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NEW INEQUALITIES FOR POLYNOMIALS

BY

C. FRAPPIER, Q. I. RAHMAN AND ST. RUSCHEWEYH

Abstract. Using a recently developed method to determine bound-preserving

convolution operators in the unit disk, we derive various refinements and generaliza-

tions of the well-known inequalities of S. Bernstein and M. Ricsz for polynomials.

Many of these results take into account the size of one or more of the coefficients of

the polynomial in question. Other results of similar nature are obtained from a new

interpolation formula.

1. Introduction. Let ¿Pn be the class of polynomials P(z) := L"=0 ctpz" of degree at

most n. We write

||F||:= max\P(z)\,   MP(R):=  max|P(z)|.
1*1-1 1-1 = R

According to a well-known result of S. Bernstein (for references see [18]),

(1.1) \\P'\\ < n\\P\\.

It is also well known (see [14, p. 346 or 11, vol. 1, Problem III 269, p. 137]) that

(1.2) MP(R) < R"\\P\\    forÄ>l.

In both (1.1) and (1.2), equality holds only when P(z) is a constant multiple of z",

i.e., if and only if all coefficients a„, except an, are zero. Thus, we should be able to

say more if any of them is known to be different from zero.

Here we obtain inequalities similar to the above which take into account the

coefficients of P. They are established by a fairly uniform procedure, and most of

them constitute refinements of (1.1) or (1.2). Later we obtain other refinements of

the above inequalities. We wish to draw the attention of the reader to Theorem 8 in

particular.

First of all we investigate the dependence of ||P'|| and MP(R) on ||P|| and |a0|. In

fact, we consider \\P(Rz) — P(z)\\ rather than \\P'\\ and prove:

Theorem 1. Let P e &>n. Then for all R > 1,

(1.3) \\P(Rz) - P(z)\\ + *„(R)\P(0)\ < (R" - 1)\\P\\,

where

(R- l^R"'1 + R"-2){R" + 1 + R" -(n + 1)R +(n - 1)}

*"{R)'~ Rn + l + R» -(n - 1)R +(n - 3)

if n > 2, and\¡jx(R) := R — 1. The coefficient o/|P(0)| is the best possible for each R.
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Dividing both sides of (1.3) by R - 1 and letting R tend to 1, we obtain

Corollary 1. For P g 3Pnwe have

(1-4) ||P'|| + c„|P(0)| < «||i>||,

where en = 2n/(n + 2) if n 3* 2, whereas ex = 1. The coefficient o/|P(0)| is the best

possible for each n.

The corresponding refinement of (1.2) is contained in

Theorem 2. Let P g 9>n, n ^ 2. Then for all R > 1,

(1.5) MP(R) +(R" - R"-2)\P(0)\ < R"\\P\\.

The coefficient o/|P(0)| is the best possible for each R.

Before stating any of the other results, we wish to describe

2. The method of proof. Given two analytic functions
00 00

/(*):-   Y,a.z',   g(z):=   £ bpz*       (\z\<l),
x=0 x = 0

the function
00

(/•*)(*):-   \ZavbX       (\z\<\)

is said to be their Hadamard product.

Let us denote by 38 n the subclass of 3Pn consisting of those polynomials Q for

which

(2.1) llß*^ll<l|/,||   for all P g é?.

In order to prove our inequalities we divide both sides by the coefficient of ||P||

and express the resulting quantity on the left as \\Q * P||. After that we must show

that Q g 38n. We have a fairly straightforward method to do that if 0(0) * 0. In

order to describe it we find it convenient to introduce the subclass 3S® of 3Sn

consisting of those polynomials Q in SSn for which Q(0) = 1. The class 3S° is closely

related to the class !M of all analytic functions f in \z\ < 1 such that /(0) = 1 and

Ref(z) > 1/2 for \z\ < 1. To be precise, we have [19, 17, p. 124]:

Lemma 1. A polynomial Q belongs to 3d® if and only if there exists f g <% such that

f(z)-Q(z)=o(z"),z^0.

This leads us to the following characterization of polynomials in J1", which will be

used on several occasions:

Lemma 2. The polynomial Q(z):= ¿Z"k_Qakzk, where a0 = 1, belongs to 38® if and

only if the matrix

in      a,        ■ ■ •       a„

M(a0,ax,...,a„):=

is positive semidefinite.

a n-l

0(1
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Proof. If Q g 3S° then, by Lemma 1, there exists/ g & such that/(z) - Q(z) =

o(z"). Using the Carathéodory-Toeplitz Theorem [21, p. 157], we see that

M(a0, ax,... ,an) must be positive semidefinite. Conversely, if M(a0, ax,... ,a„) is

positive semidefinite then, again using the Carathéodory-Toeplitz Theorem, we

obtain that Q extends to a function/ g 9t, whence/(z) - Q(z) = o(z"), z -> 0, and

Lemma 1 shows that Q g 3S°.

In order to study the definiteness of the matrix M(l, ax,... ,an) associated with

the polynomial Q(z):= 1 + ¿Z"k_xakzk, we use the following well-known result [4,

vol. 1, p. 337] from linear algebra:

Lemma 3. The hermitian matrix

'ii

'21

'«1

'12

122

'«2

'2n aij = aji>

is positive definite if and only if the corresponding leading principal minors

Dk =

"11       "12

a2x     a22

akl       ak2 'kk

k = 1,2,...,«,

are all positive.

We make one further observation. For that, let us associate with P g 9>n the

polynomial P(z):= z"P(l/z); thus P depends on the class 3*n and not just on P.

Observe that

(2-2) Öe*„«Öe«„

which is obvious but very useful.

3. Specific details. For sake of brevity we denote the matrix

an    ao      "1

bi

b.

by

M a0.

bx      a0

ax,...,a„\

bx,...,b„

the one obtained by deleting its i,th,..., zmth rows and jxth,... ,y„,th columns,

respectively, will be written as

/ ax,...,an\

M, I ao»
.'„■Ji.J,

bx,...,bn



72 C. FRAPPIER. Q. I. RAHMAN AND ST. RUSCHEWEYH

The notations for the corresponding determinants will be

D

• M
a0,

bx,..

and

D,
'1.lm"'Jl-->Jn

,a„\

bi,...,K)

respectively.

Proof of Theorem 1. The case n = 1 is trivial so let n > 2. First we note that

1
-^T-yOlP^z) - P(z)\\ + +n(R)\P(0)\)

1
sup

(R"-l)|a|<^„(R) R" - 1
P(Rz) - P(z) +(R" - 1)SP(0)|

Next we observe that (Rn - l)~l{P(Rz) - P(z) + (R" - l)SP(O)} is the Hada-

mard product of P and the polynomial

Q«(z)--= j^{(R" - l)z" +(R-1 - l)z"' +  •-■

+ (R - l)z +(R" - l)a).

Inequality (1.3) will therefore be established provided we show that Qa G 98n if

(R" — l)\a\ < ^„(/v). For the sharpness of the result we need only prove that for

every a > \pn(R) there exists a number a, with (R" — l)|a| = a, such that Qa G 3Sn.

According to (2.2) we may just as well find the set of alphas for which

QÁA = i + jirrjiiR"'1 - l)* + ••• +(* - i)*""1 +(R" - i)az-}

is in á?°. In accordance with Lemma 2 we have to study the definiteness of the

hermitian matrix

/

Mx(a, «):= M

Rn-l _ 1Rn-2_ i R- 1,(R" - I) a

R" - 1,
Rn-l   __   !     D»-2

1,...,R- 1,(R" - 1)5/

Now, via Lemma 3 we are led to the problem of determining the values of a for

which the determinant det(Mx(a, n)) of Mx(a, n) and its other leading principal

minors are all positive.

