product of the lattices SP0(J¡). Conversely, if ¿f0(J) is a

subdirect product of the lattices L, (1 </<«), then there exist 7, ç J(FL(X))

satisfying (C) such that L, s Sf0(J¡)for 1 < i < n and{J'¡=1 J¡ = J.

Before proving the main result of this section, which will connect the representa-

tion of finite lower bounded lattices given by Theorem 3.1 and lower covers of join

irreducible elements in a free lattice, we need to recall a couple of facts.

Lemma 3.7. (1) If L is a lower bounded lattice, then L satisfies (SDV).

(2) If a finite lower bounded lattice L satisfies (SDA), then L is also upper bounded.

Proof. Part (1) is easy and well known. If L is lower bounded and/: FL(«) -» L,

then u = a + b = a + c in L implies ß(u) = ß(a) + ß(b) = ß(a) + ß(c) = ß(a)

+ ß(b)ß(c) since FL(n) satisfies (SDV). Thus

u=fß(u)=f(ß(a) + ß(b)ß(c)) = a + bc.

Part (2) is due to Day and has several proofs, none of which is short enough to be

sketched here. (See [4, 5, 13, 15].)   D

Theorem 3.8. Let J be a finite subset of J(FL(X)) (with X finite) satisfying the

condition (C). Then the following are equivalent.

(i)yo(J) is bounded,

(ii) y0(J) satisfies (SDA).

(iii) Every w g J has a lower cover in FL( X).

Proof. The lattice £f0( J) (with J as above) is always lower bounded, so Lemma

3.7 says thatyo(/) is upper bounded if and only if yo( J) satisfies (SDA). Thus (i) is

equivalent to (ii).

Next, let us show that (i) implies (iii). Let /: FL(A') -+¿?0(J) be the standard

lower bounded epimorphism, defined as in the proof of Theorem 3.1. By assump-

tion, / is also upper bounded. If w g J, then w is join irreducible in the finite lattice

yo(J), so w has a unique lower cover wf in yo(/). Since w = ßf(w), if v < w in

FL(^) then/(u) < wt, whence v «s a(w+). Thus w > w ■ a(w^).

It remains to show that (iii) implies (ii). Assume that every element of J has a

lower cover inn FL( X). By an observation made in §1, it will suffice to show that for

each w g J there is a unique element k^,(J)(w) ^ £fQ(J) which is maximal with

respect to being above wt but not above w. So let w g J, and let K = {s g yQ(J):

s > wt and s ^ w}. We need to show that a, b g K implies a + b g K. From this it

will follow that E K g K, so that Ky {J)(w) = T.K.

Again, let /: FL^) -» yo(J) be the standard epimorphism, and let a, b g K.

Note that since a, b g ¿f0(J) and ß(w) = w, we have f(a) = a, f(b) = b, and

/(w*) = wt. Therefore/(wt + a) = a and/(w+ + b) = b, so that w ^ w* + a and

w £ w+ + b in FL(A'). Thus w* = w(w* + a) = w(w* + b), whence we may use

(SDA) in FL(A') to obtain h>„ = w(w* + a + b), i.e., w £ w* + a + b. In particu-

lar, w £ a + b, so a + b g K, as desired.    D
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y+z

y+x(y+z)a y>z+x{y + z)

0

Figure 2

As an example of how we can use Theorem 3.8, let J = [y, z, x(y + z)}. Then

y0(J), which is drawn in Figure 2, fails (SDA). Since we know that y and z do have

lower covers in FL(3), we conclude that x(y + z) does not. The nonexistence of a

lower cover of x(y + z) in FL(3) is an unpublished result of R. A. Dean. (See [8] for

Dean's proof.)

4. The lattice L(w). Let w be a join irreducible element of Fh(X). We define

L(w) to be the lattice£/'q(J(w)). In this section we show that w has a lower cover in

FL(X) if and only if L(w) satisfies (SDA). In fact, if w has a lower cover, then L(w)

is isomorphic to the splitting lattice FldX)/if/WK. . We use this to give a syntactic

criterion for w to have a lower cover. Several examples are given.

Notice that although J(w) and L(w) are subsets of FL(Ar) they essentially are

independent of X, as long as w g FL(JV). The one difficulty arises with the element

0 = ni Technically, J(Tl X) is not defined since u X = 0 is not join-irreducible in

FL(X) by our special convention. (Also note that FIA' is never in J(w).) These

difficulties arise since FIA' has no lower cover in Fh(X) but does have a lower cover

in FL(T) if X c Y (cf. Corollary 4.2 below). This situation could have been avoided

by working in the variety of (0, l)-lattices, but this is not conventional for the study

of free lattices.

The lattices L(x(y + xz)) and L(x(y + z)) were used as examples in the previ-

ous chapter (see Figures 1 and 2). We will give more examples of the lattices L(w)

with some applications later in this section.

Theorem 4.1. Let w g ./(FL( X)) with X finite. Let w^ denote the lower cover of w in

L(w). Then:

(1) L(w) is a finite, lower bounded, subdirectly irreducible lattice with w/w¿ as a

critical prime quotient.

(2) w has a lower cover in FL( X) if and only if L(w) satisfies (SDA).

(3) If K is any lattice for which there exists an epimorphism g: FL( X) -» K such that

g(u) < g(w) whenever u < w, then L(w) is a homomorphic image of K (i.e., ker/«

the unique largest congruence on FL(A') with the property that (u, w) £ 6 whenever

u < w, where f: FL^) -» L(w) is the standard epimorphism).

Proof. (1) L(w) is lower bounded because J(w) satisfies (C). If 6 is a nontrivial

congruence relation on L(w), then by Theorem 3.5, 6 is the kernel of a homomor-

phism g: L(w) -* yo(J') for some J' properly contained in J(w) which satisfies (C).
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The map g sends each u g L(w) to g(u) = E(»e;':i)<ii). Since J' c J(w), we

must have w £ J', whence

g(™) = T,{v ^J'-v <w} = £{i>e/':u < w} = g(wt).

Thus L(w) is subdirectly irreducible with w/wt as a critical prime quotient.

(2) If L(w) satisfies SDA, then by Theorem 3.8, w has a lower cover in FL(X).

Conversely, assume w has a lower cover w* in FL(A). Then it follows from (1)

that L(w) = FL(X)/}f/ww . On the other hand, since w is an upper cover of w*, the

dual of Theorem 2.3 says that some u in the canonical meet representation of tv# has

an upper cover u*. In fact, choosing u as in the dual of the proof of Theorem 2.3,

u*/u and vv/vv* are projective prime quotients in FL(A'), so that in particular

$u,u = 4>WWm. Now u g M(FL(X)); if we define M(u) ç M(FL( A)) dually to J(w)

and L'(u) = ¿Px(M(u)) dually to L(w), then L'(u) is a finite, subdirectly irreducible,

upper bounded lattice. Moreover, since u has upper cover,

L'(u) ^ FL(X)/tu.u = FL(*)/**». = L(w).

By the dual of Lemma 3.7, L'(u) satisfies SDA, and hence so does L(w).

Remark. Parts (1) and (2) of Theorem 4.1, when combined with Lemma 3.7, give

a new proof of McKenzie's result [14] that Fh(X)/^^w is a finite, subdirectly

irreducible, bounded lattice. The element u found in the above proof of (2) is, of

course, k(w).

(3) If w has a lower cover, then this is an immediate consequence of L(w) =

FL(X)/\j/ww . We are seeking the analogous statement for the case when w has no

lower cover in FL( X).

Let F, K be lattices and let g: F -» K be an epimorphism. Then g extends to an

epimorphism of the ideal lattices, g:J(F)^»J(K), given by g(I) = {g(i): i g /}.

(This is straightforward to verify; see also [7 and 13].) If w G J(F), then inJ(F) the

principal ideal w/0 covers the ideal U = [u g F: u < w). Hence in Con(J(F))

there is a unique maximal congruence tpw with the property that (w,t/)i^„,.

Moreover, if g: F -» K is such that g(u) < g(w) for all u < w, then ker g < t^H„

whence in Con(F) we have kerg = kergl,^ <pw\F. In other words, \j/w\F is the

unique maximal congruence 6 on F such that (u, w) G 8 for all u < w.

Now let w g J(FL(X)) and consider the standard lower bounded epimorphism/:

FL(.Y) -» L(w). Since ßf(w) = w, we have (u, w) G ker/ for every u < w. Since

L(w) is subdirectly irreducible with w/w^ as a critical prime quotient, ker/ is

maximal in Con(FL(A)) with respect to this property. By the above remarks, we

conclude that ker/ = \pw\FUX) and L(w) = FL(X)/(\jJw\FL(X)). Thus whenever g:

FL( X) ^» K with g(w) < g(w) for all m < w, we have ker g < ker/, as desired.    D

For w g FL(A), let var(u') denote the set of variables involved in the canonical

representation of w, i.e., var(w) is the smallest subset S of A such that w is in the

sublattice generated by S.

Corollary 4.2. Let w g 7(FL( A)) with Xfinite.

(1) If some u g J(w) fails to have a lower cover in FL( X), then so does w.
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f(x)=x(y +XZ)

f(z)=xz

Figure 3

(2) // w has a lower cover in FL( X) and X ç Y with Y finite, then w has a lower

cover in FL(Y~). Conversely, if w has a lower cover in FL( X) and var(n>) ç Z ç A\

then unless w = Y\Z, w has a lower cover in FL(Z).

Proof. (1) By Theorem 3.5, if « g J(w), then L(u) is a homomorphic image of

L(w). Now every homomorphic image of a finite bounded lattice is bounded. Thus

if L(w) is bounded, so is L(u) for every u g J(w). Hence w can have a lower cover

in FL( X) only if every u G J(w) does.

(2) This follows immediately from Theorem 4.1(2) and the observation that, if w is

not a meet of generators, then L(w) depends only on the elements in the sublattice

of FL(A) generated by var(w). For 0 ¥= Z c X, we have/(FIZ) = {FIZ}, whence

L(Y\Z) = 2, and as is well known FIZ > Y\Z • E(A\Z) in FL(A). However, as

remarked above, L(FIA) is not defined since FIA, the zero element of FL(A'), is not

in J(FL(X)), and of course FIA has no lower cover in FL( A).

Note that while the existence of a lower cover of w in FL( X) in general depends

only on the set var(w), the element w* actually covered by w does depend on the set

X. Recall w* = wk(w) and k(w) = a,KLiw)(w), where /: FL(A) -» L(w) is the

standard lower bounded epimorphism. For t g X\ var(w), note/(i) = 0. Using the

construction for af, it is not hard to see that if k(w) = p(xx,... ,xn) in FL(var(n>)),

then in FL(A') the new k(w) is given (not necessarily in canonical form) by

p(xx + s,... ,xn + s), wheres = E(X\ var(iv)).    D

Our results make it a relatively easy task to determine the lower and upper covers

of a given element in FL(A). As appropriate, we can use Theorem 2.3, Theorem

4.1(2), or Corollary 4.2(1), and of course their duals. Recall also that if w g /(FL( A'))

has a lower cover, then w+ = wk(w), while k(w) is not defined if w* does not exist.

