A REFLEXIVITY THEOREM FOR WEAKLY CLOSED SUBSPACES OF OPERATORS

BY

HARI BERCOVICI1

ABSTRACT. It was proved in [4] that the ultraweakly closed algebras generated by certain contractions on Hilbert space have a remarkable property. This property, in conjunction with the fact that these algebras are isomorphic to H^{∞} , was used in [3] to show that such ultraweakly closed algebras are reflexive. In the present paper we prove an analogous result that does not require isomorphism with H^{∞} , and applies even to linear spaces of operators. Our result contains the reflexivity theorems of [3, 2 and 9] as particular cases.

Let $\mathcal{L}(\mathcal{H})$ denote the algebra of (linear, bounded) operators acting on the Hilbert space \mathcal{H} , and let \mathcal{M} denote a linear subspace of $\mathcal{L}(\mathcal{H})$. Then \mathcal{M} is endowed with the weak and ultraweak topologies that it inherits from $\mathcal{L}(\mathcal{H})$ (cf. [6, §15]). For two arbitrary vectors $x, y \in \mathcal{H}$ we can define the (ultra) weakly continuous functional $[x \otimes y]$ on \mathcal{M} by

$$[x \otimes y](A) = \langle Ax, y \rangle, \quad A \in \mathcal{M},$$

where $\langle \cdot, \cdot \rangle$ stands for the scalar product in \mathcal{H} .

DEFINITION 1. Let n be a natural number, $n \ge 1$. The subspace \mathcal{M} has property $(\tilde{\mathbf{B}}_n)$ [respectively $(\tilde{\mathbf{A}}_n)$] if for every positive number ε there exists a positive number $\delta = \delta(\varepsilon, n)$ such that for every system $\{\phi_{ij}: 1 \le i, j \le n\}$ of weakly [respectively ultraweakly] continuous functionals on \mathcal{M} and every system $\{x_i, y_j: 1 \le i, j \le n\}$ of vectors in \mathcal{H} satisfying the inequalities $\|\phi_{ij} - [x_i \otimes y_j]\| < \delta$ there exist vectors $\{x_i', y_j': 1 \le i, j \le n\}$ in \mathcal{H} such that

$$\phi_{ij} = \left[x_i' \otimes y_j' \right], \qquad 1 \leqslant i, j \leqslant n,$$

and

$$||x_i - x_i'|| < \varepsilon$$
, $||y_i - y_i'|| < \varepsilon$, $1 \le i, j \le n$.

Since every weakly continuous functional on \mathcal{M} is also ultraweakly continuous, property $(\mathbf{B}_n^{\tilde{n}})$ is weaker than $(\mathbf{A}_n^{\tilde{n}})$. (ADDED IN PROOF. It was pointed out by C. Apostol that $(\mathbf{B}_n^{\tilde{n}})$ and $(\mathbf{A}_n^{\tilde{n}})$ are in fact equivalent. This fact is not used below.)

We recall now from [8] that a linear subspace \mathcal{M} of $\mathcal{L}(\mathcal{H})$ is said to be *reflexive* if it contains every operator $T \in \mathcal{L}(\mathcal{H})$ with the property that $Tx \in (\mathcal{M}x)^-$ for every

Received by the editors January 31, 1984.

¹⁹⁸⁰ Mathematics Subject Classification. Primary 47C05.

¹The author was partially supported by a grant from the National Science Foundation.

 $x \in \mathcal{H}$. Of course, reflexive subspaces are weakly closed. This definition coincides with the usual definition ($\mathcal{M} = \text{Alg Lat } \mathcal{M}$) if \mathcal{M} is a subalgebra of $\mathcal{L}(\mathcal{H})$.

We state now the main result of this paper.

THEOREM 2. Let \mathcal{M} be a weakly closed subspace of $\mathcal{L}(\mathcal{H})$. If \mathcal{M} has property $(\mathbf{B}_n^{\tilde{}})$ for every natural number n, then \mathcal{M} is reflexive. Moreover, every weakly closed subspace of \mathcal{M} is also reflexive.

Before going into the proof, we relate this result with the reflexivity theorem from [3]. It was proved in [4] that, if T is a (BCP)-operator, the ultraweakly closed algebra A_T generated by T has property $(\tilde{\mathbf{A}}_n)$ for every $n=1,2,\ldots$ The reflexivity of A_T follows then from Theorem 2 and the following lemma.

