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COORDINATIZATION IN SUPERSTABLE THEORIES. I.

STATIONARY TYPES

BY

STEVEN BUECHLER1

Abstract. Suppose T is superstable and P is a complete type over some finite set

with U(p) = a + 1 for some a. We show how to associate with p an incidence

geometry which measures the complexity of the family of extensions of p of rank a.

When p is stationary we give a characterization of the possible incidence geometries.

As an application we prove

Theorem. Suppose M is superstable and has only one l-type p e S(0). Further

suppose p is stationary with U(p) = a + 1 for some a. Then one of the following holds:

(i) There is an equivalence relation E c M2 with infinitely many infinite classes

definable over 0.

(ii) M is the algebraic closure of a set of Morley rank 1. In particular, M is Unstable

of finite rank.

1. Preliminaries. We assume a basic knowledge of stability theory as found in [M,

P, or Sh]. For the most part our notation follows [M]. In particular, we use A I CB to

mean t(A/B U C) does not fork over C. If p is stationary and there is a type

q G S(B) such that p is parallel to q, we write q = p\B. For t(a/A) = t(b/A) we
s

write a = b(A); a = b(A) denotes stp(a/^4) = stp(b/A). We say p e S(A) has finite

multiplicity if {stp(a/A): a realizes/?} contains finitely many inequivalent types.

We assume every set is a subset of a large saturated model S called the monster

model. Every model is considered to be an elementary submodel of S. See [Sh, p. 7]

for a more complete discussion. In this paper we work in Seq, where there are names

for the classes of definable equivalence relations. A detailed discussion is found in

[Sh, III, §6].

The remaining terminology is as follows. For p a type (not necessarily complete)

and A a set, we let p(A) = {b e A:b realizes/?}. We say H c M is A-definable if

there is a formula <p over A such that H = tp(M). H is O-definable if it is definable

over 0. If there is a set A a M and p e SX(A) such that H = p(M), then H is said

to be transitive. Sets A and B are conjugate over C in M if A, B,C c M and there is

an automorphism a of M such that a pointwise fixes C and a(A) = B. With the

same notation, if p is a type over A, q a type over B, and a(p) = q, we say that p

and q are conjugate over C.
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We will occasionally attribute to definable sets properties normally reserved for

formulas; similarly, if H = p(M) for some complete/?. For example, the rank of H

is the rank of p.

We will want to think of definable subsets of a model as being actual elements of

the model. With imaginary elements this can be done. Say H = <p(M) for <p(x, a) a

formula over M. Let E(y, y') be the equivalence relation Vx(<p(x, y) «-» <p(x, y')).

In Meq there are names for the equivalence classes of E; j</is the set of such classes.

We define an incidence relation e c M X sé by b e A iff there is a c such that

A = c/E and <p(b, c) holds. Of course, e is definable in Meq. Then if A = d/E we

could think of the formula xe A in the same way we think of x g H. We call A a

name for H.

Lemma 1.1. Suppose A names q>(M, 5), and t(a/ 0) is stationary. Then t(A/0) is

stationary.

Proof. Notice that A is the only element satisfying t(A/d). This implies t(Aa/0)

is stationary. Using [Sh, III, 4.15] we show that every nonforking extension of

t(A/0) gives rise to a nonforking extension of t(Aa/0). The lemma follows

directly.

Now we discuss other preliminaries in greater depth.

1.1. Incidence geometries. Following [D] we define an incidence geometry to be a

triple (P, 98, e), where P, 98 are sets and e c P X 98. The elements P and 98 are

called points and blocks, respectively, and e is called the incidence relation. For

example, we may have P as the points and 98 as the hyperplanes in a projective

geometry. Often we will be discussing geometries of the form (P, Q; I), where P, Q

are sets of realizations of complete types and I = Ix [ P X Q for some formula Ix. In

this case we write (P, Q; /,), letting it be understood that the incidence relation is

actually Ix I P X Q.

Incidence geometries first arose in stability theory in [La] where Lachlan reduced

a conjecture to the nonexistence of S 0-categorical pseudoplanes. For more on the

role of pseudoplanes in stability theory see [Z, CHL].

For the remainder of the section we assume T is a fixed countable complete

superstable theory.