In Table 1, we give k(w) and the upper and lower covers for some join irreducible

elements in FL(3). We will give below proofs for some of the entries, and leave the

proofs of others to the reader.

For example, if w = x(y + z), then J(w) = [x(y + z), y, z). Thus L(x(y + z))

is the lattice drawn in Figure 2. This lattice fails (SDA), so as we concluded in §3,

x(y + z) does not have a lower cover. By the dual of Theorem 2.3, the upper covers

of w are of the form w + k'(w¡) for each w¡ in the canonical meet representation of w

which has an upper cover. In this case wx = x and k'(x) = yz, yielding the upper

cover x(y + z) + yz; and w2= y + z with x'(y 4- z) = x, yielding the upper cover

x(y + z) + x = x.
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If w = x(y + xz), then J(w) = {x(y + xz), y, xz). The lattice L(x(y + xz)),

which is drawn in Figure 1 above, is isomorphic to the five-element nonmodular

lattice N. This lattice of course satisfies (SDA), so we conclude that x(y + xz) has a

lower cover in FL(3). To find K(x(y + xz)), we first construct the standard

epimorphism/: FL(3) -» L(x(y + xz)). By definition/(«) = I{ue J(x(y + xz)):

p< i(},sowe have Figure 3. Recall that k(w) = afKL{w)(w). In this case kL{w)(w) —

xz, while a(u) is always found by applying the dual of the algorithm given in §1 for

finding ß(u). Doing this yields K(x(y + xz)) = z + y(x + z).

As in the preceding case, we obtain an upper cover of x(y + xz) in x(y + xz) +

k'(x) = x(y + xz) + yz. However, w2 = y + xz has no upper cover (by the dual of

the first argument), so x(y + xz) has no upper cover below x.

(x + v)(x + z)

L((x + y)(x + z) (X4 v)U +z)(y + z)

L((x + v)(x + z)(v + z))

x(y +xz)(z +xy)

L((x +yz)(y+ z)) L(x(y + xz)(z+xy))

(x+ yz)(y +xz)
x(xy + xz +yz)

L((x i yz)(y+xz)) L(x(xy +xz + yz))

Figure 4
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Figure 4 gives several more examples of lattices L(w) with w g /(FL(3)). The

reader is invited to try extracting from these lattices some of the information given

in Table 1.

As a final example, let us show that the element

w = (x(y + z) +yz)(y(x + z) + xz)

has neither an upper nor a lower cover in FL(3). (This answers a question of David

Kelly about the existence of such elements.) First note that x(y + z), which has no

lower cover, is in J(w). By Corollary 4.2(1), this implies that w has no lower cover.

On the other hand, by the dual of (7) in Table 1, x(y + z) + yz has no upper cover,

and symmetrically the same is true fory(x + z) + xz. Since these are the elements in

the canonical meet representation of w, we conclude that w has no upper cover.

We continue this chapter with syntactic versions of the algorithm for determining

whether w g /(FL(A)) has a lower cover in FL(A), and for finding k(w) when it

exists.

Theorem 4.3. Let w g /(FL(A)) with X finite. Let wf = L{u g J(w): u < w),

and define K(w) = [v G J(w): w¡ + v £ w).

(i) every u g/(h>)\{>v} has a lower cover in FL( X), and

(H) w£ZK(w).

The proof is an easy combination of Theorem 4.1(2) and Corollallry 4.2(1), and

will be left to the reader. Closely related to Theorem 4.3 is the following useful

necessary condition for w g J(FL(X)) to have a lower cover.

Theorem 4.4. Let w g /(FL(A)), where X is finite, with w = Yli(LjWu)T[kxk

canonically. Ifw has a lower cover, then for each i there is exactly onej with w¡¡ £ w.

Proof. Let w¡ = E7 w¡¡. If w has a lower cover, then k(w) exists, and since w < w¡

we have w¡ ̂  k(w). Thus for each i there exists at least one y such that wtj ^ k(w),

say w.l.o.g. wiX =£ k(w) for each i.

Fix any index i0. Applying Whitman's condition (W) to the inclusion

w = Y\wi ■ Ylxk <w* + w,0i
i k

we easily obtain w,. < w„ + w¡ x for some i. Since w* + wt■ x < w + w, = w¡, this

implies w,o = wm + w¡ v However, w¡ = E"'=1 w¡ , canonically, which means that

{W'oj: J = !'■ • ■ »m} refines {w*, w, x}. Thus wt, < wm for everyy > 1. Since i0 was

arbitrary this proves the theorem.   □

By Lemma 3.2, {w, : j — 1,... ,m } is a minimal nontrivial join-cover of w for each

i. Theorem 4.4 can then be rephrased in the terminology introduced by Jónsson (see

[13, 15, or 16]) as follows. Let w = n,(E7 wij)Ylk xk have a lower cover. Then for each

i, wBw^for exactly onej, and wAw^for the remainingj's.

The converse of Theorem 4.4 is false. For example

w= (x+y)(x+(y + z)(z + t))

satisfies the condition of Theorem 4.4, but does not have a lower cover. However, for

elements of very low complexity the converse does hold.
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Theorem 4.5. Let w g &><f&>( X) be a join irreducible element with w =

n,(E, w¡j)T\k xk canonically. Then w has a lower cover in FL( X) ( X finite) if and only

if for each i there is exactly onej such that w¡¡ ^ w.

Proof. Let w g @Sf@(X) satisfy the condition. Then/(w) = (w) U {w;/: 1 ^ /'

< n, 1 <y < m¡), and in applying Theorem 4.3 we find that w,-. g K(w) if and only

if w¡j < w. Hence w has a lower cover.   D

At this point we pause for a fundamental observation. If w g /(FL( A)) and /:

FL(Ar) -» L(w) is the standard epimorphism, then each canonical meetand of w is

either a generator or an element of the form E„ei//3(w), where U is a minimal

nontrivial join-cover ofwinL(w) (since w = ßAw)), although not necessarily all such

elements are canonical meetands of w. If w is completely join irreducible, then since

ker/ = t/v«^ = ^^w)'Kiw)' it follows by duality that the canonical joinands of k(w)

are generators and elements of the form FI(,6 va(v), where Fis a maximal nontrivial

meet-cover of kl(w) in L(w). On the other hand, if v is a meet irreducible element

of L(w) with w completely join irreducible, then a(v) = k(u) for some u g J(w)

(viz., for u = k'l,w)(v)) because there is a one-to-one correspondence between join

irreducibles and meet irreducibles in L(w), and each L(u) (u G J(w)) is a homo-

morphic image of L(w). It follows that the canonical joinands of k(w) are either

generators or elements of the form Y\ueUK.(u), where U ç J(w) — (w). This will

prove to be a useful observation. For example, we obtain a syntactic algorithm for

finding k(w) when it exists.

Theorem 4.6. Let w g /(FL( A)), with Xfinite, have a lower cover. Then k(w) may

be found as follows.

(1) Find K/_(vv) = E K(w) as in Theorem 4.3.

(2)FormM0= (k(u): u g J(w) - {w}}.

(3)Letkf = U{v g M0:v > k/(u)(w)}.

(4) Then k(w) = E{x g X: x + wf £ w} + ¿Z{kfv: v g M0, w 4 v}.

(5) Put k(w) in canonical form. *

Proof. Note that kL(w)(w), as found in (1), is ßf(ic(w)) for the standard

epimorphism/. Let g: FL(X) -» &x(M(k(w))) be defined dually to the standard

epimorphism/: FL(A) -»yo(./(w)). Note that / and g have the same kernel, viz.,

*Pww. = $„(*)'«*)• Our object is to find k(w) = ag(ic(w)) = a/(/c(w)).

By the observation preceding the statement of the theorem, in (2) we are finding

M0 = M(k(w))-{k(w)}.

In (3) we are finding kf = af(ic(w)*). To see this, let us show that for v g M0,

v > «/.(„((w) if and only if u > k(w)* = w + k(w). Let A: FL( X) -» &>X(M0) be the

standard epimorphism, and observe that 0>X(MO) = 0>x(M(k(w)))/6, where 6 =

con(K(w), ag(K(w)*)). If v g M0 and v > kI(w)(w), then using ker/i > kerg = ker/

we obtain

v = h(v) > H(kL{w)(w)) = h(K(w)) = h(ag(K(w)*)) = h(K(w)*) > k(w)*,

as desired. The converse is obvious as kl,w)(w) = ßf(ic(w)) < k(w)*, so the claim is

proved.
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Note that if Flyiy is a canonical summand of k(w), then for each y we have

Vj G M0, and by the dual of Theorem 4.4 there is a unique y with Vj ~p k(w), or

equivalently, with v¡ £ kf. Moreover, with this Vj in mind we note that for v g M0,

k^v < k(w) if and only if v £ k'(k(w)) = w. Now (4) just gives the usual algorithm

for finding a(g(i<(w))) = k(w) with the above considerations taken into account.

On the other hand, there is no reason to expect this expression for k(w) to

necessarily be in canonical form, and sometimes it is not; hence (5) is included.   D

As an example, let us find n((xt + zt)(yt + zt)) in FL(4). Now J(w) =

[w, xt, yt, zt) and kL(w)(w) = zt. Moreover, MQ = {y + z, x + z, x + y}; whence

k^ = (x + z)(y + z). On the other hand x + y ^ w, and we separately check that

w+ + z = z jfc w. Thus (4) gives us k(w) = z + (x + z)(y + z)(x 4 y), which is in

fact already in canonical form.

The advantage of our syntactic algorithms (Theorems 4.3-4.6) is that they extract

the crucial information from L(w) without requiring that the lattice be constructed.

In fact, even though the algorithm of Theorem 4.6 looks complicated, we have

programmed a microcomputer to do it using muLISP, and the program runs quite

quickly. The reader is encouraged to try his hand with the algorithms above on some

of the examples in Table 1.

Another class of examples, which we shall use in §10 is constructed as follows. In

FL(x, y, z) lety0 — y, z0 = z and

v,+i = y(z, + w)>    z¡+\ = z(y¡ + xz)'     w¡ = (y, + xz)(z, + xy)-

Then each >>„, zn and wn is completely join irreducible by Theorem 4.3. Indeed it is

easy to see that J(y„) = [xy, xz, y„, z„_x, yn_2, z„_3,...}, ynf = xy and K(yn) =

{xy, xz). Thus by Theorem 4.3, y„ is completely join irreducible. Now J(wn) = {wn}

U J(y„) U J(zn), H>„t = xy + xz and K(wn) = [xy, xz) and thus wn is completely

join irreducible.

