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A RECIPROCITY LAW FOR POLYNOMIALS

WITH BERNOULLI COEFFICIENTS

BY

WILLEM FOUCHÉ

Abstract. We study the zeros (mod p) of the polynomial ßp(X) =

¿Zk(Bk/k)(Xp~l~k - 1) for p an odd prime, where Bk denotes the k\\\ Bernoulli

number and the summation extends over 1 < k < p — 2. We establish a reciprocity

law which relates the congruence ßp(r) = 0 (mod p) to a congruence f (n) = 0

(mod r) for r a prime less than/7 and n e Z. The polynomial/ (x) is the irreducible

polynomial over Q of the number Tr^(il f, where f is a primitive p2 th root of unity

and L c Q(f ) is the extension of degree p over Q. These congruences are closely

related to the prime divisors of the indices 1(a) = (0 : T\a]), where 0 is the integral

closure in L and a e 0 is of degree p over Q. We establish congruences (mod p )

involving the numbers /(a) and show that their prime divisors r =£ p are closely

related to the congruence rr~l ■ 1 (mod p2 ).

0. Introduction. If the Bernoulli numbers Bk, k = 0,1,..., are given by the

expansion

t S       tk
—      7 =   £ 5/c7T>
e'-l     k=0     kl

then one defines, for p an odd prime, the polynomial

ß,(x)-Z%-(x>-l-*-i).
A = l    K

Note that the coefficients of this polynomial are/?-integral (Kummer).

In this paper we prove the equivalence of the congruence ß (r) = 0 (mod/?),

where r is a prime such that r < p, to a polynomial congruence (mod r). In order to

construct these polynomial congruences, we introduce a class of cyclic extensions of

Q
Let i be a primitive p2th root of unity (p an odd prime). Then Gal(Q(f)/Q)

contains a unique subgroup H of order p — 1. Let L be the corresponding fixed

field. We define

(0.1) Hp = Tr«.

If one identifies Gal(Q(f)/Q) with (Z/p2Z)x in the usual way, then one finds that

H = {a^ímod p2): l<a</?-l). Hence

(0.2) hp=   i  r.
1<a<p-1
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Since Heilbronn raised the problem of finding nontrivial upper bounds for these

trigonometric sums, we shall refer to them as Heilbronn sums [9, 2], These sums are

studied in [2] in connection with Fermât quotients; they are also closely related to

certain «-dimensional Kloosterman sums (see, for example, [9, p. 342]).

Let fp(X) denote the irreducible polynomial of Hp over Q. A table of these

polynomials and their discriminants (p < 19) appears in [5, p. 292], where they are

studied in connection with problems in cyclotomy.

It will be shown that if p and r are distinct primes with/? odd, then the congruence

fp(n) = 0 (mod r) has an integral solution if and only if ßp(r) = r'l[r/p] (mod /?).

(If y g R, then [y] is the largest integer «s v.) We shall establish this result by

showing that both these congruences hold if and only if rp~l = 1 (mod/?2)

(Theorem 4.1).

Let 0 denote the ring of integers in L. If a g 0 - Z, then a is of degree p over Z;

consequently, Z[a] is a free abelian group of rank/? and the number 1(a) = (O : Z[a])

is well defined. We shall study the arithmetic properties of these numbers. In

particular, it will be shown that

(0.3) /2(//J = (-l),' + 1,/2    (mod/?2);

and if/? s 1 (mod4), then 1(a) > p for every a of degree/? over Z. Finally, a prime r

divides 1(a) for every a of degree p over Z if and only if r < p and ßp(r) = 0

(mod /?).

1. Local results. In the sequel, p will be an odd prime number, while Qp will

denote the field of/?-adic numbers; Z is the ring of/?-adic integers. If A is a ring, we

denote by A x the multiplicative group consisting of the units of A. If L is a field

which is a finite extension of Q^, then we write N(LX) for the image of Lx under the

norm map from L to Qp. If me Zp, then mz stands for the multiplicative group

consisting of the integral powers of m and pp-X denotes the group consisting of the

roots of unity in Q^,. Finally, for i = 1, 2, U¡ is the subgroup 1 + p'Zp of Z*.