LEMMA 3. Let \mathcal{M} be a linear subspace of $\mathcal{L}(\mathcal{H})$ having property $(\mathbf{A}_1^{\tilde{i}})$. Then the weak and ultraweak closures of \mathcal{M} coincide, and the weak and ultraweak topologies coincide on the weak closure of \mathcal{M} .

PROOF. Since every ultraweakly continuous functional on \mathcal{M} extends continuously to the ultraweak closure of \mathcal{M} , there is no loss of generality in assuming that \mathcal{M} is ultraweakly closed. Let $\delta = \delta(1,1)$ be as in Definition 1, and let ϕ be an arbitrary ultraweakly continuous functional on \mathcal{M} . Then $\|\delta\phi/(2\|\phi\|) - [0 \otimes 0]\| < \delta$ so that we can find vectors x' and y' such that $\|x'\| < 1$, $\|y'\| < 1$ and $\delta\phi/(2\|\phi\|) = [x' \otimes y']$ or, equivalently, $\phi = [x \otimes y]$ with $x = (2\|\phi\|/\delta)^{1/2}x'$, $y = (2\|\phi\|/\delta)^{1/2}y'$. Thus we can write ϕ as $[x \otimes y]$ with $\|x\| < (2/\delta)^{1/2}\|\phi\|^{1/2}$, $\|y\| < (2/\delta)^{1/2}\|\phi\|^{1/2}$. We can now apply, e.g., the proof of [3, Theorem 1] to conclude that \mathcal{M} is weakly closed and the weak and ultraweak topologies coincide on \mathcal{M} .

We have therefore the following consequence of Theorem 2, which also implies the reflexivity results of [2 and 9].

COROLLARY 4. Let \mathcal{M} be an ultraweakly closed subspace of $\mathcal{L}(\mathcal{H})$. If \mathcal{M} has property $(\tilde{\mathbf{A}_n})$ for every natural number n, then \mathcal{M} is weakly closed and reflexive. Moreover, every weakly closed subspace of \mathcal{M} is also reflexive.

For the proof of Theorem 2, we need two lemmas. The first was proved in [3] for the case in which \mathcal{M} is a weakly closed algebra. The proof for linear subspaces of $\mathcal{L}(\mathcal{H})$ is identical (and easy) so we content ourselves with the statement.

LEMMA 5. Let \mathcal{M} be a linear subspace of $\mathcal{L}(\mathcal{H})$. An operator $T \in \mathcal{L}(\mathcal{H})$ is in the weak closure of \mathcal{M} if and only if for every natural n and every system $\{x_i, y_i: 1 \le i \le n\}$ of vectors in \mathcal{H} such that $\sum_{i=1}^n [x_i \otimes y_i] = 0$, we have $\sum_{i=1}^n \langle Tx_i, y_i \rangle = 0$.

LEMMA 6. Let \mathcal{M} be a linear subspace of $\mathcal{L}(\mathcal{H})$. Assume that \mathcal{M} has property $(\mathbf{B}_n^{\tilde{\iota}})$ for every natural number n. Then for every natural number n, every system $\{x_i, y_i: 1 \leq i \leq n\}$ of vectors in \mathcal{H} and every $\varepsilon > 0$, there exist vectors $\{x_{ij}, y_{ij}: 1 \leq i, j \leq n\}$ such that $[x_{ij} \otimes y_{kl}] = \delta_{jl}[x_i \otimes y_k]$, $1 \leq i, j, k, l \leq n$, and $||x_i - x_{i1}|| < \varepsilon$, $||y_j - y_{j1}|| < \varepsilon$, $1 \leq i, j \leq n$. (Here δ_{il} denotes, as usual, Kronecker's symbol.)