We close this section with a theorem on the canonical meetands of w*.

Theorem 4.7. Let w be a completely join irreduciblle element of FL( X), X finite. Let

w = wx ■ ■ ■ wm canonically. Then the canonical meetands of w* are {k(w)} U {w,:

w, £ k(w)}.

Proof. Let w+ = ITj=1 wy canonically. Since w„ = wk(w), the refinement property

described at the end of §1 tells us that {ux,...,u,} » {w, k(w)}. Clearly there must

be an i, say i = 1, with u¡ Jfe w. Then ux > k(w) and ux ^ w, which implies

ux = k(w). Also w* = wx ■ ■ ■ wmn(w). Hence [u¡: i > 2} » {wx,... ,wm). Renum-

ber so that [wf. Wj ̂  k(w)} = {wx,...,wn} and note [u¡: i > 2} » {wv...,wn}.

Suppose p(w) = k, i.e., w g Dk(FL(X)). By the description of Dk(FL(X)) and

D'k(FL(X)) given at the beginning of §2 we see that w G D^ + 1(FL(A')) and that

w, g D'k(FL(X)), i = l,...,m. Since w¡ > w > w* = Fit/,-, {ux,...,u,} is a dual

cover of w¡. If wt ̂  Y[u¡ is nontrivial, then there is a Vi Q D'k_x(FL(X)) with

V¡ » {ux,...,u,} andw, > FI^.

Set V¡ = {w,-} if w¡ ̂  YlUj is a trivial cover, and let V = U,1,^. Then k7»

{«!,...,«,} and each a G F is either some w, or in D'k X(FL(X)). Also w ^ FIF >

nUj = w#.   If  YlV=w*,   then   {ux,...,«,}» V » {ux,...,«,}   which   implies
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{ux,...,u,} ç V. Then k(w) = ux g Fand thus k(w) <^ D'k_x(FL(X)), contradict-

ing Theorem 2.1. Hence w = FIFand thus {wx,...,wm} » K» {«,,...,«,}. Com-

bining this with the above, we easily obtain {uy. j > 2} » {wx,...,wn} » {«y:

y ^ 2}. Since both these sets are antichains, we have {»Vj,.. .,wn) = [u : y > 2},

proving the theorem.   D

5. Day's theorem revisited. Alan Day proved in [3] that every finitely generated

free lattice is weakly atomic. That is to say, if u > v in FL(A) with X finite, then

there exist s,(E FL( X) with u > s > t > v. The crucial observation in Day's proof

is that "doubling an interval" in a lattice preserves boundedness.

In this section we will present a new proof of Day's result, based on the methods

developed in §3. In the end, our variation is no simpler than Day's original proof,

but it is constructive and does yield more information about the nature of the

coverings which can be found in u/v.

We will derive Day's theorem from the following results.

Theorem 5.1. If u £ v in FL( X) with X finite, then there exist a finite bounded

lattice L and an epimorphism f: FL(A') -» L such that f(u) £ f(v). Moreover, if

p'(u) = m and p(v) = n with m + n > 1, then L may be chosen so that J(L) C.

Dm + „-X(L).

In fact, our proof of Theorem 5.1 gives the following (equivalent) statement.

Corollary 5.2. If u £ v in FL( X) with X finite, then there exists q g /(FL( X))

with a lower cover such that q < u and v < *(q). Moreover, if p'(u) = m and p(v) = n

with m + n ^ 1, then q may be chosen so that p(q) < m + n — 1.

From Corollary 5.2 we immediately obtain

v < x(q)(q + v)-<q + v<¡u + v

in  FL(A), which for u > v is Day's theorem. Conversely, if u > a > b > v in

FL(A'), then q £ b for some q g CJ(a). As in the proof of Theorem 2.3, q > bq.

Hence k(<?) exists, q < a < u, and v < b < ic(q). Thus every cover in u/v arises in

this way.

Proof of Theorem 5.1. For each pair (u, v) of elements of FL^) with u ^ v, we

will construct a finite set J(u, v) ç 7(FL( X)) with the following properties:

(i) J(u,v) satisfies (C), and every p G J(u, v) has a lower cover in FL(X).

(ii) There is a q G J(u, v) such that q < u and v < *(q).

(iii) If p'(u) = m and p(v) = n with m + n > 1, then p(p) < m + n - 1 for every

p ej(«, v).

Let K(u, v) = S0(J(u,v)). Condition (i) makes K(u, v) a bounded lattice by

Theorem 3.8, while (ii) (which implies q ^ v) insures that f(u)£f(v) for the

standard epimorphism (see §3). The third property takes care of the rank condition.

Our proof will use induction on the complexity of the canonical form of u and v.

Case 1. If u g X, then u £ v implies v < E(A\ {«}). In this case, let J(u, v) =

{u}. On the other hand, if v G X, then u £ v implies u > FI( A\ {v}). In this case,

take J(u,v)= {FI(A\{u})}. In either case, it is easy to check that properties

(i)-(iii) hold.
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Case 2. If u = E «,, then u £ v implies a, ^ u for some /0. Let J(u, v) = J(ut , v),

and note that conditions (i) and (ii) are preserved. Inasmuch as D'k(FL(X)) =

(y&>)ky(X), we have p'(E u¡) = max p'(«¡) > p'(",0), whence (iii) also holds.

Dually, if y = TlVj, we may takeJ(w, u) = J(u, Vj ) for somey0 with « ^ t>y-.

Case 3. Let « ^ u with « = FI«, and v = E £>,. Then for all / we have m, ̂  u, and

likewise u £ f, for ally. Thus by induction we have sets J(u,, v) for each i, and

J(u,Vj) for each y, satisfying (i)-(iii). Let Jü = {j J(uj,v)^){jJ(u,vj). Let /C =

50(/0), and let/: FL( A) -» AT be the standard epimorphism.

It could happen that for some p G J0 we have /? < u and p £ v. So, choose g

minimal in /0 with respect to these properties. We claim that v < *(q). Now K is a

bounded lattice by Theorem 3.8, so KK(q) exists. Since q =£ f(v) but <7t < /(»), we

have f(v) < KK(q). Therefore u < a(KK(q)) - K(q), as claimed. In this case, let

J(u, v) — J0. The above argument shows that (ii) holds. Condition (i) is immediate,

and (iii) is not hard once we observe that p'(u) = max p'(«,) + 1 and p(v) =

max p(vj) + 1.

Thus we may assume that for all p g Jq, p < « implies /? < u. In K, let ü = f(u)

and ô = f(v). By our assumption w < ¿5. Let

q = Y\{X ^ X: x ^ üandx < v) ■ Y1{HA: A £ J0, ^A ^ « and £,4 ^ v)

and let J(m, v) = J0 U {¿7}. We need to show that q g J(FL(X)) and that J(u,v)

satisfies (i)-(iii). In fact, not surprisingly, yü(J(u, v)) will turn out to be isomorphic

to the lattice obtained from K = yo(J0) by doubling the interval v/U.

First, let us show that q <; u. Now u = Flu,, and for each i there is a q¡ g J0 with

</, < u, and u < k(<7,)- So g, + w is an element of the form E A¡ with /l, Ç J0, which

satisfies « < qt+ ü ^ uj + u = u¡, and qi + U ̂  v since ç, + m g ^(Tq) and g, + «

=£ f. Therefore q < FI(*,, + U) < FIw, = «■

We can now see that q is join irreducible in FL( X). Suppose q = r + s with

r, s < q. Then, by applying Whitman's condition (W) to

T\{x G X: x > Sand x £ v)   Yl{HA: A £ 4>> T,A > « and X^ ^ *>} <■•*■ + «

we easily obtain that <? = E /10 for some A0 Q J0,T.A0^ ü and E A0 £ v. However,

since ¿ZA0 = q < », our assumption in this case would imply ¿ZAQ ̂  v, whence

E A0 < v, a contradiction. Thus g g /(PEÍ A)).

We need to verify that J(u, v) satisfies condition (C), i.e., if q = Yl(Lqmn)l~l xk

canonically, then each qmn g /0. This is equivalent to showing that /(<?„,„) — qm„

(where we are still using the standard epimorphism/: FL(A') -» yo(J0)). Since

f(lmn) < Imni il suffices to show that L„f(qmn) > q for each m (apply (W) again).

However, we have ¿Z„f(qm„) > f(q) = ü. On the other hand, applying (W) to (the

definition of q) < ¿Z„qm„ yields ¿ZA < \Z„qmn for some A C /„ with E^ ^ m and

E /I ^ 5. Then E A < /(E„ ?„„,) = E„ /(<?„„,), whence E„ f(qmn) < t?. By the defini-

tion of g, we conclude that ¿Z„f(qm„)> q.

Next, we show that q £ v. For otherwise, we could apply (W) to the inclusion

Y\{x g X: x > ûand x £ v) Y\{HA- A ^ -V L^4 ^ " and 1^^ ^ v) ^ ^t',-

If x < E f, for some x > w, then w < x < u   for somey0, contrary to J(u, v¡ ) Q J0.
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If E A «s v for some A £ J0, then E A < f(v) = v by definition of/; hence no term

of the second type is below v. But if q < t>. for somey0, then again w < u., contrary

to J(u, vjo) £ y0. Therefore q 4 v.

Let g: FL(A) -» ¿?0(J(u, v)) be the standard epimorphism. Since ü < g < u, we

have g(«) = 9, while g(u)=/(i;) = û because <7 =£ v. It remains to show that q has a

lower cover in FL(A), and that v < «(q). For this it suffices to show that KL(q)

exists, where L = £f0(J(u, v)), and that g(v) = v < k¿(í7).

In fact, v = KL(q). Now q^ = w in L, because for/? g yo we have/? < q if and only

if /> < /(<7) = "■ Thus v > <7t, but v ^ q, since v ^ q. Moreover, for ¿ZA £ J0,

ü + A ^ q if and only if ¿ZA < û (using g ;£ v and the definition of q). Therefore

v = KL(q).    D

Finally, we would like to show that the bound given for the rank of q in Corollary

5.2, viz., p(q) < p'(u) + p(v) - 1, is sometimes the best possible.

Define two sequences of elements in FL(3) by:

so = z t0 = x

sx=x(y + z) tx=y + zx

Slk = Z(y + *2*-l) 'lk = X + Zt2k-l

s2k+i = x(y + s2k)     '2k+i=y + zhk

Note that p'(sm) = m and p(tn) = n. It is not hard to show, using induction and

Whitman's condition (W), that sm ^ tn if m is even or n is odd.

Theorem 5.3. Let sm and tn be members of the above sequences with m > 1, n > 0,

and either m even or n odd. Let q G /(FL( X)) be such that q has a lower cover, q < sm

and tn < k(<7). Then p(q) > m + n — 1.

Proof. We will use induction on the sum m + n. The induction is begun with the

observation that there is no p g D0(FL(X)) = @(X) such that p < sx but p < tx.