1.2. Rank. In [L] Lascar introduced the rank U on complete types in a superstable

theory. See also [LP; M §A]. The other most commonly used rank in superstable

theories is what Shelah calls R(-, L, oo). We denote this rank simply by R(-). We

work mostly with i/-rank because of the nice inequalities it obeys. However, £/-rank

cannot be applied to formulas. When we need to speak of the rank of a formula, we

use R. We use the following identities on [/-rank. See Theorems 5.6 and 5.8 of [L].

Lemma 1.2. (i) Suppose there is an n g co such that U(b/A) - U(b/A U c) + «.

Then U(c/A) = U(c/A U b) + n.

(ii) // U(b/A) < co, then U(bc/A) = U(c/A U b) + U(b/A).

1.3. Canonical representatives. Given a p g 5(E) there are many <p G p with

R( p) = R(<p). We describe how to pick one which is particularly well behaved. The
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next lemma follows easily from [Sh, p. 89, Remark]. Av(-/- ) denotes the average

type of a set of indiscernibles. See [Sh, p. 88, or P, 7.34].

Lemma 1.3. Let p eS(E) and let I be a set of indiscernibles such that Av(//©) = p.

Then there is an I0 c / such that p does not fork over I0.

Since T is superstable, we may pick I0 finite and of minimal cardinality such that

p does not fork over I0. Since / is indiscernible, any subset of the same size shares

this property. Let ä enumerate I0. Then there is a formula <p(x, a) G p such that

R(p) = R(cp). Since any b realizing/? satisfies "¿?a is an indiscernible sequence", we

may assume <p(x, y) is invariant under permutation of the variables. That is, if

ä = a0ä', then t(a0/ba') contains tp(x, bä').

We call such a <p(x, a) a canonical representative of p. If p0 is such that/? = /?0|6,

then we also say that tp is a canonical representative of/?0. We call |ä| the complexity

of <p (or /?).

1.4. Normalization. The technique of normalizing a formula was developed by

Lachlan in [La]. Most normalization theorems involve a rank S and have the

following form. Given tp(x, a) of rank a there is a <p*(x, a) such that

S(-,(<p(x, a) ~ (¡d*(x, a))) < a;

and for b = a,

(*)        if    S(-,(<p(x, a) *-> <p(x, /?))) < a,    then   (p*(x, a) «-» (p*(x, b).

Harnik and Harrington have formulated a general normalization theorem with an

arbitrary equivalence relation replacing the one defined by (*).See [HH, Chapter 9].

We find, however, that the formulation in [HH] is difficult to apply in the context of

this paper. The difficulty lies mostly in that i/-rank is not continuous (i.e., is defined

only for complete types), so we cannot define an equivalence relation using (*). We

offer instead a different normalization theorem. The following is extracted from [B],

where 1.4 is proved.

Basic assumptions. Fix a formula <p(x, a). Assume that associated with <p(x, a) we

have a set Pa c S((£) satisfying the following:

(NI) <p(x, a) g q for all q g Pa.

(N2) Pa is closed under a-automorphisms.

(N3) |PJ < A for some X < |Af |.

For each b = a let Ph be the set of images of Pa under some automorphism taking a

to b. We further require

(N4) Pa = Ph iff, for all q g Pa, <p(x, b) & q and, for all q g Pb, <p(x, a) g q.

Let SP be the set of formulas equivalent to a positive Boolean combination of

conjugates of <p(x, a). We can extend the notion of a distinguished extension to

elements of H? in a natural way by the following recursion:

(A)lfb = a,Q(<p(x,b)) = Ph.

(B) If 6, t g * and Q(d) and Q(r) have been defined, Q(6 A t) = Q(8) n ô(t),

and 0(0 V t) = 0(0) U ß(T).

Letá»= {ô(0):0g *}.
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Definition. We say 6(x, c) g ty is normal with respect to 9s if, for all d = c such

that Q(d(x, c)) = Q(9(x, d)), 0(M, c) = 0(M, d).

Theorem   1.4  (Normalization  Theorem).   Suppose <p(x, a)  and Pa satisfy

(N1)-(N4). Then there is a formula <p*(x, a) such that

(i)tp*(x, a) G V,

(ii) Pa = Q(f*(x, a)),

(iii) <p*(x, a) is normal with respect to 9?.

We call <p*(x, a) a normalization of <p(x, a) with respect to 9s.