PROOF. Let $\delta = \delta(\varepsilon, n^2)$ be as in Definition 1. Set

$$\eta = \min\{\delta/(2||[x_i \otimes y_k]||): [x_i \otimes y_k] \neq 0\}$$

and define $\phi_{ij,kl} = 0$ if $j \neq l$, $\phi_{i1,k1} = [x_i \otimes y_k]$, $\phi_{ij,kj} = \eta[x_i \otimes y_k]$, $j \geqslant 2$. The vectors $\{x_{ij}^0, y_{ij}^0: 1 \leqslant i, j \leqslant n\}$ defined by $x_{ij}^0 = \delta_{j1} x_i$, $y_{ij}^0 = \delta_{j1} y_i$, $1 \leqslant i, j \leqslant n$, obviously satisfy the inequalities

$$\|\phi_{i,i,k,l} - [x_{i,j}^0 \otimes y_{k,l}^0]\| < \delta, \quad 0 \leq i, j, k, l \leq n,$$

and therefore, by property (\mathbf{B}_{n^2}) , we can find vectors $\{x'_{ij}, y'_{ij}: 1 \le i, j \le n\}$ in \mathcal{H} such that

$$\phi_{i,i,k,l} = \left[x'_{i,i} \otimes y'_{k,l} \right], \qquad 0 \leqslant i, j, k, l \leqslant n,$$

and $||x_{ij}^0 - x_{ij}'|| < \varepsilon$, $||y_{ij}^0 - y_{ij}'|| < \varepsilon$, $0 \le i, j \le n$. Then the vectors $\{x_{ij}, y_{ij}: 1 \le i, j \le n\}$ defined by $x_{i1} = x_{i1}', y_{i1} = y_{i1}', x_{ij} = \eta^{-1/2} x_{ij}', y_{ij} = \eta^{-1/2} y_{ij}', 1 \le i \le n, 2 \le j \le n$, satisfy the requirements of the lemma.

PROOF OF THEOREM 2. Let $T \in \mathcal{L}(\mathcal{H})$ satisfy the property that $Tx \in (\mathcal{M}x)^-$ for every $x \in \mathcal{H}$. We first note that the equality $[x \otimes y] = 0$, $x, y \in \mathcal{H}$, means that y is orthogonal to $(\mathcal{M}x)^-$, and hence it implies $\langle Tx, y \rangle = 0$.

In order to show that $T \in \mathcal{M}$, we must prove, according to Lemma 5, that the equality $\sum_{i=1}^{n} [x_i \otimes y_i] = 0$, $x_i, y_i \in \mathcal{H}$, $1 \le i \le n$, implies $\sum_{i=1}^{n} \langle Tx_i, y_i \rangle = 0$. By what has just been said, this property is satisfied for n = 1. Assume therefore that $n \ge 2$, $x_i, y_i \in \mathcal{H}$, $1 \le i \le n$, and $\sum_{i=1}^{n} [x_i \otimes y_i] = 0$. For every $\varepsilon > 0$ we can find, using Lemma 6, vectors $x_{ij} = x_{ij}(\varepsilon)$, $y_{ij} = y_{ij}(\varepsilon)$, $0 \le i, j \le n$, satisfying,

(1)
$$[x_{ij} \otimes y_{kl}] = \delta_{il} [x_i \otimes y_k], \quad 1 \leq i, j, k, l \leq n,$$

and

(2)
$$\begin{aligned} \|x_{i} - x_{i1}\| &= \|x_{i} - x_{i1}(\varepsilon)\| < \varepsilon, \\ \|y_{i} - y_{i1}\| &= \|y_{i} - y_{i1}(\varepsilon)\| < \varepsilon, \quad 1 \le i, j \le n. \end{aligned}$$

We now remark that by (1)

$$\left[\sum_{i=1}^{n} x_{ii} \otimes \sum_{i=1}^{n} y_{ii}\right] = \sum_{i=1}^{n} \left[x_{ii} \otimes y_{ii}\right] + \sum_{i \neq j} \left[x_{ii} \otimes y_{jj}\right]$$
$$= \sum_{i=1}^{n} \left[x_{i} \otimes y_{i}\right] = 0$$

and therefore

(3)
$$\left\langle T\left(\sum_{i=1}^{n} x_{ii}\right), \sum_{i=1}^{n} y_{ii}\right\rangle = 0.$$

Since $[x_{ii} \otimes y_{jj}] = 0$ for $i \neq j$, we also have $\langle Tx_{ii}, y_{jj} \rangle = 0$ for $i \neq j$ so that (3) can be rewritten as