We note that

(3.1) det(M1(a,«)) = C1,n(Ä)+(-l)"2(Ä"-l)51,„(Ä)Rea

-(R"-l)2AxjR)\a\2,
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where

AXJR):= D

»n-l 1,R n-2 1,...,R2 1

R" - 1,

*,.„(*):= Ö

Ä„-l  _   1>jR»-2_   ̂ ...^2-   1/

R" - l,R"~l - 1,...,R3 - 1,R2- l\

R' 1,

Rn-2 U n-3
,R - 1,0

and

R"~l - 1,R"-2- 1,...,R - 1,0'

Q,n(^):= D   R"-l,

R"1 - 1,R"2 -1,...,R-1,0I

This is explained as follows: clearly, det(Mx(a, «)) is of the form

CijR) + b(R" - l)(a + a) -(R" - l)2AxjR)\a\2.

In order to determine the value of b, we may expand det(M,(a, «)) by its first row.

The term in a will come only from the last element in the row. Now, expanding the

corresponding cofactor by its first column, the conclusion becomes transparent.

In order to evaluate Ax n(R), we may perform the following operations one after

the other:

(a) subtract the (/ 4- l)th row from the /'th row, / = 1,2, ...,n- 2;

(b) factor out R - 1 from each of the first n-2 rows;

(c) from the z th row subtract 1/R times the (/' + l)th row, i = 1,2,...,n — 3;

(d) from theyth column subtract 1/R times the (j + l)th column,^ = 1,2,...,«
-2;

(e) add the first column to the second, the (new) second column to the third, and

so on. Thus (for n ^ 3) we obtain

-V„(K) = («-!)"

R„-l  +  R„-2

0

0

0
0

0 0

0 R"-1 + R"~2

0 0
0 0

OH    iW   ii-')
0
0
0

R"1 + R"-2

0

0
0
0

0
?" — !   _1_   D"-2

0

0
0

0
-R"1

(-3)(f-l)     <"-*>(i-l)     «"-1

= (fi- 1)"~\r"1 + R"-2)"~3

J"-l   J-   £>"-2

= (« - l)"^«'-1 + Ä"-2)""3Ä"-2{/?" + 1 + R"-(„- l)R+(n- 3)}.
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It is seen directly that the same formula holds for n = 2 as well.

As for Bx „(R), we perform the following operations:

(a) subtract the(/' + l)th row from the /th row, / = 1,2,...,n — 1 ;

(b) factor out R - 1 from each of the first n - 1 rows;

(c) from the /th row subtract 1/R times the (i - l)th row, /' = 2,3,

and obtain (for n > 2)

...,« - 1,

*!.„(*) =(«-!)'

R„-2       R„-l

0 0

0        R - 1

R""1 + R"-2

0

0
0

R2-\

(R- l)"lR"-2

R"-1 + R"~2

0

0

0

R - 1

0

0

R2-l

= (-1)"«"   2(R - l)"(R"-¡ + R"-2)"~2.

-R4

R3 - R5

R4 - R6

0

0
R»l   _   1

R3 - R5

R4 - R6

0

0

-R3
"R2 - R4

R3 - R5

R - R'

R2 - R4

n-l    ,     n/i-2        nn-3R

0

R"2-l

R2- R4

R} - R5

R"

R - RJ

R2- R4

R""1 + R""2     R""3 - R"-1

0 R""1 + R"2

1 R" 1 R" 1

Finally, in order to evaluate CXn(R), we may perform the same sequence of

operations (with n-l replaced by n + 1) as for Ax „(R). It turns out that (for

n > 2)

CliB(Ä) = (R - ^"(R^1 + R"-2)"~1Rn-2{Rn + l + R" -(n + 1)R + n-l}.

Hence, if n > 2, then det(M,(a, n)) > 0 provided that

det(Af!(a, «))    _
A(«)>

(ä - i)""2(ä''-1 + R»-*y-3R»-i

= (R - l)2(Rnï + R"-2)2{Rn + 1 + R" -(n + 1)R +(n - 1)}

+ 2(R - l)2(Rnl + Rn'2)(Rn - l)Rea

-(Rn - l)2{Rn + l + R" -(n - 1)R +(n - 3)}\a\2

is positive, and definitely if

(R - l)2(Rn~l + R"~2)2{R" + l + R" -(n + 1)R +(n - 1)}

-2(R - l)2^"-1 + R"~2)(R" - l)\a\

~(R" - 1)2{ä" + 1 + R" -(n- 1)R +(n - 3)}|a|2> 0.
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Thusdet(M,(a, n)) > 0 if

(R - 1MR"-1 + R"-2){R" + l + R"-(n + 1)R +(n - 1))
(R" - l)|«i < ----a---JJ-

' R" + l + R"-(n-l)R+(n-3)

-:*„(*)■

Further, we observe that for R > 1, all the leading principal minors

mxx = R"-l,

I
mi,k:= D

fl""1 - l,...,R"-k + l - 1^

R" - 1,
R"~l - 1,...,R n-k+l -  1

k = 2,3,...,«,

of Mx(a, «) are positive. In fact, proceeding as in the case of Ax „(/?), it is seen that

mx k is equal to

n-l

R"~2(R - l)k(Rnl + Ä"-2)*    \R" + 2 £ Rv - k   > 0.

By Lemmas 2 and 3 it follows that if (R" - l)\a\ < ipn(R), then

{(R" - 1) -^(R"-1 - l)z +  ■■■ +(R - l)z"-1 +(R" - l)az"}/(R"- 1) g 38°.

This, in conjunction with (2.2), implies that (1.3) holds for all R > 1 and all P g &n.

On the other hand, we note that for every a > 4'n(R) there corresponds a complex

number a„,  with \aa\ = a,  such that fx(aa) < 0,  so det(M,(a0, «)) < 0.  From

Lemma 3 it follows that

{(Rn - 1)+(R"'1 - l)z +  ■■■

+ (R - l)z"-' +(R" - l)aaz"}/(R" - 1) <£ 98°,

i.e. for each given R > 1 there exists a polynomial Pe#„ such that

\\P(Rz) - P(z) + aoP(0)|| > (R" - 1)\\P\\,

and a fortiori

\\P(Rz) - P(z)\\ + a\P(0)\> (R" - 1)\\P\\.

With this, Theorem 1 is proved for « > 2.

Proof of Theorem 2. Let R > 1 and note that

-^-{MP(R) +(R" - R"-2)\P(0)\} =R
£ Rk~"zk +(1 - R-2)e'y)*P(z)

k = 0

for some y g R. In view of (2.2) and Lemma 2, it is therefore enough to prove that

q(z;a):= "¿ ¿z* +(i + a]z" 6 á?„° ~ |«| « 1 - ¿.
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Accordingly we study the definiteness of

(3.2) M2(a,n):= M

1     1

*' R2'""ä"-1' Ä"

1        1   >.    ^

1,
1      1 1 1

+ ä
Ä' R2"  " R"-1' R"        j

Let a, := a + 1/R". Then, as in (3.1), the determinant of M2(a, n) can be devel-

oped in the form

det(M2(«, «)) = C2JR) +(-l)"2B2jR)Rc(ax) - A2jR)\ax\2,

where

A2JR):= D

1     \

1,

1     1

R' R2"  "R""2

1

B2.„(R):= D

1,

R'   />2'-   -'i>«-2

1 1 1

Ä''   " R""3' R" -2

R'

R2' R3"" R"-1
.0

and

C2,„(R):= /?

11     1

R' Ri'-'R"1
.0

1,

*' R2'     'R""1'

It turns out that for n > 2,

^.n(^) = (l--¿)""    52,„(R) = (-l)"¿(l-^

n-2

and

Hence,

(3.3)

n-2

c2n(R)     i - -M" - -Vfi - -^
R2/        R2"\        R2

det(M2(«,«))=(l-¿)"2{(l-¿]2-|«12
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so that det(M2(a, «)) > 0 if and only if \a\ < 1 — 1/R2. Further, we observe that

the leading principal minors of M2(a, n), namely

(3.4)   m2il:= l,m2y.= D

1 1     \

R' ■'/> k-\

1,

*""ra

1 -
R-

2 < k < «,

are all positive for R > 1. Thus we have proved that q(z; a) g 98° if |a| < 1 — 1/R2

and does not belong to 98° if |a| > 1 — 1/R2. Hence, Theorem 2 holds.