An important consequence of Theorem 1.4 is the following. Define an equivalence

relation on 6 by

E(x, y) «-» Vz(cp*(z, x) «-» <p*(z, y)).

Then if b, c realize t(a), E(b, c) <-> Ph = Pc.

1.5. Definable families. Central to the notion of a coordination is the notion of a

family of conjugate sets. For (jd(x, a) any formula, we define the family of conjugates

of <p to be

g= {<p(&,b):b = a}.

We call t(5) the index type of g. Notice that g is the orbit of <p(E, a) under the

automorphisms of E.

Working in 6eq we will have names for the elements of %. We denote <p(G, b) by

/4¿, â-h, p-h, etc., when <p is clear from context. Notice that there may be some

redundancy in the indexing—Aa may equal A-h. When this is the case we can define

an equivalence relation by a = b iff As = A-h. It is then easy to find another formula

<p'(x, y) such that (p(ß, ä) = <p'(Ê, ä/ = ). Then we can index g by t(5/~) instead

of t(a). We will always assume such a reduction has been done. This is important in

results involving the rank of the index type.

Let g be the family of conjugates of <p, and let tp* be the normalization of <p with

respect to some fixed 9P. Then S* denotes the family of conjugates of <p* and is

called the normalization of ¡y.

1.6. Coordinatization. In [CHL] one of the most important technical devices is

what is called a coordinatization. Its definition is as follows. Let M be S 0-categorical

and N0-stable. If P, A are two infinite 0-definable subsets of M, we say that A

coordinatizes P if

1. A is an atom, and

2. For all x in P, acl(x) n A # 0.

Proposition 1.5 (Coordinatization Theorem [CHL, Theorem 4.1]). Let M be

#Q-categorical, tic-stable, and transitive. Then in Meq there is a O-definable set A of

Morley rank 1 which coordinatizes M.

We must change the definition of a coordinatization if it is to be applicable to an

arbitrary superstable theory. To motivate the definition given in the next section, we

describe how the set A arises in Proposition 1.5.

Let M be as in Proposition 1.5. Let rk(-) denote Morley rank. It is known that

rk(M) < co, say rk(M) = « + 1 for « > 0. Suppose cp(x, a) has rank « and degree 1.
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Let g be the family of conjugates of <p, and let g* be its normalization. Then by 3.3

of [CHL] the rank of the index set of g * is 1. Let A be the set of names for elements

of g*. Then A is a 0-definable subset of Meq of rank 1. For x g M, acl(x) n A

contains the names A-h such that x g <p*(M, b).

This description shows more clearly why Proposition 1.5 is called the Coordinati-

zation Theorem. A point in M is located by specifying which conjugates of <p it lies

in. This is a rather local coordinatization in that we look only at the conjugate of tp.

But presumably this process can be iterated through formulas of smaller rank to

obtain a more complete "dissection" of the structure.

2. Formulation of coordinatization. This section contains only the definition of the

incidence geometry alluded to in the abstract. The main theorem is stated prior to

the examples at the end of the section.

Perhaps the best motivation for the forthcoming material is an historical descrip-

tion of how it arose. One of the most important results in [CHL] is

Proposition 2.1. Let M be N^-categorical andtf0-stable, and let p G SX(M). Then

there is a single element a g M such that p does not fork over a.

The proof of Proposition 2.1 depends heavily on the Cherlin-Zil'ber classification

theorem for S 0-categorical strongly minimal sets [CHL, 2.1]. It was our hope to

prove Proposition 2.1 more directly. If we argue towards a contradiction, taking a

failure of highest rank, we quickly specialize to a type/? g Sx(M) of rank «, where

M is transitive of rank « + 1. Let cp(x, a) g p be a canonical representative. By

assumption, \d\ > 1, and observe that since M has rank « + 1 and <p has rank « we

may take a to be independent. We discovered that such a formula gives rise to a

complicated family of conjugates g in M. For example, in Meq there is a definable

pseudoplane obtained in a natural way using g.

This investigation led to the intuition that there is a direct relationship between

the number of parameters in <p(x, ä) and the geometrical complexity of the family of

conjugates of <p. We also observed that this correspondence could be formulated for

an arbitrary superstable theory and that, when M is transitive, the set of points in

the resulting incidence geometry is acl(A) for some A of Morley rank 1. In retrospect

we have come to view the introduction of the family of conjugates as a coordinatiza-

tion of M with respect to q>. It is a coordinatization in the sense that an element of M

is located by the conjugates it lies in. The incidence geometry (M, g, e) gives the

structure on the set of coordinates.