(4)
$$\sum_{i=1}^{n} \langle Tx_{ii}, y_{ii} \rangle = 0.$$

Assume now that $i \neq 1$. We have by (1)

$$[(x_{ii} - x_{i1}) \otimes (y_{ii} + y_{i1})] = [x_{ii} \otimes y_{ii}] - [x_{i1} \otimes y_{i1}] + [x_{ii} \otimes y_{i1}] - [x_{i1} \otimes y_{ii}]$$
$$= [x_{i} \otimes y_{i}] - [x_{i} \otimes y_{i}] = 0$$

and therefore

$$0 = \langle T(x_{ii} - x_{i1}), y_{ii} + y_{i1} \rangle$$

= $\langle Tx_{ii}, y_{ii} \rangle - \langle Tx_{i1}, y_{i1} \rangle + \langle Tx_{ii}, y_{i1} \rangle - \langle Tx_{i1}, y_{ii} \rangle.$

The last two terms are zero because $[x_{ii} \otimes y_{i1}] = [x_{i1} \otimes y_{ii}] = 0$ and we conclude that $\langle Tx_{ii}, y_{ii} \rangle = \langle Tx_{i1}, y_{i1} \rangle$. Therefore (4) can now be written as $\sum_{i=1}^{n} \langle Tx_{i1}, y_{i1} \rangle = 0$. We now let ε approach zero. We have $\lim_{\varepsilon \to 0} x_{i1}(\varepsilon) = x_i$, $\lim_{\varepsilon \to 0} y_{i1}(\varepsilon) = y_i$ so that

$$\sum_{i=1}^{n} \left\langle Tx_{i}, y_{i} \right\rangle = \lim_{\epsilon \to 0} \sum_{i=1}^{n} \left\langle Tx_{i1}(\epsilon), y_{i1}(\epsilon) \right\rangle = 0$$

and the reflexivity of \mathcal{M} is proved by Lemma 5. The last statement of the theorem follows from [8, Theorem 2.3] (cf. also [7]).

We conclude with a condition implying property (\mathbf{A}_n) and which is sometimes easier to verify. For an arbitrary linear subspace \mathcal{M} of $\mathcal{L}(\mathcal{H})$ we will denote by \mathcal{M}_* the Banach space of all ultraweakly continuous functionals on \mathcal{M} . It is well known that the dual space of \mathcal{M}_* coincides with the ultraweak closure of \mathcal{M} ; we will not use this fact here. The following two definitions were given in [1] for ultraweakly closed algebras \mathcal{M} (cf. [1, Definitions 1.4 and 1.5]).

DEFINITION 7. Suppose $\mathcal{M} \subset \mathcal{L}(\mathcal{H})$ is a linear subspace and $0 \le \theta < +\infty$. We denote by $X_{\theta}(\mathcal{M})$ the set of all ϕ in \mathcal{M}_{*} such that there exist sequences $\{x_{i}\}_{i=1}^{\infty}$ and $\{y_{i}\}_{i=1}^{\infty}$ in \mathcal{H} satisfying the following conditions:

$$||x_i|| \le 1, \quad ||y_i|| \le 1, \quad 1 \le i \le \infty,$$
$$\lim_{i \to +\infty} ||\phi - [x_i \otimes y_i]|| \le \theta,$$

and

$$\lim_{i \to \infty} (\|[x_i \otimes z]\| + \|[z \otimes x_i]\| + \|[y_i \otimes z]\| + \|[z \otimes y_i]\|) = 0, \qquad z \in \mathcal{H}.$$

DEFINITION 8. Suppose $\mathcal{M} \subset \mathcal{L}(\mathcal{H})$ is a linear subspace and $0 \le \theta < \gamma < +\infty$. We say that \mathcal{M} has property $X_{\theta,\gamma}$ if the closed absolutely convex hull of the set $X_{\theta}(\mathcal{M})$ contains the closed ball of radius γ centered at the origin in \mathcal{M}_{*} :

$$\overline{\operatorname{aco}} X_{\theta}(\mathcal{M}) \supset \big\{ \phi \in \mathcal{M}_{*} \colon \|\phi\| \leqslant \gamma \big\}.$$

The following result coincides with [1, Theorem 1.9] if \mathcal{M} is an ultraweakly closed algebra. However, neither the algebra structure, nor the ultraweak closedness of \mathcal{M} has been used in the proof of that theorem, so that we refer to [1] for the proof.