It is well known that Q possesses exactly /? + 1 cyclic extensions of degree p. We

shall need an explicit description of the norm groups of these extensions. With this

object in mind, we introduce the following subgroups of Qx : Let u0 = 1, «,,...,up_,

be p distinct representatives of the quotient group Ux/U2. Then it is clear that

G, = (UiP)z ■ pp^x ■ U2, i = 0,...,p - 1, and Gp = ppZ ■ pp_x ■ Ux are p + 1 dis-

tinct open subgroups of Q* of index /?. These are the only subgroups of Qp having

this property: If H is a subgroup of Qx of index/?, then, since pp_x is of order/? - 1

which is prime to p, the group pp_x is contained in H. Therefore, in order to count

the subgroups of Q* of index/?, we need only consider the subgroups of Qp/pp-X

= Z ffi Zp; it is trivial that the latter group contains exactly p + 1 subgroups of

index/?.

Let Cp denote an algebraic closure of Q^,. Then, by local class field theory, the

groups G¡ correspond to the cyclic extensions L, of Qp in Cp of degree /? over Q^ in

such a manner that for / = 0,...,/?, we have A(L,X) = G¡. In particular, L0 is the

unique subfield of C such that L0 is a finite abelian extension of Qp and

(1.1) N{L*)=Pz-pp_x-U2.
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It we take the structure of the norm groups G¡ into account, we see that L0 is the

only extension L of degree p over Q such that for some element it of L it follows

that Ntt = p.

Let K be the extension in C of Qp obtained by adjoining a primitive/?2th root of

unity f to Qp and let L' be the subfield of K of degree /? over Q^. If we write

it = 7V*(f - 1), then N£(tt) = Ng(Ç - 1) = /?. It follows from the remark in the

preceding paragraph that L' = L0.

Let \p be a nontrivial character on Qp /N(L£); then it follows from (1.1) that \p

has conductor /?2Z Since there are precisely /? — 1 nontrivial characters on

Qp/N(Lg ), it follows from the conductor-discriminant formula (see e.g. [10, p.

240]) that

(1-2) d = p2^Zp,

where d denotes the discriminant of the extension L0/Qp. It is clear that L0 is a fully

ramified extension Q^; therefore

(1.3) D = SP*'-",

where D denotes the different of the extension and s43 is the maximal ideal in the ring

of integers & of L0.

For every a g L0, we denote by w(a) the order of a at Sß. If w is of order 1 at s43

and/( X) is the irreducible polynomial of rr over Q/;, then it follows from (1.3) that

(1.4) cc(f'(TT)) = 2(p-l).

On account of (1.1) and (1.3) we now have for a unique e g pp_x and a unique

a(rr) G Z^ that

(1.5) N(f'(TT)) = e(l+a(v)p2)p2<"-».

We shall show in §5 that e = -1.

Finally, we now show that for a g Lq , we have

(1.6) to(« — aa) > w(a)

for every a in the Galois group of the extension L0 over Qp. Indeed, it follows from

(1.1) that, if x g Lq is such that Nx = 1, then x g 1 + %s. The result now follows if

we put x = aa/a.

2. Heilbronn sums. In the sequel, f, L, (9 and Hp will be as defined in the

Introduction. Let % be the prime ideal in (9 that lies above/?. If a g 0, we denote by

u(a) the order of a at ^5.

Note that, if we imbed L in an algebraic closure of Qp, then the field L0 given by

(1.1) is the completion of L at iß. Consequently, the different D of the extension

L/Q is given by (1.3).

The following proposition deals with two rather special properties of Heilbronn

sums:

Proposition 2.1. (a) u(Hp + 1) = 1.