Hence q < sx and tx < x(q) imply p(q) > 1. (However, the conclusion of the

theorem is false for m = 1 and n > 1, so we must use some care in our induction.)

Now assume m > 1, n > 0, and either m even or n odd, so that sm ^ tn. Let q be

any element of 7(FL( A)) such that q has a lower cover, q < sm and r„ < *(q). Then

the lattice L(<?) = yo(J(q)) is bounded, and/(im) ^ /(<„) for the standard epimor-

phism. We wish to show that p(q)^ m + n - 1. There are three cases to consider.

Case 1. m even, « odd. In this case sm = z(y + sm_x) and tn = y + ztn_x. Since

f(sm)£f(t„), we have/(j„_!) *6/(f„) and/(s„) £f(tn-X). Thus there exist/?!, /?2

G J(q) such that /?t < sm_x, px £ f„ and /?2 < Jm, /?2 =£ f„_v Taking /?j and /?2

minimal in /(g) with these properties, we obtain tn < «(/?,) and in_j < k(/>2)-

Now px + q, because /?i ^ sm would imply px < sm_xsm < xz < tn, a contradic-

tion. Likewise, /?2 =£ g, or else we would have tn < k(/?2), whence /?2 < sm < x + y

< r«-i + ?« < kÍ^)' a contradiction. Thusp(ç) > max(p(/?,), p(/?2)) + 1.

If m > 2, the inductive hypothesis implies p(px) > m + n — 2. Similarly, if n > 1

we have p(p2) > m + n - 2. This leaves the possibility m = 2 and n = 1, for which

it was shown above that p(px) > 1. Thus we conclude that p(q) ^ m + n — 1, as

desired.
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Case 2. m odd, n odd. In this case sm = x(y + sm_x) and t„= y + ztn_x. Since

f(sm) £ /('«)> we bave/(jm_,) & f(t„), which as above gives us an element/? G J(q)

such that p < sm_x and tn < k(/?). Now p ¥= q, because p < sm would imply

p < sm-ism ^ xz ^ ?n' a contradiction. By induction we have p(p) > m + n — 2,

and therefore p(q) > w + « — 1.

Case 3. m even, « even. In this case sm = z(y + sm_x) and tn = x + ztn_x. Thus

/(O ^ /('„) implies /(jj ^ f(t„-i), so there is an element p g 7(g) with p < sm

and  r„_j < «(/?)•  Again p + q,  for otherwise we would have /? < sm < x + j

< tn_x + tn < «(/?), a contradiction. Since p(/?) > m + « - 2 by induction we

conclude that p(g) > w + n — 1.   O

We conclude this section with an unpublished result of Alan Day.

Theorem 5.4. Every finitely generatedprojective lattice is weakly atomic.

Proof. Let P be a sublattice of FL( X) with X finite and / an endomorphism of

FL(Ar) with/(FL(A')) = P and/2 = /. Suppose v < u in P. By Day's theorem there

is a finite bounded lattice L and a homomorphism g: FL( A") -» L with g(i;) < g(w).

By using a homomorphic image of L we may assume g(v) < g(u) in L. If we let

L' = g(P) c L and /i = g|P, then /i is a bounded homomorphism from P onto L'.

Moreover, ßh(a) = fßg(a). For if g(w) = a, w G />, then ßg(a) < w. Hence fßg(a)

< /(w) = w. Thus

«> y+/)8gg(M)>- (í;-r/8gg(M))/ag(t;)> o

gives the desired covering in P.    D

6. The bottom of FL(n). A chain of A: covers in a lattice is a chain of A: + 1

elements such that

a0> ax> ■■■  > ak.

The main objective of the next four sections is to prove that, with a finite number of

exceptions, covering chains in finitely generated free lattices FL(«) contain at most

two covers. The exceptions are chains of four covers in FL(3), and of three covers in

FL(/i) for n > 3, located at the very top and bottom of the lattice (i.e., containing

either 1 or 0).

= xy + xz ^ yz

xy + xz

xy

0 = xyz

Figure 5

xz + yz
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U — x « x*yX -tX a

Figure 6 (n = 4)

In the last two sections of the paper we will apply these results in an investigation

of intervals u/v in a free lattice. In particular, we will show that, again with finitely

many exceptions at the top and bottom of the lattice, the only finite intervals in

FL(n) are three-element chains.

Let us begin by describing some covers near the bottom of FL(n); of course, the

duals of all these covers also exist near the top of the lattice. Surely most, if not all,

of these coverings are already known; see [17, 18].

Theorem 6.1. (1) FL(3) contains the sublattice pictured in Figure 5, where every

covering in the sublattice is in fact a covering in FL(3). No element of the sublattice

covers, or is covered by, any element not in the sublattice.

(2) In FL(n) for n > 3, we have the following maximal chains (see Figure 6), where

xi = l^j*ixr

(a)Fori #y g (1,...,«},

fi   (X, + Xj + Xk) > X, + Xj > x, > 0.
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(b)ForJ £ {l,...,n} with\J\ > 3 and i g /,

E Xj > *,■ L xj >
jej JEJ

Moreover, none of these elements covers, or is covered by, any element not of the

indicated form.

Verification of these facts is a straightforward application of the algorithms

developed in §4. In Figure 6, solid lines indicate coverings and dotted lines indicate

noncoverings. For n ^ 5, the sublattice of FL(«) generated by the atoms is infinite

[12].

7. Totally atomic elements. An element a in a lattice L is totally atomic if whenever

b > a there is a c g L with b > c > a, and the dual condition holds. We will show

that there are very few totally atomic elements in FL(«), and that they have a special

form.

We need to extend the definition of L(w) to include the case when w is join

reducible. If w = ¿Z"=x w¡ canonically, let J(w) = U"=xJ(w¡) and L(w) = yo(J(w)).

Note that by Corollary 3.6, L(w) is then a subdirect product of the (subdirectly

irreducible) lattices L(w¡). (However, not every lower bounded lattice is of the form

L(w). For example, the three-element chainyQ({x, xy}) is not isomorphic to L(w)

for any w g FL(X).) M(w) and@x(M(w)) are defined dually to J(w) and^0(y(w)).

Theorem 7.1. An element w g FL(A) with X finite is totally atomic if and only if

yo(J(w)) and 3Px(M(w)) are semidistributive. Thus a join irreducible element w g

FL( X) is totally atomic if and only if it is completely join irreducible (or zero) and each

of its canonical meetands is completely meet irreducible.

Proof. Let w be join irreducible with w = FIJLiH', canonically. Clearly the two

stated conditions for w to be totally atomic are equivalent, and by Theorems 2.3 and

4.1(2), if w is totally atomic then w satisfies these conditions. So suppose w is

completely join irreducible and each w¡ is completely meet irreducible. Let vi =

K'(wi) + w- Then w ■< vt < IT,,., w- and, since w = Yl"-X w¡ canonically, if uv¡ = w

then u < w¡. Suppose w < u. If v¡ & u, then v¡u = w and hence u < w¡. Thus, either

there is an / with v¡ < u, or else u < nfJjH', = w. But the latter is a contradiction.

Therefore, w is totally atomic.    D

For u G FL(A') let au g End(FL(A)) be defined by au(x) = u + x for x S X. pu

is defined dually. Let G be the smallest subset of FL( A') containing X and such that

if we 6 and x G X - var(w), then ax(w) and px(w) g G. We shall show that the

set of totally atomic elements of FL( X) is G.

If w G G is join irreducible and w £ X, then we can write

(*) w = tpk+Wp: • ' ' Ppf*t(yi •••**)•

where m > 1, s¡ = ¿Zjsij with s,y g X, and /?, = lly/?,y with /?;/ g X. We allow

P„ + i = 1 so that, in this case, p = px is the identity, and we also allow n = 0 (in

which event we take/?! = 1) so that w = yx • • • ym is a possibility.

I (x,xj)

jc=J
J^J
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For example, if X = [x, y, z}, then G contains only the following join irreducible

elements of FL(A) and their images under automorphisms of FL(A), i.e., permu-

tations of the variables.

(l)x.

(2) xy.

(3) xyz.

(4) az(xy) = (x + z)(y + z).

With A" = {x, y, z, t} we add to the above list all elements of the following forms:

(5) xyzt.

(6) o2+,(xy) = (x + z + t)(y + z + t).

(T)o,(xyz) = (x + t)(y + t)(z + t).

(8) p,az(xy) = (xt + zt)(yt + zt).

Of course, the duals of these words give us meet irreducible elements in G.

In particular, note that G is finite—in fact, if | A'j = n, then \G\ < n\2"~2\[e~.

Lemma 7.2. When the expression (*)for w g G is written out, w is in canonical form.

Proof. It was shown by Whitman [17] that a word u = Vl"=x(lZ'J'jsX uij)l~l^_xxk is

in canonical form if and only if

(i) each u¡ = Ey «,- ■ is in canonical form,

(ii) {«,: i = 1,...,«} U {xk: k = l,...,p} is an antichain, and

(iii) for every ;', y, «,. ■ Jfc u.

It is easy to see that these properties are preserved under ax and px whenever

x £ var(w), from which the lemma follows.   D

Lemma 7.3. Let w g G have the form (*). Then

(l)J(w) = {w} U {pPn+o5t ■■■ PPi(z): z = y,forsomei,orz = skj or pkjfor some

k < t, andt = 2,...,n + 1}.

(2) w^ = p      os  ■ ■ ■ p  as (0), where vvt denotes the lower cover ofw in L(w).

(3) K(w) = [pp as ■ ■ ■ pp (z): z = skj for some k < t and some j, and t =

2,...,n + l}.

(4) k/.(h,)(w) = f*/,„+1(Äi +  • ■ ■ + s„).

Proof. (1) Let t denote the endomorphism pp   a   ■ ■ ■ os,pP2- Then we calculate

w = ^siYly) = i-IK v, + j„ + • • • + sXq)
v   i       ' i

-n(T(y,) + r(su)+ ■■■ + r(sXg)),
i

whence r(y¡) and t(sxj) are in/(w). Now (1) follows easily by induction.

(2) Clearly pp os ■ ■ ■ ppps¡(0) < w. We need to know when u = PPn+ps„ ' ' '

p, (z) g J(w) is below w. Since ox and px are one-to-one on FL(A' — {x}), this is

equivalent to z ^ os¡ ^p¡ •■• os<\~\¡y¡)- If z = s,_x j for somey, then clearly the

inequality holds. But if z = skj for some k < t — 1, or if z = pkj for some k or z = y¡

for some /', set z = 1 and all other variables to 0. Then the right-hand side

os Pp ■ ■ ■ oSi(Yl, y¡) evaluates to 0 (there are two cases, depending on whether or

not /?,_! = z), while z = 1, so the inclusion fails. Thus, u G J(w) is strictly below w

if and only if u = Pp^pSn • • • PPl(s,~ij) f°r some / with 2 < / ^ n + 1 and somey.
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Now if / > 2 and s' = ¿Zk¥,jS,_x k (possibly zero), then

Pn       °s     ' ' '   Pn  {SI-\   i)  =  Mn       °t    ' ' '   M,,0", (O)'Pn+\   sn ^Pi^     '      l'J' '    Pn+l   sn 'Pi   •Ïl-1./V     f

Therefore

wf = L{" G Aw): w ov) = £mPo+1^„ • • • PPl(sij) - ^„+,o[J„ • • • M^oJO)

as claimed.