For the remainder of this paper let T be a countable superstable theory and M an

uncountable saturated model of T. First we must formulate what we mean by a

coordinatization in this context. Let/?0 be a complete 1-type with U(p0) = a + 1 for

some a > 0. By adding constants to the language we may assume dom(/?0) = 0.

Let

, , H = p0(M) and p g S(M) be an extension of p0 of (/-rank

a; a(x, 5) a canonical representative of/?; and /?, = p\a.

Later we will place more requirements on a. Remember we chose â to have minimal

length under the above restrictions. Observe that ä is independent: if ä = bäx is
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dependent, then U(b/äx) < a + 1; since U(p) = a we have U(p) = i/(/?|ä,), con-

tradicting the minimality of ä. Let g be the family of conjugates of a(x, a) in M.

Finally, let |> = (H, g, e), formalized in Meq as described in §1. We call § the

coordinate pregeometry of H with respect to a (or /?). We call /c = |ä| the complexity of

£. Notice that we are not considering £> as carrying the structure induced by M. §

consists solely of the two sorts H and g and the relation e c // x g; i.e., ip is an

incidence geometry.

For a g H we call {¿Gg^e^jthe coordinates of a, denoted crd(a).

From here on we denote the elements of g by £, 6°, p, etc.; £-h denotes the name

for the set a(M, b).

For £ g g we will mostly be interested in those a e £ which have maximal rank

over £. With notation as in (1) let b realize/?!, £ = £s, and y = U(£/b). Notice that

the rank identity Lemma 1.2(i) implies U(£/0) = y + 1. We define the following

for £ g g and a g H:

(2) £ =   (J {â g H": ä is ¿independent, a, e £, and U(a,/£) = a for i < « }.

(3) ? =   U { ¿ e S": ¿is a-independent, a e <f,, and y = l/(¿¡/a) for / < « }.

(4) Ra= {í/G S(Meq):aexisin^f, £/(i) = y, and 9 d /(<?)}.

Notice that a g £ if and only if <í g a.

Lemma 2.2. iFe wa^ assume the canonical representative a was chosen so that e

satisfies the following: for all a, b G H,

Ra = Rb    'ff   M ¡=Vy(aey «-» bey).

This lemma is proved by normalization; the details are deferred to the next

section. Let E be the equivalence relation defined in M by

(5) E(z,z')    iff   \/y(zey <-> z'ey).

On H, E(a, b) is interpreted as saying "a and b have the same coordinates".

There is a natural way to induce an incidence geometry on H/E. Define e0 in M

by

(6) (x/E)e0y    iff   xey.

Then §/£ = (H/E, g, e0>. We will usually denote H/E by P and §/£ by ©. We

call © i/ie coordinate geometry of H with respect to a (or /? ).

Let « g to satisfy

« + 1 is the maximal m such that for a G H there is a / g a
(7)

of length m with £ independent over 0.

Theorem 1. Suppose H is stationary. There is a set A definable in © such that

P = acl(^4), where acl( ) is computed in the structure ©. Furthermore, A = P C\ A0for

some definable A 0 in Meq, the U-rank of A in Meq is 1, and A has finite multiplicity.
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This theorem can be greatly simplified if the only 1-type in M is p0. See Theorem

2 in the next section. We close this section with a couple of examples of what © may

look like.

Example 1. Let B be an (« + l)-dimensional vector space over an infinite

algebraically closed field. Let P be the set of 1-dimensional subspaces, g the set of

«-dimensional subspaces, and © = (P, g, c ). That is, © is the geometry of the

hyperplanes in «-dimensional projective geometry over the field.

To see that © arises as the coordinate geometry of some H, simply take M = ©,

H = P, and a as the obvious formula. The coordinatization process yields © as the

coordinate geometry. This example shows that n can be any finite number.