(b) If r is a rational prime such that r + p and R is a prime ideal in G that lies above

r, then, for some a G Gal(L/Q), it follows that oHp * Hp (mod R).
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Proof, (a) Let tt = (f - 1) be the prime ideal in Z[f ] that lies above/?. Then every

/?2th root of unity is 1 (mod tt) and Hp is the sum of /? - 1 distinct /?2th roots of

unity (see (0.2)). Consequently

(2.1) a(Hp+\)>\.

Since Tr^Z) ' ç Z and /?0 = 5B', by (1.3), we haveTr^ZT1) = Tr¿(^  2p • s£2) =

/?"2Tr^(^52) ç Z; in particular

(2.2) Tr¿0í52)c/?2Z.

Suppose that u(Hp + 1) > 1, then, by (2.2), Tr^(Hp + 1) = 0 (mod /?2). On the

other hand, Tr§(î)(?) = 0 and it follows from (0.1) that Tr^/L, + 1) = />—a

contradiction. The result now follows from (2.1).

A proof of (b) appears in [2].

3. Bernoulli numbers and Fermât quotients. Let p be an odd prime. For x an

integer such that (x, p) = 1, let q(x) denote the Fermât quotient (xp~x — l)/p

(mod /?). It follows from the definition of q(x) that

(3.1) q(xy) = q(x) + q(y)    (mod/?),    (xy,p)=l.

Proposition 3.1. Let x be an integer such that (x, p) = 1. Then

x

P
(3.2) q(x) = ßp(x)-\ (mod /?).

Remark. Dickson [1, p. 112] attributes a formula similar to (3.2) to Nielsen

(1915). The formula, as cited by Dickson, is incorrect, for the second term on the

right-hand side of (3.2) is omitted. Since the original source is quite inaccessible (to

the author), we have devised a proof of (3.2) in the formalism of/?-adic measures as

developed by Mazur [7].

Proof. We shall adhere to the notation and conventions of Koblitz [6, Chapter 2]

in our application of p-adic measures in the sequel. The following is a brief summary

of the results that will be needed: For every x g Z which is prime to/?, there exists a

Zp-valued /?-adic measure px x such that for k G Z, we have

(Ml) pxJk+PZp)
k.x

x [ p J      2 \ x

(M2) /   ct'-Vi.x-tt-*-*)^,

f 1(1-

k>\.

and

(M3) M!.,(z;) = 0.

Here Zp denotes the ring of /?-adic integers, while Zx is the group of units in Zp.

Note that, since px x is Z^-valued, for a px v-integrable function / on Zp, we have

/z fP-i v - 0 (mod /?) whenever/(jc) = 0 (mod p) on Zp. By (M2), we have

L pXx=(l-x<P-»)Bp_x/(p-\).
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Since pB    x = -1 (mod /?), on account of the von Staudt congruence, it follows that

f   a'-VY=(l -*-<"")//>    (mod/?).
%

By (3.1), if x"1 denotes the inverse of x (mod p2), then q(x~l) = -<7(x) (mod /?). We

have shown that

(3.3) q(x)= f   a"~2pUx    (mod /?).
•'■7

By (M3), we have for/? > 3

^"iV-l)' *i(*_1 -!)-/(«+  • • • + ct"-')pUx    (mod /?).
A = 1 Zp

Since the integrand is 0 (mod /?) if a g ^Z^ and Zx = Zp - ^Z^,, we have, by (M3),

that

(3.4) 0,(x) « ^(x-1 -1)-/   (l+a+  ■■■ + a"-3)Ml,x    (mod /?).

By (3.3), the integral is congruent (mod /?) to

(3.5) /   (l + «+   ■■■+ap-2)px,x-q(x).

If a g Z* - (1 + /»Zp), the integrand is equal to (1 - ap~1)/(l - a) = 0 (mod /?);

hence (3.5) is congruent to

(3.6) /        (p-l)Pi.x-q(x) = -piJl+pZp)-q(x)

ï(;-'

in view of (Ml) (with /< = 1). The result (3.2) (for p > 3) now follows upon

subtracting (3.6) from Bx(x~l — 1) = -(x~l — l)/2 in (3.4). The case/? = 3 is easily

checked.

