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STABILITY OF GODUNOV'S METHOD

FOR A CLASS OF 2 X 2 SYSTEMS

OF CONSERVATION LAWS

BY

RANDALL J. LeVEQUE1 AND BLAKE TEMPLE2

Abstract. We prove stability and convergence of the Godunov scheme for a special

class of genuinely nonlinear 2x2 systems of conservation laws. The class of

systems, which was identified and studied by Temple, is a subset of the class of

systems for which the shock wave curves and rarefaction wave curves coincide. None

of the equations of gas dynamics fall into this class, but equations of this type do

arise, for example, in the study of multicomponent chromatography. To our knowl-

edge this is the first time that a numerical method other than the random choice

method of Glimm has been shown to be stable in the variation norm for a coupled

system of nonlinear conservation laws. This implies that subsequences converge to

weak solutions of the Cauchy problem, although convergence for 2 X 2 systems has

been proved by DiPerna using the more abstract methods of compensated compact-

ness.

1. Introduction. In [9] the class of 2 X 2 nonlinear conservation laws for which the

shock and rarefaction curves coincide is characterized. For such equations each

characteristic field is either a "line" field or a "contact" field (cf. [9]). Equations in

which both characteristic fields are line fields arise in the study of multicomponent

chromatography [1]. In the present paper we show that Godunov's numerical

method converges to weak solutions of the Cauchy problem for 2 X 2 systems which

have two line fields. For convenience we assume that the equations are strictly

hyperbolic and that each characteristic field is genuinely nonlinear in the sense of

Lax [6]. Under these assumptions we show that Godunov's method converges for

arbitrary initial data of bounded total variation in a neighborhood of each point in

state space.

In general, the analysis extends globally whenever the Riemann problem can be

solved globally and the corresponding solutions consist of no more than two waves.

We show this for any Courant number less than 1 ; i.e., for any fixed mesh ratio such

that waves travel at most one mesh length per time step. This allows interaction

between two neighboring Riemann problems as long as this interaction is confined

to a single cell.

To our knowledge this is the first time that a numerical method other than the

random choice method of Glimm [4] has been shown to be stable in the variation
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norm for a coupled system of nonlinear conservation laws. Convergence for such

systems also follows from a more general theorem of DiPerna [10] but there a

variation bound is not obtained. The variation bound is then a further regularity

result for this numerical method. We believe our results will generalize to the case of

« equations with « line fields, e.g. the equations of «-component chromatography

[11].
Convergence is proved by a standard argument once one shows that, due to the

geometry of the line fields, the total variation of the approximate solution is

nonincreasing when measured in the plane of Riemann invariants. As usual, conver-

gence is obtained modulo the extraction of a subsequence.

In §2 we discuss the class of equations considered. In §3 we describe Godunov's

method and obtain the lemmas needed to prove convergence.

2. Preliminaries. We consider the Cauchy problem for a system of m hyperbolic

partial differential equations in conservation form:

(2.1a) u,+ F(u)x = 0,

(2.1b) u(x,0) = u°(x).

Here u = u(x, t) for -oo < x < oo, / ^ 0, and u, F are m-vector valued functions.

We study solutions of (2.1) that take values in a region N0 of w-space in which F is

assumed to be strictly hyperbolic and genuinely nonlinear in the sense of Lax [6].

This requires that the Jacobian matrix dF(u) have m real and distinct eigenvalues

{A;.}7L, for all u g N0 and that vA, ■ R, # 0 for i = l,...,m, where R, is the

eigenvector corresponding to A,. We let R¡(u¡) denote the unique integral curve of

R, in jV0 that passes through the point u¡.

Since solutions of (2.1) generally develop discontinuities, we look for weak

solutions that satisfy

(2.2)

f      í    u(x,t)<¡>,(x,t) + F(u(x,t))<j>x(x,t)dxdt + f   u(x,0)<¡>(x,0) dx = 0

for all smooth test functions <J> G C0'((-oo, oo) X [0, oo)) with compact support.