4. Dependence on the other coefficients. As we have mentioned earlier there is

strict inequality in (1.1) as well as in (1.2) if any of the coefficients av (0 < i» < « — 1)

are different from zero. The dependence of ||P'|| on \ax\ is given in Theorem 3,

whereas Theorem 4 contains the corresponding refinement of (1.2).

Theorem 3. For P g &n,

(4.1) IIR'H + cn|P'(0)|< »||P||,

where cx = 0, c2 = v2  — 1, c3 = 1/ \2 , whereas for « ^ 4, cn is the unique root of the

equation

(4.2) 16« - 8(3« + 2)x2 - 16x3 + (« + 4)x4 = 0

lying in (0,1). 77ie coefficient o/|P'(0)| is the best possible for each «.

Proof. It is clear that

\P'\\ + cn\P'(0)\=  sup
l«l<<„

¿ kzk +(1 + S)zUp(z)
11 = 2 I

So again using (2.2) and Lemmas 2 and 3, we are led to study the definiteness of the

hermitian matrix ¿(1 + a, 1 + 5), where

i(x,y):~ M\n,
n — 1, n — 2,...,2, x,0

n - l,n - 2,...,2,y,0j

The leading principal minors of |(1 + a, 1 + a) of order n — 1 or less, namely

w31 = «,

/ « - 1,...,« - k+ 1\
w3^:= Z>   «, = 2*"2(2« - Â: + 1),       2 < A: < n - 1,

\ « - 1,...,« - * + 1/

are, of course, all positive.

In order to study the leading principal minor of order « we consider the

determinant

G(x,y):= D
n — 1, n — 2,.. .,2, x^

n - 1, « - 2,...,2,y .
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Now according to a well-known formula for the derivative of a determinant (see [2,

pp. 25-26]), we have

«,« - 1,...,4,3    \

dx
n-l,

d2G

\ « — 2, « — 3,.. .,2,y

n-l,n- 2,...,4,3\

a2G

dx2
0,

dx*y~        \   '    «-l,«-2,...,4,3
etc.

Evaluating the determinants involved, we see that

G(l,l) = (n + 1)2-2,    |f (1,1) = |f(l,l) = 2-\
ay

whereas all the higher-order partial derivatives vanish. Thus,

G(x, y)= (n + 1)2"~2 + 2"""3(x - 1) + 2n"3(y - 1)

-(« + 3)2"-4(x-l)(.v-l),

and, in particular,

G(l + a,l + à) = (n + 1)2"~2 + 2"   2Rea -(« + 3)2"-4|a|2.

Hence the «th principal minor of £(1 + a, 1 + a) is positive if

(4.3) |a|<2(« + l)/(« + 3)=:c*.

Next, let us denote the determinant of £(x, y) by X(x, y), so that X(y, x)

X(x, y). Again using the formula for the derivative of a determinant, we obtain

av /        n-l,n-2,...,3,2,x,0\

dx \ n- l,n-2,...,3,2,y,0j

+(-iy+lD2.,n+

a2X

dx2

= 2D n-2,

« — 1, « — 2,.. .,3, 2, x, 0

n-l,n- 2,...,3,2,y,0

n - 1, n, « - 1,...,6, 5,4    \

« - 3,« - 4, « - 5,...,2,.y, 0

d2X

axdy
= -dx(x, y) - d2(x, y) - d3(x, y) - d4(x, y),
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where

di(x, y)'—   Ai-l,n + l;n-l,n + l

d2(x,y):= Dh„+vx„

d3(x,y):= 2?2>B;1,n+1| «

n.

\

and

Further,

d4(x,y)-=   A>.*+1;2,„+1 «,

- 1,« - 2,...,2,x,0'

« — 1, « — 2,.. .,2,y, 0

« — 1, « — 2,...,2, jc,0\

« - 1,« - 2,...,2.7,0/

« — 1, n — 2,.. .,2, x, 0\

« - 1,« - 2,....2,7,0/

« — 1, « — 2,.. .,2, x, 0\

n-l,n-2,...,2,y,0 J

d3X = 94A"

9x3 " 9x4

94A-

9x397

whereas for « > 4,

93A-

9x29>-
= 2(-l)

n+l

•^'l,n-l,n+l;n-l,n,n+l    W '

= 0,

« - 1,« - 2,...,2,x,0,

« — 1, « — 2,... ,2,7, 0

+ 2(-l)" + 1ZW l;2,n,« + l

« - 1,» - 2,...,2,x,0'

« - 1,« - 2,...,2,.y,0 ,

and

94* / n-l,...,5,4'
= 4D\ n, (n + 4)2""3.

^x ay \ „ _ i,...,5,4/

It is not difficult to see that X(l, 1) = n2"~1 and the two determinants involved in

(dX/ax)(l, 1) are separately equal to zero. Also, (a2X/dx2)(l, 1) is easily seen to be

zero. Besides, dx(l, 1) = d4(l, 1) = (« + 1)2"~2 and d2(l, 1) = d3(l, 1) = «2"~3, so

that (a2X/axay)(l,l)= -(3n + 2)2""2. Since (93Ay9x297)(l, 1) turns out to be

equal to -2""1, and the partial derivatives of order higher than four are all zero, we

obtain

X(x, y) = n2"-1 -(3n + 2)2"~2(x - l)(y - 1) - 2"~2(x - l)2(y - 1)

-2"~2(x - l)(y - l)2 +(« + 4)2"~5(x - l)2(y - l)2,

so

X(l + o,l + 5) = «2"-1 -(3« + 2)2""2|a|2 - 2"-1\a\2Re a +(« + 4)2"-5|a|4.

For « > 4 we are thus led to equation (4.2). Its smallest positive root being c„ by

hypothesis, it follows that A^l + a, 1 + a) > 0 for 0 < \a\ < cn. By Descartes' rule

of signs, (4.2) cannot have more than two positive roots. Since the expression on its
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left side is positive for x = 0, negative for x = 1, and positive for all large values of

x, it has just one root in (0,1), which we call c„, and another in (1, oo). Referring to

(4.3) we see that cn < c*, so for « > 4 the determinant of £(1 + a, 1 + a), as well as

the determinants of the other leading principal minors, is positive if \a\ < c„. Hence,

by Lemma 3, {« + («- l)z + • • • + 2z"~2 + (1 + a)z"-l}/n g 98° if \a\ < c„,

which proves (4.1) for « > 4. Besides, referring to equation (4.2) we note that to

every t > c„ there corresponds a complex number oT, with \aT\ = t, such that

X(l + aT, 1 + aT) < 0, so, again by Lemma 3,

{« +(« - l)z +  ••• + 2z"~2+(l + aT)z"-'}/« G 98°.

In other words, for each given t > c„ there exists a polynomial P g 9¡>n such that

||P'|| + T|P'(0)|^||P'(z) + aTP'(0)||>«||P||.

With this, Theorem 3 is proved for « > 4.

The example P(z) := z shows that c, must be zero. In the case « = 2 we have to

study the matrix

M
1 + 0,0'

1 + 5,0

and it is readily seen that (4.1) does hold with c2

in the case « = 3, we need to consider the matrix

J((a, y):= M

V2  — 1. In order to prove (4.1)

2, 1 h |a|e'y, 0 '

3.

2, 1 + \a\e~ 0

The leading principal minor of order 3 of Jf(a, y) is easily seen to be positive for

\a\ < 4/3, whereas det(^#(a, y)), being equal to

12 - 22\a\2 + 2|a|2cos2y + 4|a|3cosy + |a|4,

is positive for all y g R, provided that \a\ < 1/ 72 ■ Since the determinant is negative

for some y G R if \a\ > 1/ \/2 it follows that (41) holds with

c3 = min(4/3,l/\/2) = 1/1/2 -

Theorem 4. Let R > 1. If we denote by <p„(R) the best possible constant such that

(4.4) MP(R) + <pn(R)\P'(0)\^R"\\P\\   forallP^3*n,

then

yx(R) = 0,   cp2(R) = R(v/(R2+l)/2-l),

r){Jr2<p3(R) = (R2- R)()/R2 + R + 1 - 1),

whereas, for « > 4,

cpn(R) = (Rnl - R"-3)(R2 + 2 - 2v/R2 + 1 )1/2.