Example 2. Let A be some uncountable set, and let B be the set of m-element

subsets of A. Define R c B X B by R({ax,...,am},{bx,...,bm}) iff a, = b}Tor some

i, j. Let M = (B, R), and © = (P, g, e0), the coordinate geometry of M with

respect to R. Then P = B has rank m, and the complexity k is 1. This © is easier to

picture if, for £ g g, we add names for the m degree-1 components of £. Call the set

of all such imaginary elements 98. We easily compute the rank of 98 to be 1. Let

e: g P x 98 be such that A e,¿> iff there is a £ g 3?, a e0 £, and a is in the degree-1

component of ¿"named by^>. Let E(x, y) G FE( 0 ) be defined on 98 so that

#,#' <^98^ E(#,?')    iff    -äx(xexp AxExp').

E partitions 98 into m strongly minimal components. Notice that acl(a) n 98 consists

of m independent elements, one from each component of 98. This example shows

that when k = 1 the rank of P may be any natural number.

Observe that M is S 0-categorical, S0-stable, and transitive. Proposition 1.5 implies

there is a coordinatization in the sense defined in that section. Following the outlines

given after Proposition 1.5 will yield our 98 as the rank 1 set of coordinates. So there

is some relationship between our notion of coordinatization and the one used in

[CHL].

3. Proofs of the theorems. In this section the symbols H, g, a, e, P, « and k

denote the same objects as they did in §2. Also, (l)-(7) denote the lines previously

enumerated.

Lemma 3.1. g is the set of realizations of a complete stationary type over 0 in Meq,

whenever H is stationary.

Proof. The elements of g are names for the sets a(M,a), where ä is an

independent sequence of elements of H. Since H is stationary, t(a) is stationary. The

lemma now follows from Lemma 1.1.

This is one good reason for choosing a to be a canonical representative. Another

reason is that since a(x, y) is satisfied on a set of indiscernibles, there is some

invariance under permutation of the variables which will make some of the proofs

easier.

Let q0 denote the type defining g.
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To prove Lemma 2.2 we use Normalization Theorem 1.4. Our basic formula is

a ex for a g H. For such a we let Pa be the set Ra defined in (4). Let &= {Pa:

a g H).

Lemma 3.2. £? satisfies the basic assumptions (N1)-(N4).

Proof. (Nl), (N2), and (N4) are easy to verify. To prove (N3) it suffices to show

Claim. Every q g Pa does not fork over a.

Since q0 U {aex} forks over 0, every q g Pa forks over 0. Thus, U(q) <

U(q Ï a) < y + 1. But U(q) = y, so U(q [ a) must also be y, which proves the

Claim.

The Normalization Theorem now implies

Lemma 3.3. There is a formula ye*x such that, for all a, b g H,

(i) for all q G U &, q G Pa iff a e* x G q,

(ii) Pa = Pbiff\= Vx(ae*x <-> be*x).

Without loss of generality we assume a was chosen so that e = e*. This proves

Lemma 2.2.

We assume from here on that H is stationary.

Let E and « be as defined in (5) and (7), respectively.

Lemma 3.4. There is a ß such that ß + n = a and U(a/(a/E)) = ß for a g H.

Proof. As in (7) let (£0,... ,£„) = /g a be independent over 0.
s

Claim 1. If a = c(£), then E(a, c).

To prove this claim we use the fact that E(a, c) iff Ra = Rc. Let £ g q be such

that £ I a£c. It suffices to show that £ g ç; for then a nonforking extension of t(£/a)

over ac contains cex. We know U(£/a£c) = y, where U(£/0) = y + 1. By the

definition of «, £ i £, which implies U(£/£) < y + 1. Thus, U(£/a£c) = U(£/£),
s

i.e., £ l g ac. Since a = c(£), we have a = c(££), proving £ e. c and the claim.

Claim 2. a/E G acl(¿).

Suppose there are infinitely many different classes in [c/E: c = a(£)}. That an

element d is c/E for some c realizing t(a/£) is a property of t(d/£). Thus, using

compactness we can find arbitrarily many such classes, contradicting Claim 1.

Claim 3. For all m < « and c with £ ^ c, U(c/£0,... ,£m) + m = a.

We prove Claim 3 by induction on m. It is true for m = 0 by Lemma 1.2(i).

Suppose it holds for m = I. We have U(£/+x) = U(£,+ ,/c) + 1. Since £/+ x I c £0,... ,£¡

and £l+, | 0£o, .../„we have

U(£l+x/£0,...,£,)= U(£l+1/c£0,...,£t) + l.