(3), (4) Now let u be an element of J(w) with w < « but w < wf + u. As above, if

u = pp   as  ■ • ■ pPi(z), then (using (2)) w < wt + « is equivalent to

(**) va,-, ' ' ' o*.(n^) < as,-pp,-x ■ • ■ aSl(°) + z-

If we set all y¡ = 1, all ptj = 1, and all siy = 0, then the left-hand side of (**)

evaluates to 1 and the right-hand side is z. Thus, u G K(w) implies z = y¡ for some i

or z = pkj for some k,j. Hence

(***) K(w) £ [pPii+pSn ■■■ pPi(z):z = sty

for some k < t and / = 2,...,n + l}.

Call the right-hand side of (***) R. Clearly, for each «e/iwe have

U = VP„+°s„--- Pp,(skj) < f*,.+I(*l +   •■•+*»)-£  LM,. + I(i*y)e^(Ä).

Therefore ¡u^, + (Sj + • • • + sn) = 1ZR. On the other hand, by setting each sk/ = 0,

each pkJ = 1 and each y¡ = 1, we conclude that w ^ pp (sx + ■ ■ ■ + sn). Thus by

Theorem 4.3 we have kL(w)(w) = p (sx + ■ ■ ■ + sn), so in particular, w has a

lower cover in FL(X). It also follows that we must have equality in (***).    D

Lemma 7.3 shows that every join irreducible element in G is completely join

irreducible. The canonical meetands of an element of the form (*) are of the form

Ppn+fs, ' ' ' Ppi^y- + ^■jsij^- By tne ^ua' argument each of these elements is com-

pletely meet irreducible. Therefore by Theorem 7.1 we may conclude that:

Corollary 7.4. Each w g G is totally atomic.

To prove the converse, we will need the following

Lemma 7.5. Let u g G be meet irreducible with u — ux + ••• + «,, canonically, and

let x G X. Ifux ^ x but m, < xfor 2 < i < n, then xu G ¿P( X).

Proof. Clearly we may assume u £ X, so that n ^ 2. If u = ¿Z"= x y, with yj g X,

then yt < x for 2 < / < n implies n = 2 and y2 = x, whence u = yx + x and xu = x.

Thus, since u g G, we may assume u = px ■ ■ ■ px(yx + • ■ ■ + yn), where xx,... ,xk,

yx,... ,yk are distinct members of X, px — px, and px = ax or px for i = 2,...,k.

Suppose px = ax for some i with 1 < /' < k. Then choosing r maximal such that

Px   = ax  we nave

" = MxA • • ■ p-x°x, ■ ■ ■ v-xS-yi+ • ■ • + y-)-
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Moreover, x <£ {xk, xk_x,.. .,xr+x} as u < x. However, for i > 2, we now have

x> u¡=pXk ■■■ pXrax--- pXi(y¡).

If we set x = 0 and z = 1 for z g X — {x}, then u¡ evaluates to 1 (there are two

cases, depending on whether or not x = xr), which for i > 2 gives the contradiction

0^1. Therefore px = px for 1 < i < k.

So now we have u¡ = xk • • • xxy¡. As ux £ x and u¡ < x for 2 < /' < n, this implies

_y2 = x and n = 2. Thus

xw = x(.x¿ • ■ • xxyx + xk • • • xxx) = xk • • • xxx G &>( X)

as desired.   D

We want to show that if w g FL(A) is totally atomic, then w g G. Certainly this

is true if w g X U 0>( X) U ¡f( X). So if say w = wx ■ ■ ■ wm canonically, then we

may assume inductively that m > 1 and each w¡ g G. (If w is totally atomic and

u g J(w) U M(w), then « is totally atomic by Theorem 7.1.) Moreover, since w is

completely join irreducible, Theorem 4.4 applies to say that for every /', if say

wi = Ey w-j canonically, then for all but oney we have wiJ < w < wt for all t. Thus the

following lemma applies to w to yield the desired result.

Lemma 7.6. Let w = Yl"'=xwj be an irredundant meet, where each w¡ is meet

irreducible and in G. Let wj = Ey wt¡ canonically (ifwi g X, w¡ = wn). Assume

V; Vy > 1 Vi: w¡¡ < wr

Then w g G.

Proof. If w¡ g X for any i, then we are done by Lemma 7.5, for then w g &( X)

£ G. Thus we may assume

wi = Pxlkl ••■ p'Xn(y,i + ••• +yt„t),

where n¡ > 2, each p in either a or ju, and k¡= 0 is possible (so iv, = yn + ■ • • + _y/n

in this case) but p'x   = px  if £, > 1.

First, let us consider the case when k¡ = 0 for every /'. For every pair i # /', we

have ¿ZJ>xyiJ < w,, = ¿Z"Lxyn but yn £ w,, (as w^w,,), so {yl2,... ,yln¡} =

{ v-,'2' • • • UV»,.}- Therefore w = o^ • • • a^íjl™ ,.?,!) g G, as desired.

Thus we may assume that kx ^ 1, and fix xx = xXk, so that wx = p\w[.

Claim. Either (a) for every i, w¡ = oxw¡, where w[ g G n FL( A - {xx}), or (b)

for every /', ki > 1 and w¡ = pxw¡, where w/ G G n FL(A - {xx}).

To prove the claim, we first consider the possibility that k¡ = 0 for some i, so that

w¡ = yn + ■ ■ ■ + yin. If wx = px w[, then j?l2 *S wx < Xj whence yi2 = wx = xx, con-

trary to our assumption that kx > 1. Thus h^ = oxw[, and from Xj < wx2 < iv, =

E,j,y it follows that y,y = xx for somey. So in this case we can write w, = oXl(Ey-^yv-,,-)-

If A:, = 0 for every / > 1, (a) of the claim holds.

Now assume kx ^ 1 and k2 > 1. First suppose pj. = /i^. and pi = ax . Then

wx < Xj and w2 > x2, whence Xj =*= x2. However, by hypothesis we have w22 < wx,

which implies

X2 < ax2 ■ ■■   P2x2x(y22) = W22 <  wl < XX,
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a contradiction. So either all w¡ with k; > 1 begin with a a, or else they all begin with

a p.

Now assume wx begins with ax and w2 with or , and suppose xx # x2. Then we

can write w-, = ara, ■ • • a, pT • • • (E, V?,), where u. is the first p occurring in

the expression for w2. If Xj g {zx,...,zr}, then since the a.'s commute we have

w2 = axw2, as claimed. Otherwise, set xx = 1 and z = 0 for z g X - {xx}. Then w12

evalutes to 1, but w2 evaluates to 0 (again there are two cases depending on whether

Xj = zr+x), contrary to wX2 < w2. A similar argument applies when both begin with

p, proving the claim.

So now we know that either w¡ = ar w' for all /', or w,. = a _ w' for all /', where each
i x^   i i        •   Xy   i

w[ is either a variable or still a sum. Hence each w[ is meet irreducible, and clearly

w¡ g G n FL(A' - (xx}). In case (a), let cp: FL(A-) -+ FL(A - {xx}) be defined by

<p(xx) = 0 and <p(y) = y for ail y g X - {x,}. If (b) holds, then let <p(xx) = 1 and

<p(y) = y for y + x. In either case, <p(w,) = w¡ and px¡(w¡) = w¡ for the appropriate

p. Therefore w' = <p(w) = w'x ■ ■ ■ w'm is an irredundant meet, each w[ = Ey w/y

canonically and

V/Vy > 1 Vi: w¡j < w{.

Hence by induction w' g G n FL( A — {xj}). But then w = pxw' ^ G.   n

Combining everything we have done in this section so far, we obtain the desired

characterization of totally atomic elements.

Theorem 7.7. An element w g FL( A) with X finite is totally atomic if and only if

w g G.

8. Lemmas on totally atomic elements. In this section we will prove some lemmas

about totally atomic elements which will be used in our investigation of covering

chains in FL(A'). The first lemma shows why totally atomic elements play an

important role in covering chains.

Lemma 8.1. Let u be a completely meet irreducible element of FL( X), where X is

finite, and let u > v. Let ux be the unique member ofCl(u) such that ux £ v. Then ux is

totally atomic.

Proof. Note that ux g J(Fh(X)). By Theorem 2.3, ux has a lower cover uxt, so

every member of J(ux) is completely join irreducible. On the other hand, if

ux = Ylj uXj canonically, then M(ux) = UyM(wly) £ M(u), so every element in

M(ux) is completely meet irreducible. By Theorem 7.1, ux is totally atomic.    □

Our next two lemmas are more technical.

Lemma 8.2. Let w be a join irreducible totally atomic element of FL(A) (with X

finite). Then k(w)* = w + k(w) is not completely meet irreducible.

Proof. Let w be a totally atomic join irreducible element of FL(A). If w g X,

then w + k(w) = 1, which is by convention not meet irreducible. Hence we may

assume w = T\?=xw¡ with n > 1. Since w has the form (*), there are automorphisms

of FL(A') interchanging the w,'s, but leaving w, and hence k(w), fixed. So no w, is
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above k(w) unless w > k(w), i.e., k(w) = w*. Now if k(w) = w+, then w + k(w) = w

is join irreducible and not a variable, and hence not (completely) meet irreducible.

Thus we may assume that no w, is above k(w).

Next, observe that w is a canonical joinand of k(w)*. Indeed, in the proof of

Theorem 2.1 we saw that k(w) is a canonical meetand of w*, and this is just the dual

of that statement. Thus, by the dual of Theorem 4.4, if w + k(w) were completely

meet irreducible we would have w, > k(w)* for all but one /', contrary to the

preceding paragraph. We conclude that w + k(w) is not completely meet irreducible.

D

Corollary 8.3. Let u be a completely meet irreducible element o/FL(A), where X

is finite. Ifu>v, then v is meet reducible.

Proof. By the proof of Theorem 2.3, whenever u is meet irreducible and u > v

then there is a unique member ux of Cl(u) such that ux ^ v, and in fact v = uk(ux).

Thus v will be meet reducible except when v = k(ux). Applying Lemma 8.1 to our

situation, since u is completely meet irreducible, ux is totally atomic. By Lemma 8.2,

ux + k(ux) is not completely meet irreducible. However, ux + v = u is completely

meet irreducible, so we conclude that v + k(ux). Hence v is meet reducible.   D

Lemma 8.4. If w is a join irreducible totally atomic element of FL(X) (with X finite)

and w & £P(X), then k(w) is not totally atomic.