Proof. Let R > 1 and note that

1

R-{MP(R) + <pn(R)\P'(0)\}

A = 2 R" + (F^ + ̂-wh + ̂Hz>
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for some y g R. For reasons which are now very familar, we set

S(x,y):~ M

1_   J_
R'  R2 R"  2    Rr

:    i \
+ X

1,

1 J_      _L_  _L_       J_
R' R2''"' R"'2' R"~l +y' R"

and study the définiteness of f(a, ä).

Let us denote the determinant of f(x, j) by Z(x, 7), so that Z(7, x) = Z(x, 7).

Using the formula for the derivative of a determinant, we obtain for « > 4 (in the

case n = 4 some of the determinants need to be interpreted in an obvious way):

9Z

9x (-l)" + \Dux(x,y) + Dxa(x,y)),

where

Di¿(x,y):= DUn

1     1 1   \

1,

R' R2''"' R"  2' R""1 + *' R"

1   J_ _L_    _L_ J_
R' R2' "' Rn~2' R"~l + y' R"

Dxa(x,y):= D2;n+X

1     1 1 1 1_\
R' R2"",Rn2, R"  l + X' R"

L
1      1 1

r> Äa--Ä-2' Ä
1 1

/

92Z

9x2
2D2(x,y):= 2Dx2nn + x

J_   J_
R' Ä2

1 1 J_\
Rn-2>   Rn-1   + X>   Rn

1,

1     J_ 1 1 J_
R' R2" "R""2' R"-1 + y' R"

a2Z

9x97
= -(D2,i(x, y) + D2a(x, y) + D2¡3(x, y) + D2A(x, y)),

where

D-1,\\X, y)'-—   Ai-l,n+l:n-l,n + l 1,

1   J_ 1 1 J_\
R' R2" "R""2' R"  l + *' R"

I J_      _J_  _J_       J_
&' R2" "R""2' r"-1 +j' R"
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D2,2(x,y)-=   Dl,„ + l;2,n

!    J_ 1 1 J_ \
R' R2" "R""2' R""1 4 '*' R"

D2.ÁX,y)-=   #2,n;l,„+l

1     J_ 1 1 J_
R' R2" "R""2' R""1 +y' R"

11    1 1        1

R' R2' "'R"-2' R"
+ x.

R"

1.

D2.Ax, y)-= D2.„+i-2,„+i

L J_        i       i j_
R' R2,",R"2' R"'1 + y' R" ,

1 J_ 1       1 _1_\
«' R2' "" R"  2' R""1 + *' R"

1.

J_   _1
*' R

93Z     94Z       94Z

9x3      9x4      9x397

1 1 J_
R' R2"'"' R""2' Rn_1     y" R"

= 0,

93Z

9x29j
= 2(-l)n + \Dxx(x,y) + D3,2(x,y)),

where

™3,l(x> y)'-~   ^l,n-l,n + l;n-l,n,n + l

1 1

1,

1        1

R' R2"   " R"-2' R"-1

1      1

x,
R"

1 1 J_
« ' R2'""' R"-2' R"1 +_y' Ä"

Z)3,?.(-^> -F) —   öli2iI|+1;2i)liII+1

1 J_      _J_  _L_       J_
#' R2"   "' R"   2'  R""1 + *'  R"

1,
1       1 1

and

Ä' R2""^"-2' R

1

1 1
-1- v, —
n-l        ''   ^"

94Z

9x29j:
= 4Z)4(x, 7):= 4Z)

1

R'■•■' R--

1,
1

\

1

Ä'"•'*»-

Now we proceed to evaluate Z(0,0), (9Z/9x)(0,0), (9Z/97)(0,0), etc. First we

observe that

Z(0,0) = \M2(0, «)| = (1 - R-2) .
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Then we recall that Z(y, x) = Z(x, y). The value of the determinant Dx x(0,0) is

zero since its first column is 1/R times its second column. Also the value of

Dx 2(0,0) is zero since its «th row is 1/R times its (« — l)th row. Hence,

Also,

f(0,0) = |(0,0) = 0.

0(0,0) = 0(0,0) = 09x 97

since the (« - l)th row of D2(0,0) is 1/R times its (n - 2)th row. In order to

evaluate Z>21(0,0), we subtract 1/R times the (k + l)th row from the kth row for

k = l,2,...,n - 2 and readily obtain

£2,,(0,0) = (l+R-2)(l-R-2r-2.

Precisely the same operation gives us

£>2.2(0,0) = R-2(l-R-2)"~2.

Also,

Z)2,3(0,0) = R-2(1-R-2)"-2,

as is seen by subtracting 1/R times the (k + l)th column from the kth column for

k = l,2,...,n - 2. Subtracting 1/R times the kth row from the (k + l)th row for

k = « - 2, n — 3,..., 1, we see at once that

£»24(0,0) = (1 + R-2)(1-R-2)"-2.

Thus,

|^(0,0) =-2(1 + 2R-2)(1-R-2)-2.

The value of the determinant D3X(0,0) is zero, since its first row is 1/R times its

second row. Also, the value of D32(0,0) is zero since its (n - 2)th row is 1/R times

its (« - 3)th row. Therefore,

93Z 937
/if(o,o) = //i(o,o) = o.
9x^97 9x97

Finally, we observe that £>4(0,0) = m2 „_3 (see (3.4)), so

(0,0) = 4(1 -R'2)""4.
94Z

9x29j2

Since the partial derivatives of order higher than four are all zero, we obtain

Z(x, 7) = (1 - R"2)" - 2(1 + 2R"2)(1 - R-2)"-2x7 +(1 - R"2)""4x272,

and, in particular,

Z(«,«) = (1 - R-2)""4{(1 - R"2)4 - 2(1 + 2R-2)(1 - R"2)2M2 + |«|4}.
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Its leading principal minors of order k (1 < k =$ « — 1), being equal to m2X,

m22,... ,«i2,«-i' respectively, are all positive for R > 1. Hence, f(a, a) is positive

definite for those values of a for which Z(a, 5) and its leading principal minor of

order « are both positive, and it is not even semidefinite for those values of a for

which at least one of them is negative. Referring to (3.2), we recognize that the

leading principal minor of order « of Z(a, a) is nothing but det(M2(a, n — 1)) and,

as such, is equal to (see (3.3))

a-*-2r3{(i-R-2)2-i«i2}.

This and the above expression for Z(a, ä) readily lead us to the desired result for

« > 4.

The cases « = 2 and « = 3 can be handled in the same way. However, in the case

« = 3 the fourth degree equation

-2\3
(1 - R-2)   -2(1 R"2)(l + 2R"2)x2 - 4R-2x3 + x4 = 0

(1 — R~2)y, which givesmust be solved. For this we may make the substitution x

(1 -72)2 = R"272(7 + 2)2.

The case « = 1 is trivial.

The method can also be used to study the dependence of ||P'|| and MP(R) on an

arbitrary av (2 < v < n — 1), but we will not do this because the calculations

become very long. We will, however, prove the following result, which has various

interesting consequences.

Theorem 5. If P(z) := L"=0 a„z" is a polynomial of degree at most n, then

(4.5)

where

(4.6)

|zP'(z) - \a„zn + la0|| < (« - i)||P|| - y„K|

(1/4,

.     15/12,
Jn '     \ 11/20,

> + 3)/4(«-l),

n = 1 (mod 2), n > 1,

« = 2,

« = 4,

n = 0 (mod 2), « > 6.

772e constant y„ is the best possible for each n.