By Lemma 1.2(i), U(c/£0,.. .,£,) = U(c/£0,... ,£l+x) + 1. By the inductive hypothe-

sis, U(c/£0,... ,£/+x) + I + 1 = a which proves the claim.

Let ß be such that ß + n = a.

Claim 4. U(a/(a/E)) = ß.

Let d = a/E. Suppose c = a(d) and c\da£. Then U(a/d) = U(c/d) =

U(c/da£). Since d is algebraic over a, we have c \ a£. Then E(a, c) implies £ g ç.



COORDINATIZATION IN SUPERSTABLE THEORIES. I 109

By Claim 3, U(c/£) + ß. By Claim 2, c J, ¡d, so U(c/d£) = U(c/£) = ß; thus,

U(c/d) = ß, which proves Claim 4 and Lemma 3.4.

This is the reason we use U-xank instead of one of the continuous rank

notions—they do not obey the nice identities given in Lemma 1.2.

We now turn our attention to P = H/E, e0 defined in (6) above, and © =

(P, g, e0>. Let £ now denote {a/E g P: a g H anda g £}.

Lemma 3.5. (i) P is the set of realizations of a complete stationary type with

U(P) = « + 1.

(ii) If m < «, £0,... ,£m are independent, and a G Dl<m £¡, then U(a/£) = « — m.

(iii) If m < «, (£0,. ..,£m) = £ g a, and £ is independent over 0, then U(a/£) = «

— w.

Proof, (i) The proof that P is the set of realizations of a complete stationary type

is like the proof of Lemma 3.1. Let d G P be a/E for a g H. By Lemma 1.2,

í/(ízí/) = U(d/a) + U(a) = a + 1. We also know that

U(a/d) + U(d) < U(ad) < í/(a/¿) © U(d).

Since U(a/d) = ß, we conclude quickly that U(d) = n + 1.

(ii) To simplify notation suppose «2 = 0. Let a G ¿0 be c//£ so that U(d/£0) = a

and U(d/a£0) = ß. By Lemma 1.2 again, U(ad/£0) = a. By an argument similar to

that given in (i), we find U(a/£0) = n.

(iii) Similar to the proof of (ii).

We now turn our attention to © and continue the proof of Theorem 1. First we

consider the case « = 0. Notice that then U(P) = 1. Thus, the theorem is true in this

case.

From now on in this section we assume « > 0.

Our next immediate goal is Proposition 3.8. It is this result which gives the

S0-stability in the Theorem in the Abstract. For motivation suppose « = 1. Then if

£0 I £x, £0 n £x is finite and nonempty; a g £q implies U(a/£0) = 1. We will show
~ s

that for each a g £0 there is a b g £0 n £x with a = b (£0). It follows that x e £0 has

finitely many nonalgebraic completions in P, each of finite multiplicity. In other

words it has Morley rank 1 relative to P.

Lemma 3.6. Suppose a g P with U(a/d) = m, some m < «. Then there are

£0,...,£m_x with (£0,... ,£„,-X) g a, {£0,...,£m_x, d} independent over 0, and

a g acl(£d).

Proof. Choose an independent sequence £0,...,£„ with £ g q and £ j a d. Assume

the enumeration is such that d, £0,...,£t are independent over 0 and, for /</<«,

£¡ i d£0,... ,£,. We claim U(a/£d) = m - (I + 1). That U(a/£0,... ,£„ d) = m - (I

+ 1) is proved exactly like Claim 3. So, it suffices to show that

(i) for /</<«,

d£a.e¡
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Notice that U(£i+x/a) = U(£i+X) - 1, and, since £ g a and £ I a d, we have

U(£i+x/a£0,...,£,d)= U(£¡ + x/0)-l.

Since £i+1i£0,...,£id, we have U(£i+1/£0,...,£¡d) < U(£l + x/0).Jhus,

U(Sl+i/aS0,...J¡3) = [/(^^o,...,^);

i.e.,

¿, + i      4      a,
îtV0.4

which proves the claim.

By Lemma 3.5 (iii) a is algebraic over £. Thus, / = m — 1. By the claim the lemma

is proved.

Lemma 3.7. Suppose a g P wíí« U(a/d) = «? /or «?me ra < «, a«ß?

{¿0'--->^m-i> ^} " independent over 0. Then there is a b with (£0,...,£m-X) g b
s _

and b = a (ii).