As an application of (3.2), we prove the following

Corollary. Ifp = 1 (mod 4), then

(3.7) £    i-i + i + i.+ ...+ÍL.O    &-,)•
2( mod 4) r

Proof. Let np be an integer such that n2 = -1 (mod /?) and 1 < np < p. We shall

prove

(3-8) I    ^ = \[(np+l)-(n2p + l)/p]    (mod/?).
2(mod4)

It is easily seen that for / G Z, we have q(-l + //?) = / (mod /?). Therefore, if we

write n2 = -1 + //?, we find that q(np) = I = (n2 + l)/p (mod /?).
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Hence, by (3.1), it follows that q(np) = (n2p + l)/2p. On account of (3.2),

(»i + i)/2/»-^(»,)-L3^(»;*-i)
*-i *

= y(«„+l) + £ tK«;*-1)    (mod/?).
Z A>2   K

Since 5A = 0 if /c ^ 3 is odd, and npk' = 1 or -1 (mod /?), according to whether

A: = 0 or 2 (mod 4), we see that (3.8) holds.

Suppose now that (3.7) does not hold; then by (3.8), we have n2 + 1 = p(np + 1)

(mod p2). Since both n2 + 1 and p(np + 1) are positive and less than p2, it must

follow that n2 + 1 = p(n   + 1)—which is impossible.

4. Reciprocity law. We shall prove the following

Theorem 4.1. Let r and p be distinct primes with p odd. Let F denote the family of

irreducible polynomials of elements in 0. Then the following statments are equivalent:

(a)ßp(r)= }[¿](mod/?).

(b)/ (n) = 0 (mod r) for some n E: Z.

(c) For every f(X) G F there exists an integer m such that f (m) = 0 (mod r).

In the course of the proof of Theorem 4.1 we shall characterise the numbers a g 0

for which the theorem remains valid if we replace f (X) in (b) by Irr(a, L/Q, X). If

r is a prime number and R a prime ideal in & that divides r, we write &R = 0 /R

and Zr = Z/rZ. If a g 0, we denote the image of a under the natural map 0 -* 6R

by aR. Finally, we write G = Gal(L/Q).

Note that since /? is the only prime that ramifies in the extension L/Q and the

extension is of prime degree, every prime number r i= p either splits completely in 0

or remains prime when lifted to 0.

Lemma 4.2. Let r be a prime number ¥= p. The congruences f(x) = 0 (mod r),

/( X) g F, all have solutions in Z if and only if r splits completely in G).

Proof. Suppose r does not split completely in 0. Then R = r& is prime and (S R is

a separable field extension of Zr of degree/?. Choose p in 6 such that pR generates

(9R over Zr. Then, obviously, op * ¡j, (mod R) for at least one a * id in G and p * n

(mod R) for every n g Z; hence, the polynomial Irr(ju, L/Q, X) has no integral

solutions modulo r. Conversely, if r splits completely in 0, then 6R — Zr for every

R | r and the congruences all have solutions in Z modulo r.

Definition. Let a g 0. Then a is basic if, for every rational prime r # p and

prime divisor R or r in &, it follows that &R = Zr[aR\

Remark. It is clear that if a generates a power basis of 0 over Z, then a is basic.

However, this is not a fruitful approach to the construction of examples of basic

numbers since it will be showin in §5 that (9 has no power basis whenever /? = 1

(mod4). (On the other hand, if/? = 3, then 6 = Z[H3]l)

Lemma 4.3. Ifa^O, then the following statements are equivalent:

(i) a is basic.
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(ii) // r ( =£ /?) is prime and Irr(a, L/Q, n) = 0 (mod r) for some n G Z, //ie« i/ie

congruences f (x) = 0 (mod r),f(X) G F all have solutions in Z.

(iii) If r (+ p), R\r and a = n (mod R) for some n g Z, i/ie« r sp/ftj completely in

0.

(iv) 7/ f/?e prime r (=£ /?) ¿oei «oí sp/ft m Ö>, í/iew, /or sowe a g G, ft follows that

aa * a (mod rC).