The study of discontinuous solutions is centered on the so-called Riemann

problem, the problem (2.1) with initial data of the form

Í tt,,     x < 0,

The Hugoniot locus of uL is the set of states uR for which the jump condition

s\u\ = [/] is satisfied for some scalar s [6]. Here [u] denotes uL — uR and [/] =

f(u,) - f(uR). If uR lies in the Hugoniot locus of uL then

( u,,    x ^ st,
(2.4) u(x,t) = u°(x-st)=      L

\uR,      X > St,

is a weak solution to the Riemann problem with initial data (2.3).

In a neighborhood of u¡ the Hugoniot locus is composed of m curves S¡(uL) such

that Si(ul ) makes C2 contact with R,(uL) at uL and A, is monotonie on S¡(uL) (cf.
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[5]). The /-shock curve of uL is defined as

(2.5) S-(uL)= {wG5;(MJ:A;(w)<A,(Mz.)}

and for uR g S~(u¡) we call the solution (2.4) an /'-shock wave.

The /-rarefaction curve associated with u¡ is defined as

(2.6) RÎ(uL)= {weR,(uL):\t(w)>\l(uL)}.

For uR g R?(u¡ ) we call the solution

(u,,        x < A,.(ut)f,

(2.7) u(x, t)=luU),    x = èt,\i(uL)<£<\,(uR),

\uR,        x>\,(uK)t,

an /-rarefaction wave, where m(£) denotes the parametrization of R,+ (uz) with

respect to A,. For general systems our assumptions imply that the Riemann problem

can be solved uniquely in the class of shock and rarefaction waves in a neighborhood

of any point in A/0, and this is the physically correct solution (cf. [6]).

In general, the curves R;(ml) and S¡(uL) make only C2 contact at u,. If, however,

R,(w7 ) = S¡(uL) for any uL g N0, then we say that the /-shock and rarefaction

curves coincide in N0. In [9] it is shown that if vA, ■ R, =f= 0 in N0, then S¡(uL) —

R¡(u¡ ) if and only if R,(m, ) is a straight line in w-space.

The the case of 2 X 2 systems with coinciding shock and rarefaction curves, the

assumptions of strict hyperbolicity and genuine nonlinearity above imply that the

Riemann problem can be solved globally in N0 for any N0 of the form

(2.8a) N0 = N([px,p2);[qx,q2})

■ {u:px ^p(u) ^p2,qx ^q(u) ^ q2}

subject to the condition that

(2.8b) s(uL,uM) ^s(uM,uR)

for all uL, uM, uR g N0 such that uM g Sx(ul) and uR g S2(uM). Here p is a

1-Riemann invariant, q is a 2-Riemann invariant, and s(u, v) is the speed of the

shock that connects u and v. (An /-Riemann invariant is a function z¡(u) such that z;

is constant on R, and Vz, # 0.) Note that such an NQ always exists locally assuming

only that the equations are strictly hyperbolic. The Riemann problem for u,, uR g N0

is then solved by a 1-wave followed by a 2-wave, and since p (resp. q) is constant on

1-waves (resp. 2-waves), all states in the Riemann problem solution also lie in N0.

We state this as

Lemma 2.1. Assume N0 satisfies (2.8a) and (2.8b). // uL and uR lie in NQ, then all

states in the solution of the Riemann problem (2.3) also lie in N0.

For the remainder of this paper we restrict our attention to such systems of two

equations and write u = (u,v), F = (/, g). We assume that N0 is of the form (2.8)

and that the integral curves of R, are straight lines with monotonically varying

slopes, so that each characteristic field is a "line" field in the sense of [8].
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In this case we take/?, q to be the Riemann invariants defined by

p(u) = slope of Rx(a),       q(") = slope of R2(u),

so that each satisfies the Burgers equation za + zzv = 0 with vp # 0, v<7 # 0.

In [9] it is shown that a system of two equations has a pair of line fields if and

only if

llQ, f(        v      Hx(p)-H2(q) qHx(p) - pH2(q)
(2.9) /(«,„) =-^—-,        *(*,„)--—-,

where the H¡ are any smooth functions, although genuine nonlinearity and strict

hyperbolicity place further restrictions on the H¡.