Proof. The lemma follows from Lemma 3.6, using an automorphism. Let

(p0,. ■ -,fm-X) g a be such that {#>o,...,pm-i, d} is independent. Since the type

over 0 of the blocks is stationary, £ = f(acl(d)). Let b be the image of a under an

automorphism which fixes acl(J) and sends^ to £. This proves the lemma.

Proposition 3.8. Suppose £0,...,£m are independent. Then the formula i\isím x e £¡

has finitely many completions in P of rank n — m, each of finite multiplicity. Also, this

formula has no completion of rank > « — m.

Proof. Here /denotes the sequence £0,... ,£m. That the highest possible rank over

¿for an element satisfying A, <m x e£jisn — m is computed as usual. Find £m+x, ■ ■ ■ ,£„

with {£0,... ,£n} independent. If a G P satisfies  A,<m x e £¡ and U(a/£) = « - m,
s

then aGn,<m£.  By Lemma 3.7  there is a ¿eil,^^ with a = b (£).  The

proposition follows from the fact that fl,^„ £¡ is finite.

The next lemma is the main step in showing that P = acl(A) for some A of rank 1.

The motivation is the following. Suppose (q, L; I) is a projective plane. For / g L

let [/] denote {a g Q: all}. Then for l0 # /, g L; a0 # ax g Q with a, <£ [/,] for

i, j = 0,1, we have Q = acl([/0] U [/,] U aQ U a,). This is seen by examining the

following picture:
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Claim. For c g P and i < « there is an independent sequence a, of realizations of

P, and e¡ G P such that

(i) e, U a, and c U a, are independent,

(ii) {e¡a¡: i < « } is independent,

(iii) U(c/e¡a¡) = n and c g acl(eoa0 U  ■ ■ • U e„a„).

Proof. Choose independent £0,...,£n and c

a Morley sequence L in stp(c/£i) such that

c\£,
i.

and

n/<n ¿,- as in (7). As in §1.3 there is

dl,.
t,

Choosing a minimal such Morley sequence yields the independence of /, since

U(c/£¡) = n. We may require that

t,

The independence of {£{. i < «} then yields the independence of {/,: /'<«}. A

t/-rank calculation shows that c g acl(U, /,-). Letting c¡ be any element of /,. and

a i = Ij\ { e¡} proves the claim.

Notation. Let /, = |a,|.

Lemma 3.9. Suppose c g P and, for i < «, ¿*, w an independent sequence of «

elements of g, a«i/ aj is an independent sequence of elements of P of length /,.

Furthermore, suppose that c U [p0,.. -,#„} U {a0,...,a„} is independent. Then for

i < « í«ere is e¡ g P ímc« /«a/

(i) t(e¡/pj) has U-rank 1 and finite multiplicity,

(ii) c is algebraic over ëâ in ©.

Proof. The picture we are trying to produce is

c

We will do the proof backwards. First we pick the a,'s and e/s so that c g acl(âê).

Then we choose them's and show that cßä is independent. The lemma follows since

t(c/0), t(p,/0), and t(a¡/0) are all stationary, and the desired property is a

property of the types.

Let c and { e,a,: / < «} be as in the claim. By Lemma 3.6 for i < « there is^, g e¡,

an independent sequence of « elements of g with^, i 0ca¡, and e¡ g acl(a,c¿*;). By



112 STEVEN BUECHLER

Proposition 3.8, U(e¡/f¡) = 1 and ¿(e,/^,) has finitely many strong types. Further-

more, we may choose them's so that

(A) ei9licëpâ\{el9la,},
0

using the fact that e, J, 0cae\ {elal}.

We have e,¿*,a,'s with the desired properties (i) and (ii). It suffices to show that

cpd is independent. Assume, towards a contradiction, that this sequence is depen-

dent. Since ai■ J, 0c¿> we know that for some / < «,

a,iä\{a,}.

Say i = n. By the way all these elements were chosen it is easy to check that

«,, ifâë\{a„en}.
cen

Thus,

U(a„/ceßa0 ■ ■ ■ a„_i) = U(a„/ce„) = U(a„) - 1.

We conclude that U(an/cefa0 ■ ■ ■ an._x) = U(an/cp~a0 ■ ■ ■ a„_x), implying

(B) a„       i       e„.