Proof. Again we use the representation

(*) w = pPn+aSr ■ ■ ■ ppps¡(yx ■ ■ ■ ym),

and since w G 3P(X) we are assuming n > 1. By Lemma 7.3(1), J(w) contains either

PppSlCil?Liy¡) (if n = 1) or Pp^p^Pp yx) (if n > 1). In either event, J(w) contains

an element of the form u = ppos(n^=xzk), where M > 1, each zk G X, s G £f(X)

and p G @>(X) U {1}, and the variables are distinct. By the observation preceding

Theorem 4.6, k(«) g M(k(w)) (i.e., k(w) = a(v) for some meet irreducible element v

of L(w)).

Let p = UP, where P £ X (if /? = 1, then P = 0). In the proof of Corollary 4.2,

we observed (without the notation) that if a g J(FL(X)) has a lower cover and

X n Y = 0, then KFUXuY)(q) = o¿zy(kFL(X)(£1))- Since k is a bijection, another

way of putting this is that if t is completely meet irreducible and / = aLYt', where

var(i') n Y = 0, then Kfl(x>(0 = k'fux-y)(1')- ^ne dual of this observation ap-

plies here to show that k(u) = icFM*)(")= KFux-p)(as(l~lif=izk))-

Applying the algorithm of Theorem 4.6, we thus find that k(u) = s +

¿Zj = xsJ(Ukw=xzk), where x = ¿Z(X- P - {x}). Now if s ^ X, then this is already

in canonical form (k(u) = s + szx ■ ■ ■ zM). Otherwise (i.e., if s = £íy with N > 1),

the canonical form is k(u) = ¿Zj=xSj(Y\^iZk). Either way, we find that sxzx ••• zM

is a canonical summand, whence sxzx ■ ■ ■ zM G J(k(u)), and therefore sxzx • ■ ■ zM

G J(k(w)). (It is straightforward to prove that if t G M(v) and / G X, then

J(t) £ J(v)—use induction on the complexity of v.) But an easy application of

Theorem 4.4 shows that sxzx • • • zM fails to have a lower cover. Therefore k(w) is

not totally atomic.   D



COVERS IN FREE LATTICES 31

Our next result stands in interesting contrast with Day's theorem, for it shows that

there are intervals in FL( X) which contain no completely join irreducible element.

Theorem 8.5. Let w be a completely join irreducible element of FL^) (with X

finite) such that ic(w) is not totally atomic. Then there is no completely join irreducible

element p G FL( A') with w* < p < k(w).

Proof. To begin with assume only that w is completely join irreducible in FL( X).

Note that if m G J(w) - {w} and u < w + k(w), then u < k(w). To see this, let g:

FL( A') -» L(w)/con(w, wt) = yo(J(w) - {w}) be the standard epimorphism. Then

u < k(w) + w implies u = g(u) < g(ic(w) + w) = g(n(w)) < k(w).

Now let w = FI, w¡ canonically. We claim that if w G X, then for all /' we have

w,. £ w + k(w) = k(w)*. For if wi g X, then w¡ < w + k(w) implies w, < w or

w¡ < k(w). But wi < w implies w = w, g X, contrary to assumption, and wi < k(w)

implies w < k(w), a contradiction. On the other hand, if w¡ = Ey w^, then wif g

J(w) — {w} for all j. Hence, by the observation of the preceding paragraph,

wi = E w¡j < w + k(w) implies w¡ < k(w), whence w < k(w), again a contradiction.

Thus w, =£ w + k(w) for all i.

Now let us add the hypothesis that k(w) is not totally atomic. Supposing that

there exists a completely join irreducible element in k(w)/w*, let p be such an

element of minimal complexity. If p g X, then w+ = wk(w) ^ p implies either

w < p or k(w) < /?. Now w < /? is out because/? < k(w). If k(w) < /?, then ic(w) =

/? g X, contrary to our assumption that k(w) is not totally atomic. Hence/? £ A.

Now let /? = n,(Ey/?,y) • Ylk xk, and let K(w) = Emwm be the canonical join

representation of k(w). Since/? < k(w), we may apply (W) to the inclusion

U\LPij)-Uxk^'£um.
i   \   j I        k „,

If xk < k(w) for some k, then w% < p < xk < k(h>), which is out as above. If

p < wm for some m, we obtain w+ < um. This situation is the dual of wi < k(»v)*,

which was shown earlier not to occur.

Thus there must be an ;' such that Ey/?,y < k(w). Fixing this /', note that

w* < p < iZjPij, so we can apply (W) to the inclusion

wk(w) < Y,Ptj-
j

Now w £. IZjPij because Ey/?,y < k(w). If w+ < pt, for somey, then W+ < /?,, < k( w)

and/?,y has a lower cover because />,. • g /(/?), contradicting the minimal complexity

of /?. We conclude that ic(vv) ̂  Ey/?,,, whence in fact k(w) = ¿Z¡p¡¡. Because the

expression for /? was canonical, this one is also.

Now k(w) is always completely meet irreducible, and hence so is every member of

M(k(w)). On the other hand, J(k(w)) = Uy/(/?,■■), and because p was completely

join irreducible, so is every element in every J(pu). We conclude then by Theorem

7.1 that k(w) is totally atomic, contrary to the hypothesis. Therefore there is no

completely join irreducible p in k( w)/w „.    □
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9. Chains of covers. In this chapter we will prove our main result about covering

chains in FL(A). We begin with a lemma which clearly goes a long way towards

limiting the length of covering chains in a free lattice.

Lemma 9.1. Let w be a completely join irreducible element o/FL( X) (with X finite)

which has an upper cover. Then w* has no lower cover unless \X\ = 3 and w has the

form x(xy + xz + yz) or (x + y)(x + z).

Proof. Let w g J(FL(X)) have a lower cover w+ and an upper cover v. Then by

the dual of Lemma 8.1, the unique element wx g CM(w) such that wx p v is totally

atomic. Moreover, it is easy to see (as in the proof of Theorem 2.3) that v = w +

k'(wx), and so w = wx(w + k'(wx)).

Suppose w# has a lower cover u. Then if w* were meet reducible, w, would be

completely join irreducible. Hence by the dual of Corollary 8.3, w would be join

reducible, contrary to hypothesis. Also w* G X; indeed, for x G X we know (by

Dean's result from §3) that x* > x > x* is a maximal covering chain in FL(Ar), so

we may assume for the duration of this proof that neither w nor w* is a generator.

Thus w+ must be join reducible, and so completely meet irreducible. Dually to the

above, there is a totally atomic tx g CJ(>v*) such that w* = tx + w*k(íx). Our

situation now is pictured in Figure 7. Note in particular that k(w) = w*, so that

when we are done we will have shown that, except near the top and bottom of FL(3),

k(w) = w* does not occur when w has an upper cover and w* has a lower cover.

Let us begin by showing that wx and tx cannot be very complex. We will need the

following general observation: Let w g ,/(FL( A")) have a lower cover. If w =

n,-(Ey wij)Tlk xk canonically with wiX £ w for each i, then wiX* < k(w), for each i. To

Figure 7
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see this, suppose contrarily that, say, h>u« < k(w), so that w < w* + wu* (<

£ ■ wXj). Applying Whitman's condition (W) to the inclusion

nÍE^/jn**** w* + wn*
J

we easily conclude that Ey wx- = w* + wn*, contradicting the fact that wxx must be

a canonical summand of Ey wly. Hence w(1» < k(w) for each i. For y > 1, we have

even more, viz., w,, < w* by Theorem 4.4.

Now in our situation wx is totally atomic and meet irreducible. Hence we have

(dually to (*))

(*)' wi = <v.+1/v. • • • %ilp1(yi + ■■■ + yJ-

Assume that, say, i = 1 is the unique index such that vvn = o, ¡ip ■ ■ ■ as p (yx) £

w. Then by the above observation wu* < k(w) = w* < w, and since wn ^ w we

have in fact wxx* < w < k(wxx). Now if n > 1 and s2 # 0, then Lemma 8.4 tells us

that k(wxx) is not totally atomic. In that case, there are no completely join

irreducible elements in the interval K(wxx)/wXXif by Theorem 8.5; in particular, we

could not have w11+ < w < k(wxx). Hence either n = 0, or n = 1 and s2 = 0. So we

have shown that wx = pp(yx + • • ■ + ym), where p g £P(X) U {1}, and dually

h = aÁzi ■ ■ ■ zk\ where5 &y(X) U {0}.

Next suppose wx G X and íj £ X, so that m > 2 and k > 2. Now tx < wm < w <

wx, so we may apply (W) to the inclusion

k m

n (*,- + *)< £>/p-
Í-1 y_i

Thus either z¡ + s < h^ for some /', or r¡ < .y,/? for somey, and by duality we may

assume the former. If /? ¥= 1 in this case, then we have z, + i < vv¡ < /? g ¿P(X),

which is impossible. Hence/? = 1 and wx= yx+  • • ■ + ym.

Again we may assume that the indexing is such that yx < w and y2 + • ■ • + ym <

w*, and dually zx + s Jfc wm while (z2 + s) ■ ■ ■ (zk + s) > w. As before this means

that yx* ^ k(w) = w* and dually (z, + j)* > «'(w^,) = w. Thus jv1H, < (zx + s)*,

i.e.,

(t) yiilZx-iyi^^zi + s + TKx-iz^s,,...^}),

where s = sx + ■ ■ ■ + sq (q = 0 if s = 0). After a few preliminaries we will apply

(W) to the inclusion (f).

We claim that

(i)yx * jyforanyy,

(ii) {yvzvsx,...,sil} c X,

(iii) k (the number of z,'s) = 2 and jj = z2.

To prove (i) we note that yx < 5 would imply yx < Y\k=x(z: + s) = r, < w, a

contradiction. For (ii), if A = {^¡, z,, j1;.. . ,sq}, then /t = (yx + s)(zx + s) and

moreover tx < yx + s < 1. This leaves no room for w and k>,. We will prove (iii) by

showing that y-j = z¡ whenever 2 < i < k. So fix / > 2, and note that since v,* *S w*

and w < z, + s, we have yim < z¡ + s. If í = 0 this clearly implies yx = z, (using
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lA'l > 3). Otherwise apply (W) to the inclusion yx(¿Z X - {yx}) < zk + s. Using (i)

and (ii), we easily obtain the desired conclusion/^ = z¡.

Now we return to (f) and apply (W). Once it is observed that

n(*-{*i,'i,-..»,})
is a meet of at least two variables, it is an easy task, using (i)-(iii), to eliminate all

the possibilities. Hence (f) must fail, and we conclude that either w,e vort,e X

By duality, we may as well assume wx = x g X. Recall that tx = os(zx ■ • • zk) < w.