THEOREM 9. Suppose $\mathcal{M} \subset \mathcal{L}(\mathcal{H})$ is a linear subspace with property $X_{\theta,\gamma}$ for some $\gamma > \theta \geqslant 0$. Then for every $\phi \in \mathcal{M}_*$ there exist sequences $\{x_i\}_{i=1}^{\infty}$ and $\{y_i\}_{i=1}^{\infty}$ in \mathcal{H} such that

$$\phi = [x_i \otimes y_i], \qquad 1 \leqslant i < \infty,$$

$$\limsup_{i \to \infty} ||x_i|| \leqslant (\gamma - \theta)^{-1/2} ||\phi||^{1/2}, \quad \limsup_{i \to \infty} ||y_i|| \leqslant (\gamma - \theta)^{-1/2} ||\phi||^{1/2},$$

and

$$\lim_{i \to \infty} (\|[x_i \otimes z]\| + \|[z \otimes x_i]\| + \|[y_i \otimes z]\| + \|[z \otimes y_i]\|) = 0, \quad z \in \mathcal{H}.$$

It was seen in [1] that this theorem implies that \mathcal{M} has property (\mathbf{A}_n) for each n; we recall that property (\mathbf{A}_n) requires the solvability for x_i and y_i of arbitrary systems of the form $[x_i \otimes y_j] = \phi_{ij}$, $\phi_{ij} \in \mathcal{M}_*$, $1 \leq i, j \leq n$. In order to prove the stronger property (\mathbf{A}_n) we need the following lemma, whose proof is reminiscent of the techniques of Robel [9].

LEMMA 10. Suppose $\mathcal{M} \subset \mathcal{L}(\mathcal{H})$ is a linear subspace with property $X_{\theta,\gamma}$ for some $\gamma > \theta \geqslant 0$. If n is a natural number, a > 0, $\varepsilon > 0$, and $\phi_{ij} \in \mathcal{M}_*$, x_i , $y_j \in \mathcal{H}$, $1 \leqslant i, j \leqslant n$, are such that

$$\|\phi_{i,i} - [x_i \otimes y_i]\| < a, \quad 1 \leqslant i, j \leqslant n,$$

then there exist $\{x_i', y_i': 1 \le i, j \le n\}$ in \mathcal{H} such that

$$\|\phi_{ij} - [x_i' \otimes y_j']\| < \varepsilon, \quad 1 \leq i, j \leq n,$$

and

$$||x_i - x_i'|| < n(\gamma - \theta)^{-1/2} a^{1/2}, \quad ||y_i - y_i'|| < n(\gamma - \theta)^{-1/2} a^{1/2}, \quad 1 \le i, j \le n.$$

PROOF. Let $\delta > 0$ be such that $(n^2 + 2n - 1)\delta < \varepsilon$. An application of Theorem 9 to $\phi = \phi_{ij} - [x_i \otimes y_i]$ yields sequences $\{\xi_{ij}(k)\}_{k=1}^{\infty}$, $\{\eta_{ij}(k)\}_{k=1}^{\infty}$ such that

(6)
$$\phi_{ij} - [x_i \otimes y_j] = [\xi_{ij}(k) \otimes \eta_{ij}(k)], \quad 1 \leq k < \infty,$$

(7)
$$\|\xi_{ij}(k)\| < (\gamma - \theta)^{-1/2} a^{1/2}$$
, $\|\eta_{ij}(k)\| < (\gamma - \theta)^{-1/2} a^{1/2}$, $1 \le k < \infty$, and

(8)
$$\lim_{k \to \infty} \left(\left\| \left[\xi_{ij}(k) \otimes z \right] \right\| + \left\| \left[z \otimes \eta_{ij}(k) \right] \right\| \right) = 0, \quad z \in \mathcal{H}.$$

An easy induction using (8) shows that we can find natural numbers k_{ij} , $1 \le i$, $j \le n$, such that the vectors $\xi_{ij} = \xi_{ij}(k_{ij})$ and $\eta_{ij} = \eta_{ij}(k_{ij})$ satisfy the inequalities