We choose them's so that en g acl(canfn), so (B) implies en G cl(c^í?.0 • • • an_x).

Thus,

enicpä\{pna„}.

9

We conclude that

e„y„icfä\{fnan},

in contradiction to (A). This proves the lemma.

For i < « let r' = t(e¡/p¡). The above lemma indicates that

acl(r°(P) U • • • U r"(P) UaQU  ■ • • U a„)

is almost the whole model. The only points not in this set are those b such that

b i ¡upa. To handle this pathology we use the notion of weight (see [M, D.l, or Sh,

V, 3.12]). Let w be the weight of P and {f°ä°,... ,ywäw} an independent set of

realizations of t(#d).

Let ru denote the image of r over^j, while r¡(P) denotes ri0(P) U • • • U rin(P).

Lemma 3.10. P = acl(r0(P) U • • • U rw(P) Ua°U  • • • U Uw).

Proof. Given b g P, the definition of weight implies there is i < w such that

b | 0^'û'. By Lemma 3.9, b g acl(^'ä').

This completes the proof of Theorem 1.

It is worth summarizing what was proven in the last couple of lemmas, especially

since we are dealing with formulas in two different structures, Meq and ©. Let L2 be

the language of ©.
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Corollary 3.11. There is p(x, y), an open formula in L2 such that the following

hold:

(i) p(P, p) has finitely many nonalgebraic completions relative to P in M, each of

U-rank 1 and having finite multiplicity.

(ii) There is a formula 0(x, yz) g L2 such that for all b g P there is an i < w and

ej g p(P, ¿>'j)forj < « such that © t= 3!x 6(x, ëf') and b satisfies 9(x, eg).

In the case when H is definable we get the following corollary to Theorem 1.

Theorem 2. Suppose the H from (1) is definable. Then P is also definable and is in

the algebraic closure of a set of Morley rank 1.

Theorem 3. Suppose M is superstable, transitive, and stationary with U(M) = a + 1

for some a. Then one of the following holds:

(i) There is a O-definable equivalence relation E c M2 with infinite classes.

(ii) M is the algebraic closure of a set of Morley rank 1.

Proof. If a = 0 then (ii) certainly holds. Otherwise we carry out the coordinatiza-

tion process with H = M. If (i) does not hold, the equivalence relation E defined in

(5) must have finite classes. That is, every a g M is in acl(a/E). P = {a/E:

a G M} is the algebraic closure of a set of Morley rank 1 by Theorem 2. This proves

Theorem 3.

There is still more to be said about the case k = 1, « > 0. Recall that this is

always the case when M is H 0-categorical, S0-stable [CHL, 6.3]. Then we obtain the

Coordinatization Theorem (Proposition 1.5). We now show that whenever k = 1 we

can obtain a similar theorem for P. The only essential difference between our

method of coordinatizing and the one yielding Proposition 1.5 is that in a supersta-

ble theory we may not be able to pick a formula of Morley degree 1 in H. However,

in the quotient P we can come close to this.

Proposition 3.12. Suppose k = 1. Then there is g' c Meq of U-rank 1 such that

a G H implies acl(a) n g ' =£ 0.

We assume for the remainder of the paper that k = 1 and « > 0. As a special case

of Proposition 3.8 we have

Lemma 3.13. The formula x e £ has finitely many extensions in P of U-rank n, each of

finite multiplicity.

By Lemma 3.13 there is ¡p(x, â), a formula over acl(<?) whose only extension over

M of U-xank « is t((a/E)/M) for t(a/M) = p from (1). Using Normalization

Theorem 1.4 we may assume that whenever /' = / and \p(x, /) A \p(x, /') has an

extension of U-rank «, / = /'. The proposition follows directly from

Lemma 3.14. There is b g P with Â g acl(è). Also U(ii) = 1.

Proof. Suppose b g ^(P, 4) with U(b/i) = «. Let q g S(M) be the extension

of i|/(x, /) of i/-rank « consistent with P. By the definition of complexity there is a
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canonical representative of q over b. In fact, there is 4' g acl(Z?) such that \¡/(x, /')

g q and /' = Â. It follows that Â' = Â, so Â g acl(/?). This implies í/(/¿?) = U(b) =

« + 1. The lemma follows since U(Âb) is also U(b/Á) + U(4).
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