As an example, the following equations arise in chromatography [1]:

(2.10) «,+(t—-)   =0,       ^ +Í -,    Kv      )   =0.
V ' '     \ 1 + a + v I x '     \ 1 + « + v ) x

Here K is a constant, 0 < K < 1. One can verify that (2.10) satisfies (2.9) with

(2.11) Hx(z) = H2(z) = (z - Kz)/(z + 1)

when /> and i/ are the two solutions of Burgers equation that satisfy

az2 + [K(«+ l)-(v+l)]z - Kv=0

in z and are smooth in <¿ > 0, v > 0. In fact, the physical range of the variables t¿, v

for (2.10) is (0, oo) X (0, oo) and this set satisfies the assumptions placed on JV0.

3. Godunov's method. Let « be a mesh length in x and k a time step such that

(3.1) £sup|A,(M)|<I.

Later we will relax this restriction to allow 1 on the right-hand side. The quantity on

the left-hand side is called the Courant number. In discussing convergence we will

always assume that the mesh ratio k/h is fixed as « -» 0.

Let x; = jh for y g Z and tn = nk for « g Z+. For fixed « and k we will obtain a

grid function approximation u" to u(Xj, tn) as follows. For « = 0 set

(3.2) uJ=lP   u°(x)dx-
xj-\

Note that by convexity if w°(x) G N0 for all x, then uj g N0 as well. Now suppose

that uf~l G N0 is known for all/' and set

(3.3) u"(x, i„_,) = uf-x    foxx]_x^x<x].

The piecewise constant initial data (3.3) poses Riemann problems for (2.1a) at

t = ?„. By (3.1) these do not interact for t — t„ < k, and we can solve (2.1a) to

obtain u"(x, t) for /„_, < t < t„. We then average this solution to obtain

(3.4) ul = \f'   ""(x,tn-)dx-
xj-\

In Lemma 3.1 we show that u" g N0 so that the process can be repeated.
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One can show by integrating (2.1a) over the rectangle [xj_x, Xj) X [/„_,, tn) that

the grid function u" can equivalently be defined by the finite difference approxima-

tion

(3.5) u« = «r1 - f [F(utf, «;->) - F(ur\ «#)].

where the numerical flux function F(uL, uR) is defined as

F(uL,uR) = y* F(V(0,t))dt.

Here V(x, t) for / > 0 is defined as the solution to the Riemann problem (2.1) with

initial data (2.3). Since V(x, t) = V(x/t), Fis simply

F(uL,uR) = F(V(0))-

If u, = uR, then V = uL and so the numerical flux is "consistent" with the flux Fin

the sense that F(uL, uL) = F(u¡). Moreover F can easily be shown to be Lipschitz

continuous.

From the grid function u" we obtain the piecewise constant approximate solution

uh(x, t) = u]   for (x, í) €[*,_!, *,) X [/„, tn + x).

Lax and Wendroff [8] have shown that for any method in the conservation form

(3.5) with a Lipschitz continuous consistent flux, F, if uh(x, t) approaches a limit

u(x, t) for some sequence h, -» 0, then u(x, t) is a weak solution of (2.1). This is

obtained by performing summation by parts on the identity

OC OC , , ,

L L (^-«r^^+ff^«^«;-1)-^;-1."^1))^;}-o,
77 = 0   7 = -oo  v '

where í>" = <j>(x-, t„), and observing that the resulting expression approaches (2.2)

as « -» 0 (see also Lemma 4.2 of [3]).

In fact, by this same argument one has that if uh is any sequence of approximate

solutions with total variation TV(uh(-, t)) uniformly bounded in « and t, then it

weakly converges in the sense that the integral condition (2.2) for uh(x, t) tends to

zero as « -» 0.

Here we prove a stronger statement for systems of the type discussed in §2.

Theorem 3.1. Suppose Godunov's method is applied to a 2 X 2 system of conserva-

tion laws satisfying (2.9). Assume that the system is strictly hyperbolic and genuinely

nonlinear in some NQ of the form (2.8) and that the initial data w°(x) G 7V0 has bounded

total variation. Let {«,} be a sequence of mesh lengths approaching zero and suppose

(3.1) holds. Then uh(x, t) converges weakly in the above sense and, moreover, there is a

subsequence of {«,} for which uh(x, t) converges boundedly, a.e., to a weak solution

u(x,t) of (2.1).