Proof. Clearly,

zP'(z)--anz" + ^a( + V„|a0l

(y„e'ß + \)+"Lkzk+[n-\y-yP(z)

for some ß g R. In view of (2.2) it is therefore enough to prove that

n-l

/(z;«):= l + 2£
k = \

2n - 1

4a + 1

2(2« - 1)
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belongs to 38° for \a\ < y„, whereas to every / > y„ there corresponds a complex

number at with |a,| = t such that/(z; a,) £ 98°. As such, we consider the matrix

7j(a):= M

c1;c2,...,c„\

Cn,

C,, C,

where cn 1/2, ck = n - k for 1 < /c < « - 1, and c„ = a + 1/4. The de-

terminant of -q(a) can be developed in the form

det(rj(a)) = C* + 2(-l)"R*Re(a + 1/4) - A*„\a + 1/4|2,

where

A*:= D

B* := D n-1,

and

C*:= D

« - 1,« - 2,. ..,2'
i
2 , ,

« — 1,« — 2,... ,2,

« — |, « — 1, n — 2,. ..,3, 2

« - 2,« - 3,« - 4,...,1,0,

« - 1,« - 2,. ...2,1,0)

« - 1,« - 2,. ...2,1,0

In order to evaluate A* we perform the following operations one after the other:

(a) Subtract the (k + l)th row from the kth row for k = 1, 2,...,« — 2; then

subtract the (new) Arth row from the (new) (k + l)th row for k = 1, 2,...,«- 2.

(b) Subtract from the last row 2/c times the (2k)th row for k = 1, 2,...,[(« - 2)/2].

(c) Subtract the first row from the second.

(d) Subtract from the third row 1/3 times the second row and then the (new) third

row from the fourth; subtract from the fifth row 3/5 times the (new) fourth row and

the (new) fifth row from the sixth. Continuing in this way, we subtract from the

(2k + l)th row (2k - l)/(2k + 1) times the (new) (2k)th row and the (new)

(2k + l)th row from the (2k + 2)th row. This is done for k = 1, 2,...,[(« - 2)/2].

Finally, in the case of odd « we subtract from the (n — 2)th row (n — 4)/(« — 2)

times the (new) (n - 3)th row, and then subtract from the (« - l)th row « times the

(new) (« — 2)th row. We thus end up with a determinant whose elements below the

main diagonal are zero. The elements along the main diagonal turn out to be

13    15    1 1 1 « + 1

2' 2' 2' 6' 2' 10'"" 2 ' 2(/i - 3) '
if « is even,

and

1    3    1    5    1     1_

2' 2' 2' 6' 2' 10"" 2(«-5)' 2' 2(« - 2)
if« is odd.
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Consequently,

(«2-l)/2"_1    if «is even,
A* =

' n2/2"-x if «is odd.

In order to evaluate B* we perform the following succession of operations:

(i) Subtract the (k + l)th row from the kth row for k = 1, 2,... ,n - 1.

(ii) Subtract the A:th row from the (k + l)th row for k = 1,2,... ,n - 2.

(iii) Subtract from the last row 2k times the (2k)th row for k — 1, 2,...,

[(« - l)/2].

We end up with a determinant whose elements below the main diagonal are all zero.

The elements along the (main) diagonal itself turn out to be

,111 In..
1,2»2»2'*"'2'2    lfwiseven'

and

As such,

-T, ir,-,...,-,0   if «is odd.

ß* = /w(l/2)"        if «is even,

10 if « is odd.

In order to evaluate C* we perform the following operations successively:

(A) Subtract the (k + l)th row from the kth row for k = 1, 2,...,«; then subtract

the (new) kth row from the (k + l)th row for k = 1, 2,... ,n — 1.

(B) Subtract from the last row 2k times the (2k + l)th row for k = 1, 2,...,

[(« - l)/2].
(C) Subtract the first row from the second.

(D) Subtract from the third row 1/3 times the second row and then the (new)

third row from the fourth; subtract from the fifth row 3/5 times the (new) fourth

row and the (new) fifth row from the sixth. Continuing in this way, we subtract from

the (2k + l)th row (2k - l)/(2k + 1) times the (new) (2k)th row and the (new)

(2k + l)th row from the (2k + 2)th row. This is done for k = 1, 2,...,[(« - 2)/2].

Then in the case of even « we subtract from the (« + l)th row «(« — l)/(« + 1)

times the (new) « th row, whereas, in the case of odd « we subtract from the « th row

(n — 2)/n times the (new) (« - l)th row. In the resulting determinant all the

elements below the main diagonal are zero. The elements along the main diagonal

are

1315 « + 1      « - 1     .„    .
t,x,t,t.---, ~,-r, —^—    u n is even,
2' 2' 2' 6'        2(w - 1)       2

and

13   15 «

2' 2' 2' 6""'2(«-2)' 2
if « is odd.
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Hence,

c*= i(«2-l)(l/2)"+1    if «is even,

\«2(l/2)"+1 if «is odd.

Before studying the determinant of -q(a) any further, we wish to point out that all

its leading principal minors of order «s « are positive. In fact,

, 2(k+l)n-(k+l)2
« — 1,...,« — k \

D

« — 1,...,« — k j

2* + 1

.22(k+ 1)« -(Ar2 + 2k)
)k + l

k = 0(mod2),

,     k = 1 (mod 2),

0 < k < « — 1, where for k = 0, the left side is to be interpreted as « - 1/2. As

such,/(z; a) g 98° if det(r}(a)) > 0, and/(z; a) <£ 98° if det(rj(a)) < 0.

Now let « be odd. Using the values of A*, B*, and C* calculated above, we see

that

det(r,(a)) = «2(l/2)""1(l/4 - \a + 1/4|2) > 0

if \a + 1/4| < 1/2, and so certainly if \a\ < 1/4. On the other hand, if a > 1/4

then a + 1/4 > 1/2, so det( 17(a)) < 0. Thus/(z; a) belongs to 98° if \a\ < 1/4 and

does not belong to 98° if a > 1/4. This proves Theorem 5 for odd values of n.

Finally, let « be even. In this case det(7j(a)) > 0 if

/2(a):= 4(«2 - 1) + 8«Re(4a + 1) -(«2 - l)|4a + 1|2 > 0,

and so certainly if

(3«2 + 8« - 3) - 8|«2 - 4« - 1| M - 16(«2 - l)|a|2 > 0,

i.e., if

Í5/12 in case « = 2,
11/20 in case « = 4,

(« + 3)/4(« - 1)     incase« = 0 (mod2), « > 6.

On the other hand, for every t > y„ there corresponds a complex number a„ with

|a,| = t, such that f2(a,) < 0 and, in turn, det(r)(a,)) < 0, i.e., /(z; a,) £ 98°. This

settles the case of even « and the proof of Theorem 5 is complete.

5. Polynomials in ¡M and the class 98%. We know how polynomials in 98° can give

rise to interesting inequalities. It is therefore pertinent to find out ways of manufac-

turing such polynomials. The next result shows how polynomials in 9$ can be used

for this purpose. We recall that / is said to belong to 3t if it is analytic, with

Re/(z) > 1/2, in \z\ < 1 and/(0) = 1.
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Theorem 6. Let Q g &n. If Q Œ 91, then for all positive integers m and all a g C,

such that \a\ < l,we have

(5.1) Q + azmQ g 98t
n + m'

The proof depends on the following lemma, which is, as we shall see, a result of

independent interest with a variety of applications.