Proof. It is clear from Lemma 4.2 that (ii) and (iii) are equivalent. We shall prove

(i) ■* (iii) =» (iv) - (i).

(i) => (iii): If (i) holds and a = n (mod Ä), then 0R = Zr[aR] = Zr; hence the

residue class degree of R over r is 1 and r splits completely in 6.

(iii) =«» (iv): Suppose r does not split in 6 and /■#/?. Then R = r0 is prime; if

aa = a (mod /<) for every a g G, then for some n g Z we have a = « (mod Ä), in

contradiction to (iii).

(iv) => (i): If r splits completely in 0, then aR g Zr and ¿\ = Zf = Zr[aR] for

every Ä | r. Suppose that r does not split completely in 0. Then R = r0 is prime and

by (iv), we have aR £ Zr. Since 0R /Zr is a field extension of prime degree, we have

that 0R = Zr[aR].

Lemma 4.4. The rational prime r splits completely in 0 if and only if rp~l = 1

(mod p2).

Proof. This is immediate from the factorisation properties of rational primes

when lifted to Off).

Proof of Theorem 4.1. It follows from Proposition 2.1(b) and Lemma 4.3(iv)

that Hp is basic; hence (b) and (c) are equivalent, on account of Lemma 4.3(H). By

Lemma 4.2, Lemma 4.4 and Proposition 3.1 statements (a) and (c) hold if and only if

rp~l = 1 (mod p2). The proof is complete.

Remarks. 1. In [2] it is shown that q(2) = 0 (mod p) if and only if fp(0) = -NHp

is even, N being the norm from L to Q. Consequently, the following statements are

equivalent:

<S)2p-1 = 1 (mod/?2);

(ii) NHp is even;

(iii) 0,(2) = 0 (mod/?).

2. D. H. and E. Lehmer [5] show that if fp(n) = 0 (mod r) for some n g Z, then

q(r) = 0 (mod /?). By Lemmas 4.3 and 4.4 this provides an alternative proof of the

fact that Hp is basic. They raised the question whether/(X) could ever assume even

values. We see from Remark 1 that it may happen and if it does, then/,(«) will be

even when n = 0 (mod /?); this happens for p < 6.109 exactly when /? = 1093 or

p = 3511 [4].

5. Discriminants. If a g 0, we denote by d(a) the discriminant of the irreducible

polynomial of a over Q. Since L is a totally real field, the absolute discriminant d,

of the extension L/Q is positive; hence, by (1.2), d, = p2lp~l). Consequently, if

a g 0 -Z, and 1(a) = (0:Z[a\), then

(5.1) d(a)--=I2(a)p2(pl\
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Furthermore, if a g 0, then

(5.2) d(a) = (-l)'('-1)/2A$(/'(a)),

where /(A') = Irr(a, L/Q, X).

It is shown in [5] that if r (=£/>) is a prime divisor of d(Hp), then rp_1 = 1

(mod /?2). It will be shown that the converse also holds, provided r < p. Indeed, we

shall prove

Proposition 5.1. (a) If a e 0 is basic, then for every prime divisor r J= p of d(a),

we have rp~x = 1 (mod p2).

(b) If r is a prime number, then r\I(a) for every a G 0 — Z if and only if r < p and

rp~x = 1 (mod/?2).

Proof, (a) Let G = Gal(L/Q). If r\d(a) and R\r in 0, then for some a, r g G

such that a ¥= t we have aa = ra (mod R). Suppose that r # p and rp~1 * 1

(mod p2). Then, by Lemma 4.4, we have that R = r0 is prime. In particular, R

remains invariant under the action of G. Hence T'laa = a (mod R). Since G is cyclic

and of prime degree, aa = a (mod R) for every a g G, in contradiction to Lemma

4.3(iv).