If j # 0 this implies 5 < tx < w < x, a contradiction. Hence s = 0. Similarly zx ■ • •

zk < x implies x = z, for some i, and k > 2. So let us assume that /, = zx ■ • ■ zk_xx,

wherez, ^ w* and z2 • • • zk_xx > w. Note that since tx # 0, {x, zx,...,zk_x) c X.

Let B denote the lattice in Figure 8. Let/: FL(A) -» B be the homomorphism

such that /(x) = a, f(zx) = b, f(z:) =1 for 2 <; /' < /c — 1 (this may be vacuous),

and f(y) = c for all other y g X.

Figure 8

First let us show that f(w) = a. Since zx Jfc w we know that FI( A - (z^) < w;

combining this with previous inequalities we obtain

z2 ■•• zk_xx> w> zx ■■■ zk_xx + Yl(X -{zx}).

Applying / to these inclusions shows that a >/(w)> at.  However, recall that

w = wx(w + k'(wx)) = x(w + T\(X - {x})). Applying /again now yields/(iv) = a.

On the other hand,

Wjf = tx + WmK(tx) = tx  + Wk(íx)

= zx ■■■ zk_xx + w(L(X -{zx,...,zk_x,x})).

Applying/to this equation shows that/(w*) = af.

Therefore w = ßf(a), and in fact B = L(w). Hence we can use the usual algo-

rithm for ß to find w explictly. Doing this shows that

w = z-. •k-V zk_xx + z2 zk-ixY\yj + zi ■ zL lUyj

where X - (zx,...,zk_x, x} = {yx,-..,yr}. Now we can apply Theorem 4.6 to find

k(w). The procedure is straightforward and yields

k(w)

7=1
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It remains only to check what restrictions are required in order for k(w) < w to

hold. Clearly we must have {z2,...,zk_x} = 0, i.e., k = 1. Once those terms are

removed it is easy to see that we must also have r = 1 (use (W)). Thus, removing the

subscripts, w = x(xy + xz + yz) and k(w) = xy + xz in FL(3). The dual form, with

w = (x + y)(x + z) and k(w) = x + (x + y)(x + z)(y + z), is obtained from the

case tx g X, and hence the lemma is proved.    D

We now have all the necessary machinery to complete the proof of our main result

on covering chains in free lattices.

Theorem 9.2. Let t>u>v>wbea covering chain in FL( A), where X is finite. If

\X\ = 3, then

t/w £ (xy + xz + yz)/0 U l/(x + y)(x + z)(y + z).

If\X\ > 4, then w = 0 or t = 1.

Proof. We know from simple arguments earlier that none of /, u, v,w is a

generator. By Lemma 9.1, u is not meet reducible unless

u G (xy + xz + yz)/0 U l/(x + y)(x + z)(y + z)

in FL(3), and u has an upper cover t, so we may assume that u is completely meet

irreducible. Dually (or by Corollary 8.3), v is completely join irreducible. By Lemma

8.1, there is a totally atomic join irreducible element ux g CJ(«) such that ux £ v,

but ux* < v. Similarly, there is a totally atomic meet irreducible element vx G CM(«)

such that vx ^ u although v* > u. The situation we have just described is di-

agrammed in Figure 9.

We claim that vx = k(ux). Indeed, k(ux) is the unique completely meet irreducible

element q of FL( A") such that q Jfc ux but q* > «x; hence vx = k(ux). But since vx is

totally atomic, this tells us (by Lemma 8.4) that ux g^(A). If ux = FIT with

y £ X, then £?1 = L(X- Y).

Figure 9
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Suppose ux G X and vx G A, i.e., |7| > 2 and \X - Y\^ 2. As u is completely

meet irreducible and ux = Y\Y g CJ(m), there is a unique element^ g Y such that

yx ^ u, and dually there is a unique element xx G X — Y such that x{ ^ u. But then

Y\(Y - {yx}) > u > t? 3* E( A - F- (x^), which is a contradiction. So either

«j g A*or i?, G X.

First let Wj = y G X. There is still a unique xx G A - {y) such that x, ^ v.

Hence E (X — [y, xx}) < v, and thus E(A - (x^) < ux + v = u. Since

E(X - {xx}) < 1, we conclude that u = E(X - {xx}) and t = 1.

If vx g X, we obtain dually that s = Q.    □

Corollary 9.3. Ifw0 > wx > ■ ■ ■ > wn is a maximal covering chain in FL( A) ( X

finite) with w0 ¥= 1 and wn ¥= 0, then n < 2.

10. Finite intervals in FL( X). In this section we will find all finite intervals u/v in

FL( A). At the top and bottom of FL(A) there are several finite intervals which are

not chains (see Figures 5 and 6). We will show that all other finite intervals in

FL( A") are chains of at most 3 elements.

Theorem 10.1. Let u/v be a finite interval in FL( A'). Assume that

u/v£   fi   (x,+ x/ + xJ/0
k*i,j

{where x = FI(X — {x})) for each pair i #y, and dually. Then u/v is a chain and

\u/v\ < 3.

Proof. It follows from Theorem 9.2 that every finite interval u/v not at the top or

bottom of FL( A) is a lattice of height at most 2. Since FL( A) is semidistributive, M3

is not a sublattice of FL(A). Hence to prove the theorem it remains only to show

that 2x2 cannot be an interval in FL( A) except at the extremes. This can be done

rather directly, but instead we will give a slightly more involved proof which yields

some information about the interval u/v whenever there is a 3-element covering

chain u > w > v.

So let u > w > v in FL( A). We may assume by duality that w is join irreducible,

so that v = w„. Let wx be the totally atomic meet irreducible element of CM( w) such

that u £ wx, whence u = w + k'(wx).

First we observe that if u > b > w* and b ¥= w, then uk(w) > b > w* + k'(wx).

Indeed, if b is as given, then b Jfc w since u > w. Combined with b > w#, this means

b ^ k(w). On the other hand, for such a b, wx > b would imply w = uwx > b > w*

whence b = w, a contradiction. Thus wx Jfe b while w* > u > b, so b > k'(wx). The

above claim now follows.

In particular, if k'(wx) ^ k(w), then there can be no such element b in u/w*, so

w/w+ is a 3-element chain. (In this case we can easily show that uk(w) = w* and

w+ + k'( wx) = u.)

However if k'(wx) ^ k(w), then u > uk(w) > w* + k'(wx) > w» since w ■ uk(w)

= w* and w + (w* + k'(wx)) = u. The above remarks then show that u > uk(w) ^

ve* + k'(wx) > w + and

u/w* = {u,w,w*} U uk(w)/(w# + k'(wx)).
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« (»v,)   o w  0

Case 1.  k'(Wi) 5Ék(>v)

0 k(w)

I
I
I
I

k'(>v.)0'

Case 2. k'(Wi) < k(w)

Figure 10

In particular, the interval 2x2 occurs only when uk(w) = w* + k'(w¡). Suppos-

ing this is the case, call this element v. Then either v = k(w) (when v is meet

irreducible) or v = k'(wx) (in the event that v is join irreducible).

If v = k(w), then v is completely meet irreducible, v > w\, and k'(wx) is the

unique member of CJ(t>) such that v 4 w* (since v = w* + k'(wx) and k'(wx)* <

w*). By Lemma 8.1 this means that k'(wx) is totally atomic, whence by the dual of

Lemma 8.4 we have wx g y( A).

Letw, = E Y with F £ A,sothatK'(w1) = FI(A- Y). lf\Y\ > 2and|A- Y\ > 2,

then we can argue as in the proof of Theorem 9.2 that there exist yx e Y and

xx g X - y such that £(F- {>-,})< iv» and FI(A- Y - {xx}) > v* = u. Since

w+ < h, this impliesE(y — {yx}) < FI(X — Y — {x,}), which is impossible. There-

fore either wx g Xor k'(wx) e X.

If y G X, we still have that there is an element xx g A - { y} such that

IK A- - {>>, Xj}) > m. In this case Yl(X — {xx}) 3= h^m = w, so we obtain one of the

known 2x2 intervals at the bottom of FL(A"). Dually, if k'(wx) g X we get that

u/w+ is one of the known 2x2 intervals at the top of FL(A). (In fact, v = k(w)

does not hold for the squares at the bottom of FL( A), and the elements correspond-

ing to w are join reducible in the squares at the top, so v — k(w) never really

occurs.)

Now assume that v = k'(wx), whence v is completely join irreducible. Since u > v.

there is a totally atomic meet irreducible element vx g CM(i') such that vx Jfc u.

Moreover, w is a completely join irreducible element such that w 4i vx (else v + w =

u ig vx) but w* < v «g vx, so k(w) = vx and w = k'(vx).
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Thus wx is a canonical meetand of w = k'(vx), and vx is a canonical meetand of

v = k'(wx). Now the canonical meetands of ic'(vx) are all either generators or else

proper joins of the form ¿ZA where A £ {k'(í): I g M(vx) — {vx}}. Every element

t g M(vx) is totally atomic since vx is. By the dual of Lemma 8.4, for such an

element k'(í) is totally atomic if and only if t g y(X). If t = ¿ZT g y(X), then

k'(í ) = Tl(X — T). Now Wj is a totally atomic canonical meetand of k'(vx); from the

above remarks we conclude that either wx g X or Wj = E/l with /I £ {/c'(0:

r g A/(i?!) — {i^}} n^A-). The same statement holds with wx and ux in-

terchanged.

If wx = x G A, then k'(wj) = i? = F[(A — {x}). Then u, g CM(/c'(h>i)) implies

o^A" also, say vx = y, and /c'(Ui) = w = T\( X - {y}). In this case i> and w are in

one of the squares at the bottom of FL( A), as desired.

In the other case we may assume that both wx and vx are proper joins iny£?( X).

Since wx and vx are both totally atomic, this means that we can write

wi = M*i +  • • ■ + xm)    and    vx = pq(yx+  ■■■ +y„).

Then, as in the proof of Lemma 8.4, we calculate that in canonical form

m(A-{x1,...,x„,}) if/» -1,

k'(wx)= ¡p(p + xx +  ■■■ +xm) if/?GA\

(Fiji, (pj + xx +  ■■■+xm)     Up = Yl^iPj with N > 1,

where this time x = FI( X — {x}). In no case can we have vx a canonical meetand of

k'(wx) (since m > 1), so we conclude that there are no such squares in FL(A'). □

The next theorem, although complicated, does give strong information about

three-element intervals in free lattices. For example it shows that if the middle

element w of a three-element interval (u >- w >- v} is join irreducible, then u is a

canonical meetand of w. This theorem also allows us to show that there are infinitely

many three-element intervals in FL(4).