Lemma 4. Let Q g 9>n, Q(0) = 1, N > «. Then for yeRanáPe 3*N,

(5.2)    P(z)*{Q(z) + e^NQ(l/z))

N

£ (2ReQ(eH2k,r+->)i/N) - l)P(ze(2k,, + y)i/N).
1    N

Nk-i

Proof. Consider the integral

, ,  ,      J_ f      g(f) + e<THg(l/f)-l)

Since g g ^,, g(0) = 1, and N > «, the polynomial 0(f) + e'^ÍOÍV?) ~ 1) is

of degree < N. Consequently, as p -* oo the integral / (z) tends to 0 uniformly for

all z belonging to a compact subset of the complex plane. On the other hand, using

the residue theorem, we have, for all p > 1 and \z\ < p,

Q(z) + e^zN(Q(l/z) - 1)       1    "   2Reg(g-<2*" + T>'-/")-l   ,y

p / - e-h N k = \ 1 - ze<2*'7 + ->'>'/'v

whence

Ô(z) + e'^z^((2(l/z) -1)

1     N 1  - z V*
= — y Í2ReO(e"(2/í,7 + 1')//'v) - l)-—-

A=l J. ¿e

From this identity it follows that if P(z) := ¿Z"=0 a¡zJ, then

p(z)*(e(z) + e^zw(e(i/z)-i))

1    N ill- zNeiy
4L {2ReQ(e-<2k' + W)-l}¡P(z)*1

/V^1 ^ J 1   -   7P(2k-n + y)i/N
k = \ V \ i     ze>

4Ê {2Re(K«^*'+T),/")-!}(*(*)• IE *(
^   A = l I 7=1

= ^ E {2RQQ(e-^2kw+^N)-l}{P(ze(2k"+^i/N)-aNei^N}.

k-l

Now, in order to obtain the desired formula (5.2), we need only observe that

P(z)*(enzN) = aNenzN,
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and

(5.3) -j- £ {2ReQ(e-(2k"+">),/N) - 1} = 2Reß(0) -1 = 1.
1    N

**-i

Proof of Theorem 6. We apply (5.2) with N = n + m. Since, by hypothesis,

gef, the coefficients 2ReQ(e-(2kn + y)i/N) - 1 in the right member of (5.2) are

nonnegative for each k (1 < k < N). Consequently, for all P g 9Pn and \z\ < 1,

\P(z)*(Q(z) + elyzNQ(l/z))\

1    N
¡j £ {2ReQ(e<2k"+y),/N) - l}\P(ze(2k" + y)'/N)\«*.

by (5.3). This is equivalent to the desired result for |a| = 1 since zNQ(l/z) is

nothing but zmQ(z). That |a| can be allowed to be less than 1 is a simple

consequence of the maximum modulus principle.

6. Some related results. Lemma 4 yields some generalizations of (1.1) which we

present next.

Theorem 7. Let Q g 0>n, Q(0) = 0 such that Q g á?. Then for P g 0>n, we have

(6.1) |IÔ*P|| < max|ReP(z)|.

Proof. We may suppose that maX|T|=1|ReP(z)| = 1. Since Q(0) = 0, the poly-

nomial Q belongs to 9fin_x. Taking Q instead of Q and N = « in (5.2), we obtain that

for all P g &>n and y g R,

(6.2)

P.(z)*(Q(z)+eiyQ(z)) = - £ (2Reß(e-(2^+1')'/")-l)P(ze(2^^)'/'').
n k = \

Since Q g ^, the coefficients 2 Regie^2*""1"10'7") - 1 in the right member are

nonnegative for each k (1 < k < «). Besides, their arithmetic mean is equal to 1

since Q clearly satisfies (5.3) with N = n. Thus, the right member of (6.2) is a convex

linear combination of the numbers P(zeakv+y)'/"), 1 < k < «. Since, by hypothesis,

-1 < Re P(z) < 1 for \z\ < 1, we conclude that

-1 < Re{P(z)*ê(^) + a(P(z)*Q(z))} < 1

for \z\ < 1 and |a| < 1. This means that the disk with center at the point P(z)* Q(z)

and radius |P(z)*g(z)|is contained in the strip -1 < Re w < 1. Since the maximal

radius of such a disk is 1, the desired result follows.

Theorem 8. If P g 0>n then

(6.3) ||P'|| < «   max   \P(ek,"/n)\,
l<A:<2n

i.e. in (1.1), ||P|| may be replaced by the maximum of |P(z)| in the (2n)th roots of

unity. On the other hand, the maximum in the (n + m)th roots of unity, with m < n,

does not suffice.
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What we need for the proof of Theorem 8 is the following special case of Lemma

4.

Lemma 4'. If P g 0>n, then for all real y and R ^ 1,

2«

2«
(6.4)     e'yP(Rei9) = eiyP(e'e) + J- £ (-l)kAk(R, Y)P(e'(S+(*'r+1')/',)).

A:=l

vv/We

n-l
ktr + y

^(R,y):= R"- 1 + 2 £ (R"^ - l)cos/f —

77ie coefficients Ak(R,y) are all nonnegative and

1    2"
(6.5) — £^(R,y) = R"-l.

zn k-i

Since it needs to be explained why Lemma 4' is a special case of Lemma 4, we

prefer to give a direct

Proof of Lemma 4'. Let P(e,e):= ¿Znv=0ave,v6. Substituting for Ak(R,y),

P(e'(9+(^+Y)/")), then using the fact that

and writing

we obtain

In

_L   y   (_-l \ k    vk-ni/n _  / 1        if V = « ,

2«    "i "  \°       «fO<F<B,

J.eV(*-+T/») + \e-iKk«+y/n)    forces /i/c7r + Y
2 2 V      «

¡T £ (-l)^,(R,y)P(e'(9+<A:w+y)/"))

= i

= (ä" - i) J- £  £ (-1) V,,(<>+<*,7+y)/"

2n*=i

fc-1   f = 0

2rt     «—1      n
/C7T   -T-   Y   ^   ̂ ,>(tf+(ÄW + y)//i)

-,      An     n— L       n I V       A.

+ ̂ £  £ £(-i)\(R"--i)cos4^
" A = l   y-1   c = 0 V

e'

= (R" - l)ane'"e + ,y

-.     n — 1      rt       2«

+ — y   y   y a (^"-7 _ i)e'"»+'(>'+y)Y/ne(''+>'+y)*«/'i

7 = 1   c = 0  /t-l

-,      « -1      n       2n

+ _L    y      y      T  a  iRn-j _ -¡\ei>>» + i<i>-j)y/ne(n + v-j)kiTi/n

2"   7 = l   „ = 0  * = 1

Since n + l^n + v+j^3n — 1, whereas 1 < « + v — j^ 2« — 1, we have

— £ e<»+»+7>*<«V« = I1     dn + v +j = 2n,

2n k = i \o    otherwise,
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and

i    2n

_L y e(n+v-j)k«t/n = 0

ln k=i

whence

y- Í(-l)kAk(R,y)P(e¡^k«+yV^)
¿n k = i

n-l

= (R" - l)a„e,n9^,y +  £ (R" - l)aven,e + 'y

c = i

= eiyP(Reie) -e,yP(e,e).

This proves (6.4).

The property Ak(R, y) > 0 follows from a result of Rogosinski and Szegö [15, p.

75], according to which

(6.6) X0 + 2 £ XjCos jO > 0       (íeR)

7=1

if \„ > 0, A„_! - 2A„ > 0, andXy_, - 2X, + A;+1 > Ofor 1 </< n -* 1.

Finally, in order to verify the identity (6.5), we may simply set P(e'e) = e'"e in

(6.4).
Proof of Theorem 8. Let 8 be an arbitrary real number. Then choosing y = -nO

in Lemma 4', we obtain

\P(Re,e)- P(e'e)\^±-[í Ak(R,-nB)\   max   |J»(e*"/")|,
2n U-i / l«*«2„

which, in conjunction with (6.5), gives us

(6.7) \P(Re'e) - P(e,e)\ < (R" - 1)   max   \P(ek7,i/n)\.
Inksi2n

Dividing both sides of (6.7) by R - 1 and letting R tend to 1, we obtain the first part

of Theorem 8. In order to prove the second part let e > 0 and consider the

polynomial Pe(z) := z" - ez"~m + e, 1 < m < n. It is easily checked that

max    |pt(e"-'/t»+«0)| < (1 + 4e2)1/2,
1 < k < n + m

whereas ||P£'|| = « + («- m)e. Hence

||P;|| > «     max    |/>t(c2*w/(»+«)\|
1 <s £ < 7! + m

for all sufficiently small e ( > 0).