As a corollary this gives a global existence theorem for systems of this type. This

existence theorem can also be obtained by showing convergence of the Glimm

scheme as noted in [9].

We must show that the total variation of uh(-, t) is uniformly bounded in / and h

and, to obtain a strongly convergent subsequence, that uh(x, t) is Lx continuous in
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time (modulo the time step). To obtain these results we work in the Riemann

invariant coordinate system and take as components of u the two Riemann in-

variants p and q. The /, norm of the vector uL — uR\s then well defined by

(3.6) \uL - uR\\ = \p(uL) - p(uR)\ + \q(uL) - q(uR)\.

Recall that u"(Xj, /) is constant for t„_x < t < tn. Denote this constant value by

,;-' = u"(Xj,tn_x +).

Lemma 3.1. // u°(x) c N0 = N([px, p2]; [qx, q2}), then for fixed k and «, u" g N0

for allj, « and moreover

II,,»-1/2 _ 7,»|| + IL" _ „77-1/2II

(3.7a) " ' '"    " '       J        "

< \u'¡:¡/2 - u'i~i\+\\uj~1 - wri/2||.

(3.7b) (I«;-1 - u'f:¡/2\ + \u'f:l/2 - u]:l\ = ¡u1;-1 - «;rxl|.

Proof. Suppose uj'1 g N0 for all/'. Then Uj'~1/2 g N0 for ally by Lemma 2.1. Set

(3 Pm = nnn(p(u^2),p(ur),p(ur^J),

pM = xna^p{ur_y2),p{u>r),p{ur^)),

and similarly for qm, qM. Define

N/'1 = N([pm, pM];[qm,qM]) cz N0.

This convex set contains u"(x, tn — ) for x¡_x < x < x, by Lemma 2.1. Since by

(3.4) u" is an average of these values,

(3.9) u] g N."-1

and hence by induction w" g N0 for all j, « provided Uj G N0 for all /'. This shows

that Godunov's method is well defined for such systems.

It also follows that

(3.10) Pm<P(«7B)<PA/

and therefore by (3.8), (3.10) and general inequalities for real numbers,

\p(u>;:wi)-p(u>;)\ + \p(u»)-p(u>r^2)\

<|p(«ni/2)-p(«r1)l+W«r1)-/'("r1/2)l-

Adding this to the corresponding bound for q and using (3.6) gives (3.7a)

By Lemma 2.1 u"~x1/2 must satisfy

min(p{w;-1), P{w;:¡)) <p{w;:y2) < maX(P(«;-'), pÍw;:?))

and hence

|p(<-0-p(«;-i1/2)|+|p(";-11/2)-p(«;--i1)l=|p(»r1)-p(»;-11)t-

Adding this to the corresponding expression for q gives (3.7b).
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Lemma 3.2. The total variation is nonincreasing:

(3.11) Zbj - ""-ill < LI«""1 - t*"-i\\   for all n.
.1 j

Proof. By the triangle inequality

£II«; - «;-il < E [k - «r/i+1«;-/72 - «;-i|]
7 7

= L[k-«ri1/2l+l"r1/2-»;ll]'

We now apply (3.7a), regroup the terms again and use (3.7b) to obtain

Y\\u" - u" ,11 < EÍII«"-1 - u"-y2\\ + \\u"-1/2 - w"   2Hl*-* 11   V ^/ — 111   —- *-^ 111   J J—\      11       11   J J
J j

= E[k-1-"7'-i1/2l + l<-i1/2-<-i1ll]
7

"II   j "y    1 ||-
j

We now show that uh(x, t) is L, continuous in time.

Lemma 3.3. There exists a constant C such that

^ \uh(x, t2) - uh(x, rx)\dx < C(|t2 - Tl| + A:) • TV(«°),

where TV( uQ) is the total variation of the initial data (2.1b) measured in the norm (3.6).