Theorem 10.2. Let q be a totally atomic meet irreducible element of FL( X), X finite,

and let q = ¿Z"'=x q¡ canonically. Let px,...,pk be completely join irreducible elements

satisfying

(1) K'(q) + Ef=1 Pi is in canonical form,

(2)lZT.2qi<Lllpi<q,
(3)ifk = l,q(K'(q)+px)>px.

Then w = q(Kr(q) + Ef_t /?,) is completely join irreducible and w is the middle element

of the three-element interval Kr(q) + Ef=1/?,/w*. Conversely, if w is join irreducible

and the middle element of a three-element interval u > w > w+, and if q is the

canonical meetand of w not containing u andpx,... ,pk are the canonical summands of

u which lie below w, then (1), (2) and (3) hold (for the appropriate choice of qx).

Moreover w = qu = ö(k'(ö) + E*_t /?,) canonically.

Proof. First suppose w is join irreducible and the middle element of a three-

element interval u > w > w+. Let q be the canonical meetand of w not containing u.

Then q is totally atomic by the dual of Lemma 8.1. Since x'(q) ^ w and u/w* has
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only three elements we have

K'(q) + w* = u.

Let w = qw2 • - - wn canonically. Then w = qw2 ■ ■ ■ wn < K.'(q) + w* = u. Now

apply (W). If w ^ ii'(q), then u = K'(q), which implies that u is completely join

irreducible, contradicting the dual of Corollary 8.3. Since w2 ■ ■ ■ wn > u, we must

have w2 = u and n = 2. Thus « is a canonical meetand of w and (1) now follows

easily from Theorem 4.4, and w = q(K'(q) + E /?,) canonically also follows.

Write q = ¿Zq¡ canonically with qx £ w but a, < w+ for / > 2 (by 4.4). The

canonical expression for q* is n'(q) + ¿Zq¿. This will follow from Theorem 4.7 once

we have a, îè x'(q). But q is totally atomic and so by our description of these

elements the automorphisms of FL(A) fixing q are transitive on the o,'s. Hence if

one a, were below K'(q) all would be.

Since w* ^ q¡, i > 2, ö, + w* = q. Hence

q* = u + <7 = £/?, + K'(q) + q = £/?, + K'(q) + ft,

as E p¡ + K'(q) > wm. Thus {q¡} refines {/?,} U (k'(ö), a,} from which (2) follows.

Since px < w#, (3) is clear.

To see the other direction let q and px,...,pk satisfy the hypotheses. Since q is

totally atomic the argument above shows that the canonical form of q* is either

ii'(q) + Efijö, or n'(q). However, if q* = «'(q), then ¿Z p¡< q < n'(q), contradict-

ing (1). Thus q* = tc'(q) + E^Li <?, canonically. Let w = q(n'(q) + E/?,). We claim

that this expression for w is canonical. If q < n'(q) + E /?,, then ic'(q) + E /?, = q*

by (2) ar d k'(<?) ^ o. Since q* = k'(o) + E q, canonically, this implies qx < E /?,. So

by (2), q < E p, < q, a contradiction. Obviously, g ^fc ic'(fl) + E /?,. Hence w is meet

reducible and thus join irreducible. This, together with (3), implies w > ¿Z pt. Hence

q¡ < w if i > 2. If w < c,, then a2 < w < o,, a contradiction (the case m = 1, i.e., 9 a

generator, is easy). It now follows easily from Whitman's criterion that w =

q(n'(q) + ¿Z Pi) canonically.

Once we have shown that w has a lower cover, it will follow that ic'(q) ^ k(w)

because w < k'(<?) + E/?, < w * + ic'(q). Also k'(<7) + w = «'(<?) + Ef=1/?,- > h> as

in the proof of Theorem 2.3. Hence, as in the proof of 10.1, the interval ic'(q) +

¿Zk=xPi/w* is a 3-element chain (of course q here corresponds to wx there).

If w failed to have a lower cover, then L(w) would fail to be semidistributive.

Since every u e J(w) — {w} has a lower cover, this would mean there exist elements

tx, t2 g L(w) such that wt < /, and w £ t¡ for i = 1,2, but w < tx + t2. Note that

for each i, r, > vvt ̂  ic'(fl)t, while i, Jfe «'(«) as ?, ^ wt > Ef=1 /?, and f, Jfe w. Hence

each t¡ < k( «'(<?)) = a. Using this when we apply (W) to the inclusion

w = qiK'(q)+ Í,p,\<tl + t2,

we conclude that q = tx + t2. Thus {qx,-..,qm} refines [tx, t2}; in particular,

qx < r, for one of the f('s. If say qx < tx, then

m k

w < q = L <7y «S <7i + L A < fli + wt < ?!,
v-i '=1

a contradiction. Therefore L( w) is semidistributive, and w has a lower cover.    □
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Let us look at a couple of the types of examples of 3-element intervals we can

generate using Theorem 10.2. We begin by choosing a totally atomic meet irreduc-

ible element q not of the form x + y. (Since k'(x + y)> x + y, (1) and (2) cannot

be satisfied with q = x + y.) Then we must choose px,... ,pk satisfying (1), (2) and

(3). It is not difficult to show that if also a G A, then {px,...,pk} = {q2_,qm}

always works. I.e., if q is a totally atomic meet irreducible element not of the form x or

x + y, with q = EJ=1fly canonically, then w = q(n'(q) + E"'=2 <?,) is the middle ele-

ment of a 3-element interval in FL( X).

A second interesting case arises when we choose q = t g X. If we also let A- = 1,

then we are looking for w = t(t +/?) where/? < t must be completely join irreducible

and satisfy (1) and (3). It is not hard to show that (3) will be satisfied if and only if t

is not a canonical meetand of p.

We construct an infinite class of such /?'s in FL(x, y, z, t) as follows: Let y0 = y,

zo = z< y„+i = y(zn + xy), z„+1 = z(yn + xz) and w„ = (yn + xz)(z„ + xy). At the

end of §4 we showed that each wn is completely join irreducible. Recall that pt is the

endomorphism of FL(x, y, z, t) that sends each variable to its meet with t. Let

Pn = M^h- For any join irreducible w whose variables do not include t, J(p,w) =

plJ(w). Hence L(w) = L(plw). Thus each pn is completely join irreducible and

clearly t is not a canonical meetand of /?„. An inductive argument shows that

t +p„ = xyz + pn is in canonical form. Hence, for each n, w = t(t +/?„) is the

middle element of a three-element interval. Moreover, since w = t(t +/?„) canoni-

cally, t(t +/?„) # t(t +pm) if n # m. Thus FL(4) has infinitely many three-element

intervals.

11. Arbitrary intervals in FL(A). In this chapter we will derive a few simple

properties of arbitrary intervals u/v in a free lattice FL(A). It will no longer be

necessary to assume that X is finite.

Theorem 11.1. If v < u in FL( A), then u/v is a projective lattice.

Proof. Necessary and sufficient conditions for a lattice to be projective are given

in Theorem 1 of [8]. The only condition which is not immediate to verify is that

UA>0 Dk(u/v) = u/v. This, however, is a consequence of the following claim, which

is straightforwardly proved by induction. If w G Dk(FL(X)) and w < u, then

B + tve Dk(u/v).   D

On the other hand, a proper infinite interval u/v in FL( X) cannot be isomorphic to

a free lattice. By Day's theorem and the fact that FL( A) has no coverings when A'is

infinite, the only possibilities would be for Fh(m) to be isomorphic to a proper

interval of FL(«) with m and n both finite, or for FL( X) with A infinite to have a

proper interval isomorphic (by cardinality arguments) to itself. The former possibil-

ity is ruled out by the four-element chains at the top and bottom of Fh(m), along

with the observation that the interval from an atom to a coatom of FL(3) is not free.

The latter possibility is ruled out because FL( A) with X infinite has no greatest or

least element. (Later in this section we will also show that an infinite "open"

interval, {w g FL(A): v < w < u), in FL(A) cannot be free.)
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Lemma 11.2. Let v < u in FL( X) and let t g u/v. Assume s is a canonical joinand

of t such that s and v are incomparable. Then s + v is meet and join irreducible in u/v.

Proof. Clearly s + v is a proper join and hence meet irreducible.

Note that s is a canonical joinand of 5 + v (in FL( A")). For if s + v = E R, then

/ = ¿ZR + E(CJ(/) - {s}), whence s < r for some r G R.

Now let 5 + v = E Q with Q £ u/v. Then s ^ q for some q g Q; since also v < q

we have 5 + v < q, whence s + v = q. Therefore s + v is join irreducible in u/v.    D

This lemma enables us to show that every interval u/v in a free lattice is generated

by the elements which are doubly irreducible in u/v. As a convenience of terminol-

ogy, we will regard v to be doubly irreducible in u/v whenever v is meet irreducible

in u/v, and dually for u.

For A £ FL( A), let (A) denote the sublattice generated by A.

Theorem 11.3. Let v < u in FL(A), and let D = {p g u/v: p is join and meet

irreducible in u/v}. Then (d) = u/v.

Proof. With an application in mind, we will prove a slightly stronger statement.

Assume y £ A with u, v e (Y), and let t g u/v n (y). We will show that t

<=(DC\ (y>). Let S denote (D n (F>>.

Supposing the above statement to be false, let t denote a counterexample of

minimal complexity. Surely / G A, so without loss of generality assume t = 'T,s¡

canonically. Now if t = v = Es,, then t is meet irreducible in u/v, and hence

t g D £ S by our convention. Thus t =£ v.

Each s, falls into one of the following three cases.

(1) If s¡ > v, then s, g S by induction (note s, < / < u).

(2) If s¡ is incomparable with v, and s,• + v g D n ( Y) by Lemma 11.2.

(3) If s i < v, then case (1) does not occur and case (2) holds for somey ¥= i (since

t * v).

It follows that t = Elholdsi, + E2holds(.s, + v) G S, contrary to assumption. Hence

the original statement is true.   D

The proof of Theorem 11.3 also shows that no infinite "open" interval [w g

FL(A): v < w < u} in FL(A) is free. Our previous arguments show that the only

possibility would occur when A is infinite and there is a subset W £ u/v with

\W\ = \X\ which freely generates the open interval. Pick wx, w2, w3 g W and let Y be

any finite subset of X such that {u, v, wx, w2, vv3} £ ( Y), The proof of Theorem 11.3

then shows that W n (Y) freely generates the infinite open interval {/ g FL(F):

v < t < u) in FL(y). Since Y is finite, this is ruled out by the earlier arguments

using the length of covering chains.

We conclude by mentioning an interesting related problem from Grätzer [10]:

Does every infinite interval of FL(A) contain FL(3) as a sublattice1] Some results

about free sublattices of free lattices can be found in [1, 11, 12 and 18]. Also, the

reader can easily find conditions on u and v which insure that the projections of the

generators [u(v + x): x g X} generate a free sublattice of u/v. Nonetheless, at this

point we do not even know whether an infinite interval in FL( A) could be a chain!
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