7. Remarks and applications.

7.1. Some consequences of Theorem 2. (i) Theorem 2 constitutes a generalization of

a useful inequality due to Visser [22], namely: ifP(z) := ¿Z"=0 avzv g 0>n, then

(7-1) Kl + Kl < \\P\\-
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Inequality (7.1) is in fact a limiting case of (1.9): dividing both sides of (1.9) by R"

and letting R tend to oo, we obtain (7.1).

(ii) Applying Theorem 2 to the polynomial z"P(l/z), we obtain

Theorem 2'. Let n>2. IfP(z) := ¿Zn„_ü avz" g 0>n, then

(7.2) MP(R)+(l-R2)\an\<\\P\\        (R < 1).

The coefficient of\a„\ is the best possible for each R.

(iii) Theorem 2 also leads us to

Corollary 2. Let « > 2. IfP(z) := E"=0 avzv g 0>n, ;«e«

(7.3) MP(R)>(l-R2)\a0\ + R"\\P\\    if R < 1,

w«erazs

(7.4) MP(R) > (Rn-R"-2)|a„| +||P||    ifR>l.

Inequality (1.5), when applied to P(z/R), gives us (7.3), which in turn, when

applied to the polynomial z"P(l/z), yields (7.4).

7.2. Some consequences of Theorem 6. (i) Bernstein's inequality (1.1) is known (see

[12, p. 8]) to admit the following refinement: for P g 9>n,

(7.5) |P'(z)| + |P'(z)|<«||P||        (|z|<l),

where P(z) := znP(l/z) is the "inverse" of P.

A polynomial P g 0>n is said to be "self-inverse" if there exists u g C, |m| = 1 such

that P = uP; let Sn denote the class of such polynomials.

The following result, which is a significant generalization of (7.5), is a consequence

of Theorem 6.

Corollary 3. Let Q g 0>n, Q(0) = 0, such that Q^9i. Then for P g 0>n and

\z\ < 1, we have

(7.6) |(Ô*P)(z)| + |(e*P)(z)|<||P||.

In particular for P G Sn

(7.7) IIÔ*P||^I|P||.

The choice

which is admissible according to the above-mentioned result of Rogosinski and

Szegö (see (6.6)), gives

(7.8) |P(Rz)-P(z)| + |P(Rz)-P(z)|<(R"-l)||P||        (|z|<l,R>l).

Dividing both sides of (7.8) by R - 1 and letting R tend to 1, we obtain (7.5).

Inequality (7.8) also implies that

(7.9) |P(Rz)| + |P(Rz)|<(R"+l)||P||        (|z|<l,H>l).
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Proof of Corollary 3. The assumptions and Theorem 6, with m = 1 and « — 1

instead of «, show that Q + aQ g 9S° (\a\ < 1). (Here it is to be noted that

Q g 0>„_x.) Thus for P G 0>n,

\\(P*Q)(z) + a(P*Q)(z)\\^\\P\\       (M<1),

sc that

\(P*Q)(z)\ + \(P*Q)(z)\^\\P\\       (\z\ = l).

Now, (7.6) follows from the observation that for \z\ = 1, \(P * Q)(z)\ = \(Q * P)(z)\.

(ii) Here is another consequence of Theorem 6.

Corollary 4. For all P g 0>n,

(7.10) \\zP'(z)-(P(z) - P(0))|| <(n- 1)\\P\\ - \P(0)\.

It can be shown that the coefficient of |P(0)| on the right side of (7.10) cannot be

replaced by a smaller number.

As an application of (7.10) we wish to mention:

IfP <^@nand

(7.11) gt(z):= P(z) - P(0) + en\\P\\z        (|e| = 1)

then

(7.12) |zg;(z)/g(z)-l|<l   for\z\<l,

which implies, in particular, that the function

(7.13) he(z):= ge(z)/£(0) = z.+  •■•

is normalized starlike univalent in\z\ < 1.

Proof of Corollary 4. Let

A = 0

considering it to be an element of 3*n_x, let Q be its inverse. Noting that Q g 9Í, we

may apply Theorem 6 with m = « - 1 to conclude that Q + âz"~lQ G 98°,,_2 for

all a such that |a| < 1. By truncation, Q + äz"/(« - 1) g â?°. This, in view of (2.2),

implies that

a v^   k — 1   k       -,
-7+  £ -Tz   G^7,.
« - 1      .   , « - 1

A: = 2

so (7.10) holds.

As we have claimed, the coefficient of |a0| on the right side of (7.10) cannot be

replaced by any smaller number. In fact, (7.10) can also be proved by showing that

71-1 , -,

z"
Lri — k  —  i    k

-T~z   +
« — 1k=o     "     x n     l

belongs to 98° if |a| < 1 and does not belong to 98° if |a| > 1. The matrix to be

considered is

\A        i n — 2,... ,0, a\
M\n — 1, '

\ n - 2,...,0,a)
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(iii) In order to place the next corollary of Theorem 6 in perspective, we wish to

recall that if/(z):= ¿Zf„0akzk is analytic in \z\ < 1, where it satisfies |/(z)| < 1,

then [9, Exercise 9, p. 172]

(7.14) K|2+K.|<1        (1 <*<<»),

and, consequently,

(7.15) |a0| + iK| < 1        (ia<oo).

The example

/(*)=
zk + an / 3 - 2c

anzk+l \U      l+2c

shows that in (7.15) the coefficient of \ak\ cannot, in general, be replaced by any

number c greater than 1/2. In view of a well-known property of the Cesàro means

°Â&-=   £ "+nl+1Vavz>       (« = 0,1,2,...),
e = 0

namely.

\an\\ < sup

l'l<i

\Zaakk
k = 0

it cannot be done even for a polynomial if the degree is allowed to be arbitrary.

Nevertheless, we have:

Corollary 5. IfP(z) := E?_0 avz" g 0>n and \\P\\ < 1, then

(7.16) |a0| + \(\ak\ + \a,\) < 1   for 1 < k < /, with I > n + 1 - k;

by symmetry,

(7.16') \an\ + ^(\aj\ + \ak\) < 1   forO ^j < n,withj < n + 1 - k.

Proof. Let Q(z) := 1 + (e/2)z*\ |e| < 1, so that, by Theorem 6,

1 +(e/2)zk +(ea/2)zn + m~k ^98°   for|a| < land m g N;

hence, for \z\ < 1,

K +(e/2)akzk +(ea/2)an + m_kz" + '"-k\ < 1.

We may assume a0 > 0, and the choice z = 1, e = ak/\ak\, a = edn + m_k/\an + m_k\

establishes the assertion.

Remark. In (7.16) the restriction on /, namely I ^ n + 1 — k, cannot, in general,

be relaxed. The quantity |a0| + \(\ak\ + la,!) may indeed be greater than 1 if / is

allowed to be « - k.

(I) The case k < I. We prove the existence of a polynomial P(z) := ¿Zl=0 avzv such

that |a0| + \(\ax\ + |a2|) > ||P||. It is clearly enough to show that

(7.17) 1 + \z + \eiyz2 € 98°
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for some y g R. Since the determinant

D

l-   le'T 0 ]
2' 2     '

l-   l-e-'y 0

\ 2' 2       '

= -- + -cosy

is negative if cos y < 1/2, it follows from Lemmas 2 and 3 that (7.17) holds for such

values of y.

(II) The case k = I. Let a0 be the smaller of the two positive roots of the equation

3a3 - 12a + 8 = 0; then for each a G (-a0, a0), the polynomial

P(z):= -a +(1 - a2)zk + a(\ - a2)z2k

serves as a counterexample.

7.3. A few special cases of (6.1). (i) With the choice

<?(*):= Z~\*v    {R>1)
f = 0

in (6.1), we obtain: for all P G @n,

(7.18) ||P(Rz)-P(z)||< (R"-l)max|ReP(z)|        (R > 1).
1*1-1

This latter inequality implies: if P g 9Pn then

(7.18') ||P'||<«max|ReP(z)|,
l*l-i

which is an interesting generalization of Bernstein's inequality (1.1). For other proofs

of (7.18') see [20,16, 8].