Proof. Assume without loss of generality that rx < t2 and let m and M be integers

such that

Then

(3.12) /    \uh(x,T2)-uh(x,rx)\dx=    £    kW-«7m|
y--oo

oo M

<« £    E   |«;~ «r1!-
/ = - 00     77 = 777 +1

By (3.5) we can continue

oo M _

(3.13)        =fc £    i  l^-ri,«;-1)-^«;"1.«;*!1)!-
/ = - 00     H = »1 + 1

Since F is Lipschitz continuous,
oo

(3.14)       £    \f(uj-Í, "j'"1) - 't«""1. «"+/)| < C ' TV(""_1) < C ■ TV(w°),
/=-oc

where we have applied Lemma 3.2 and the compatibility of norms. Interchanging

the order of summation in (3.13) and using (3.14) we conclude that

/oo M*.t2)-»*(jc,t1)|< C-(M-«z)A:-TV(u0),
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where C depends only on N0. Since k(M - m) < |t2 - t,| + k, this completes the

proof of Lemma 3.3.

Proof of Theorem 3.1. Using Lemma 3.2 and the argument of Lax and

Wendroff [8] we obtain weak convergence of any sequence. By also using Lemma 3.3

and a standard compactness argument (cf. p. 714 of Glimm [4]) we obtain a

subsequence converging boundedly a.e. to a limit u(x, t) which must be a weak

solution of (2.1) by [8].

Remark. In Theorem 3.1 the restriction (3.1) can be replaced by the weaker

condition

(3.16) £sup|A,(u)|<l.
«e/V0

For Courant numbers between \ and 1 the solutions to neighboring Riemann

problems may interact. In this case u"(x, r„ — ) is no longer simply the concatena-

tion of Riemann problem solutions. Nonetheless, Godunov's method remains well

defined and easy to implement using the conservation form (3.5) since V(x/t)

remains constant at x = 0 for all / < k if k satisfies (3.16).

In order to prove stability and convergence of the method in the more general case

(3.16), we can still define u" as the average (3.4), where u"(x, t) is a solution to the

problem with piecewise constant initial data (3.3). Such a solution exists because our

proof of the convergence of Godunov's method for Courant number less than j

gives as a corollary a global existence theorem for these equations. Uniqueness of

solutions is not important here because any solution has the same integral (3.4) in

view of the derivation of (3.5)..Thus the only obstacle to the proof assuming (3.16) is

that in this case it is not a priori obvious that (3.9) holds for all u". However, this

follows immediately because A"-1 is an invariant region for the solutions con-

structed in Theorem 3.1. Once we have (3.9) the proofs of Lemmas 3.1 and 3.2 and

hence of the convergence theorem proceed exactly as before.

Finally, note that the solutions constructed by the above method satisfy the

entropy condition of Lax [7]. Suppose the system (2.1) has a convex entropy function

U(u) and associated entropy flux Q(u) such that

(0 Uuu > 0,

(ii) UUFU = Qu.

By Lax, the physically relevant solutions of (2.1) will satisfy the entropy condition

JfOO        /»CO
/     U(u(x,t))w,(x,t) + Q(u(x,t))wx(x, t)dxdt

0      •'-oo

+ C U(u(x,0))w(x,0) dx > 0
■'-oo

for smooth nonnegative test functions w G C¿. As pointed out by Harten, Lax and

van Leer [5], Godunov's method is consistent with the entropy condition. Set

V/= V(uf),        Q(u^_x,u;) = Q{u"^(xJ_x,tn+)).
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Then using Jensen's inequality for convex functions,

v>"=v(lC m"(*''«-)ä)

1 fi
<i/J    V(u»(x,t„-))

v; -1

dx

1
f'   V(u"(x,t„_i))dx-f"   Q{u"(xj_l,t))-Q(u"(xJ_l,t))dt

Xj - 1 'n - 1

where we use the fact that the Riemann problem solutions satisfy the entropy

condition. This is equivalent to

v; < F/-1 - \[q{w;-\«;-/) - q{uj:x\ uj-l)\.

Since Q is consistent with Q (Q(u, u) = Q(u)), it follows from Theorem 1.1 of [5]

that any limit solution obtained with Godunov's method satisfies the entropy

condition (3.17).
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