(b) Let r < p be such that rp~x = 1 (mod/?2). Then, by Lemma 4.4, r splits

completely in 0. Let R\r in 0 ; then 0 /R = Z/rZ possesses r distinct residue

classes, i.e. a(mod R) can assume at most r distinct values. On the other hand G

possesses p > r elements. On account of Dirichlet's Box Principle, we conclude that

for some a, r g G such that a + r, we have aa = ra (mod R). Hence r\d(a) and

r|/(a)by(5.1).

Conversely, if r\I(a) for every a g 0 -Z, then r\I(Hp) so that by (5.1) and (a) we

have rp_1 = 1 (mod/?2). Finally, it follows from Hensel's theory of indices of

numbers fields [3] that if r\I(a) for every a e 0 — Z, then r cannot exceed p — 1, p

being the degree of the extension L/Q (see [8, Proposition 4.13, p. 165]).

The observations of §1 will enable us to prove the following

Theorem 5.2 (a) If it g 0 is of order 1 at the prime ideal above p, then

fi(TT) = (-\yp + l)/2    (mod/?2),

(b) If p = 1 (mod4), then 1(a) > p for every a G 0 — Z.

Remark. Note that (0.3) now follows from (a), Proposition 2.1(a) and the

observation that I(Hp+ 1) = I(Hp).

Proof, (a) As a first step we show, in the notation of §1, that e = -1 in (1.5). Let

tt g LQ be such that co(tt) = 1 and let f(X) denote the irreducible polynomial of tt

over Q^. Write G = Gal(L0/Qp). Since f'(tr) = ll0*id(77 - am), it follows from

(1.4) that ¿Za¥,idu(tr - ott) = 2(p - 1). If we now take (1.6) into account, we find

for every a G G satisfying a =f= id, that

(5.3) ic(tt - ott) = 2.

For the remainder of the proof, a will denote a fixed generator of G. We define the

sequence i?,, v2,... by the formula aktr = vkm, k > 1. By (5.3), we have for some
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a G Z* that vx = 1 + atr (mod $2). We prove inductively that

(5.4) vk = (l+katr)    (mod^2),        k > 1.

Suppose that (5.4) holds for k = /, / > 1. Since oi+1tt = v/+xtr and o/+1tt = o(v,tt)

= (ov,)vxtt, we have

i?/+1 = vx(ovi) = (1 + aTr)(l + laatr) = 1 +(/+ l)atr    (mod^2);

the proof of (5.4) is complete. Since G is cyclic and of order/?,

f(tr) = n (» -»**) - (no - o}**-1 = {n(-*™ + ou2))}^-1

= (-l)'_1(p - l)!^-1^'-11 + 0(tT2"-1) = (-1)»*'-« + GV2'-1),

where for k ^ 1 the symbol 0(w*) stands for an element in ^sk. Consequently,

f'(TT)/TT2^-l)= -1  (mod^).  Since N(-l + %) a -1 + pZp and ^(tt2^-11) =

^2(^-1) (mod p2p-i) h follows that

(5.5) 7V(/V))//'2(,7^1)= -1    (mod/?).

By (1.5), the same congruence holds with e in the place of -1 on the right-hand side

of (5.5). Since the elements of pp_x are pairwise incongruent modulo /?, we see that

e = -1. Consequently, if we imbed L into L0, we see that the congruence (5.5) holds

modulo p2 in Z provided tt lies in L. The proof of (a) is complete in view of (5.1) and

(5.2).
(b) Let a g 0 - Z. Since 0/% = Z/pZ and Z[a + n] = Z[a] for every n g Z, we

may assume that cc(a) > 1. If /? = 1 (mod4) and tc(a) = 1, it follows from (a) that

I2(a) = -1 (mod p2). In particular, 1(a) ^ /, where / is the smallest positive number

such that I2 = -1 (mod p2); it is trivial that / > p. If co(a) > 1, then, by (1.6) we

have for every a g G that io(a — aa) ^ 3. Let f(X) denote the irreducible poly-

nomial of a over Q. Then w(/'(a)) > 3(p — 1); consequently, d(a) = 0

(mod/?3^"1»). By (5.1), we find that 7(a) is divisible by pk, k = (p - l)/2. In

particular, 1(a) > p.
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