(ii) Another special case of (6.1), which is obtained by taking Q(z):= z" + \z',

says that ifP(z):= ¿Z"=0apzv then, for 0 <j < n,

(7.19) KI+ilflyK max|ReP(z)|.
I -l=i

This inequality is to be compared with (7.15). An example of the form ia + z", with

an appropriate a g R, shows that in (7.19) neither y can be allowed to be 0 nor can

|a„| be replaced by |a0|.

7.4. Remarks on Theorem 8. (i) According to a well-known result of A. Markoff, if

P G 0>n then

(7.20) max   |P'(x)|<«2   max   |P(x)|.
- 1 < X < 1 - 1 < X < 1

Over forty years ago it was shown by Duffin and Schaeffer [1] that in (7.20),

max_ls.xsgl|P(x)| may be replaced by the maximum of |P(x)| in the extrema

(cos(k-Tr/n)}"k=0 of the «th Chebyshev polynomial of the first kind. Theorem 8

represents the corresponding refinement of Bernstein's inequality (1.1).

(ii) It may be mentioned that for an arbitrary P g 9Pn, ||P|| may be considerably

larger than ma\x^k<2n\P(ek,"/")\, as is shown by the simple example 1 + iz".

(iii) It is natural to ask whether in (1.2) as well ||P|| can be replaced by the

quantity ma\x<k<2n\P(ekv'/n)\. The answer is essentially "no". Indeed, the example
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1 + i(R'¿~ Rq")z"/2 shows that for given R0 > 1 there exists a polynomial P0 such

that

(7.21) max|P0(z)| > R"   max   \P0(ek7ri/")\    for 1 < R < R0.
\z\~R 1 < A <277

However, we do have:

Theorem 9. For each given polynomial P G 9^n there exists a number R * depending

on P such that

(7.22) max|P(z)|<R"   max   \P(ek"i/n)\   forR^R*.
\Z\ = R lsS7f<27!

Proof. Let P(z):= ¿Zk=0akzk, where m < « and am =f= 0. In view of Parseval's

identity,

m

\\P'\\2= £*2KI2-
7t=0

In particular,

(7-23) IIP'H > m\am\,

where equality holds if and o«/7 //

(7.24) P(z) = amzm.

Thus, if (7.24) fails to hold, then

(7.25) HP'II = (1 + e)m\am\

for some e > 0. Now let us choose R * > 0 such that

t?(R,):= 1 + (1/K,|)(K,_1|R*1 + K_2|R*2 +  ■ ■ • + KIR;"1) = 1 + e.

Then for R > R „,, we have

max|P(z)| < \am\R"'v(R*) = (1 + e)\a„,\R"'
\z\-R

= Rm\\P'\\/m   by (7.25)

< R"   max   \P(ek",/n)\   by Theorem 8.
1 «: k < 2 7!

On the other hand, if P(z) = amzm, then (7.22) holds for all R > 1.

7.5. S elf-reciprocal polynomials and an application of Theorem 5. From (7.5) it

follows, in particular, that

(7.26) HP'II <(«/2)||P||    ifPeS,,

We call a polynomial fe^ "self-reciprocal" if it satisfies the condition z"P(l/z)

= P(z); let Sfn be the class of such functions. For the pertinence of the class ifn see

Frappier and Rahman [3]. The first attempt at determining

(7.27) U„:=   sup (||P'||/||P||}
P6C,

was made by Govil, Jain, and Labelle [6], who had an example to show that

(7.28) U„ > n/j2,
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where equality holds for « = 2. In view of (7.26) and the fact that all the zeros of the

extremal polynomial in (1.1) lie at the origin, one might have suspected that U„ may

not be much larger. However, the problem turns out to be quite intriguing, and the

precise value of U„ for « > 3 remains unknown. With the help of Theorem 5 and

Corollary 1 we are able to prove that

(7.29) U„ < « - 8„   where <5„ -» 2/5 as « -» oo.

On the other hand, we show that

(7.30) U„ > n - 1.

For (7.30) let us consider the polynomial

P + (z):=(l-iz)2 + z-2(z-/)2,

which clearly belongs to^,. We note that ||P+|| = 4. In fact

||P + ||< maxijl - iz\2 + \z - i\2)
1*1-1

= max(|l - ¡z|2 + |1 + /z|2) = 4 = |P + (l)|.
1*1-1

Since ||P'+|| > \P'+(-i)\ = 4(« - 1), estimate (7.30) holds.

Proof of (7.29). Let a:= 8«/(9« + 2). Multiply (4.5) by a and (1.4) by 1 - a;

adding them up and using the triangle inequality, we obtain

(7.31) 2f"w - 9¿h°-*'
4n    \„„„ 8«

' - 9n~T2 P" - 9n-T2^-

Under our hypothesis a0 = a„. Let us assume that |a0| = |a„| = X||P||. Then from

(7.31) we obtain

<"» w<{£ii. **£#=»
whereas (1.4) gives us

(7.33) HP'II < (« - 2«X/(« + 2))||P||.

The last two inequalities imply that

i/,,<«-4«/(ll«-4(« + 2)y„ + 6),

so (7.29) holds.

7.6. An application of Theorem 5 to polynomials with a prescribed zero. For an

arbitrary p g (0, oo), let ¡P denote the class of all polynomials P g &n which

vanish at the point p, and let

A„tp:= {sup||P'||/||P||:PG^ip}.

The problem of determining A„ p was proposed by R. P. Boas, Jr. in 1957 but still

remains open. It is known (see Giroux and Rahman [5] and Newman [10]) that

n — Cx/n < AnX < « — C2/n, where Cx and C2 are positive constants independent

of «; in fact, C2 may be taken to be (2 - JÏ~)/4. As remarked by Newman [10, pp.

265-266], it is quite difficult to pin down the value of An x. It therefore seems to be

of interest to point out that (4.5) leads us to a considerably better upper bound for
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A„ j, namely

(7.34) A.a <..!(..(W5çi_p)_..ïiI+0(4

In fact, if P(z):= ¿Z"v^apz" belongs to @nX then so does Q(z):= z"P(l/z). By a

result of Lachance, Saff, and Varga [7],

(7.35) K| = |ô(0)| < (cos^yflieil = (cos^^fVll.

This, in conjunction with (4.5), readily gives us (7.34).

Using a nontrivial upper bound for

obtainable from [13, Theorem 3], we may similarly estimate A„   for other values of

P-
7.7. A generalization of Corollary 1. Corollary 1 is a special case of the following

more general result.

Theorem 10. // P g &>n andO < to < «/2, then

(7.36) ||zP'(z) - <oP(z)|| + e»|P(0)| < (« - to)\\P\\,

where

ex(co):= 1 - 2co,        e„(«):= 2(« - 2u)/(n - 2co + 2)    (« > 2).

For each value of the parameter 10 the constant £„(w) is best possible.

Proof. Since the left side of (7.36) is equal to

sup    ||zP'(z) - coP(z) + aP(0)||,
|«|<e„(<o)

we study the definiteness of the matrix

/ cx,...,c„<

t](a, co):= M   co,

fi.M

where ck:= « — k — co for 0 < k < « and c„:= a — w. For 1 < & < « the value of

the /cth order leading principal minor is 2k~2(2n - 2w — »fc + 1), a positive quan-

tity. Besides, as in the case of (3.1), the determinant of -q(a, co) can be developed in

the form

det(T/(a, co)) = det(t)(co, co)) + 2(-l)"Z)„(co)Re(a - co) - C„(«)|a - w|2,

where

C„(«) = 2"-3(« + 2 - 2co),    D„(u) = (-l)"2"-3{2w2 -(« + 2)co + 2},

and

det(ij(w,w)) = 2"^3(2w3 -(« + 2)w2 - 4w + 4«}.

We are thus led to the equation (4« - 8w) - 4x - (« + 2 - 2w)x2 = 0, whose

only positive root is the number sn(co) defined in the statement of Theorem 10.
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