(9)
$$\begin{cases} \left\| \left[\xi_{ij} \otimes \eta_{kl} \right] \right\| < \delta & \text{if } (i,j) \neq (k,l), \\ \left\| \left[x_i \otimes \eta_{kl} \right] \right\| < \delta, \qquad 1 \leq i, k, l \leq n, \\ \left\| \left[\xi_{ij} \otimes y_k \right] \right\| < \delta, \qquad 1 \leq i, j, k \leq n. \end{cases}$$

We can now set

$$x'_i = x_i + \sum_{k=1}^n \xi_{ik}, \quad y'_j = y_j + \sum_{l=1}^n \eta_{lj}$$

and note that we obviously have from (7)

$$||x_i' - x_i|| \le \sum_{k=1}^n ||\xi_{ik}|| < n(\gamma - \theta)^{-1/2} a^{1/2}, \quad 1 \le i \le n,$$

and similarly

$$||y_i' - y_j|| < n(\gamma - \theta)^{-1/2} a^{1/2}, \quad 1 \le j \le n.$$

Finally, we observe that

$$\phi_{ij} - \left[x_i' \otimes y_j'\right] = \phi_{ij} - \left[x_i \otimes y_j\right] - \left[\xi_{ij} \otimes \eta_{ij}\right] - \sum_{l=1}^n \left[x_i \otimes \eta_{lj}\right]$$
$$- \sum_{k=1}^n \left[\xi_{ik} \otimes y_j\right] - \sum_{(l,k) \neq (i,j)} \left[\xi_{ik} \otimes \eta_{lj}\right]$$

and we obtain, using (6) and (9),

$$\|\phi_{ij} - [x_i' \otimes y_j']\| \le n\delta + n\delta + (n^2 - 1)\delta < \varepsilon.$$

The lemma follows.

A routine argument shows now that Lemma 10 is self-improving to yield the following result.

THEOREM 11. Suppose $\mathcal{M} \subset \mathcal{L}(\mathcal{H})$ is a linear subspace with property $X_{\gamma,\theta}$ for some $\gamma > \theta \geqslant 0$. If n is a natural number, a > 0 and $\phi_{ij} \in \mathcal{M}_*$, $x_i, y_j \in \mathcal{H}$, $1 \leqslant i, j \leqslant n$, are such that

$$\|\phi_{ij} - [x_i \otimes y_j]\| < a, \quad 1 \leq i, j \leq n,$$

then there exist $\{x'_i, y'_i: 1 \le i, j \le n\}$ in \mathcal{H} such that

$$\phi_{i,i} = \left[x_i' \otimes y_i' \right], \qquad 1 \leqslant i, j \leqslant n,$$

and

$$||x_i - x_i'|| < n(\gamma - \theta)^{-1/2} a^{1/2}, \quad ||y_i - y_i'|| < n(\gamma - \theta)^{-1/2} a^{1/2}, \quad 1 \le i, j \le n.$$

PROOF. Choose a positive number b such that

$$\|\phi_{i,i} - [x_i \otimes y_i]\| < b < a, \quad 1 \leq i, j \leq n,$$

and let ε be a positive number to be specified later (ε will only depend on a and b). By Lemma 10, we can find vectors $\{x_i^1, y_j^1: 1 \le i, j \le n\}$ such that

$$\left\|\phi_{ij}-\left[x_i^1\otimes y_j^1\right]\right\|<\varepsilon, \qquad 1\leqslant i,\, j\leqslant n,$$

and

$$||x_i^1 - x_i|| < n(\gamma - \theta)^{-1/2}b^{1/2}, \quad ||y_i^1 - y_i|| < n(\gamma - \theta)^{-1/2}b^{1/2}.$$

We can then use Lemma 10 to construct inductively sequences $\{x_i^k\}_{k=2}^{\infty}$, $\{y_j^k\}_{k=2}^{\infty}$, $1 \le i, j \le n$, such that

$$\|\phi_{i,i} - [x_i^k \otimes y_i^k]\| < \varepsilon^k, \quad 1 \le i, j \le n, 2 \le k < \infty,$$

and

$$||x_i^{k+1} - x_i^k|| < n(\gamma - \theta)^{-1/2} \varepsilon^{k/2}, \quad ||y_j^{k+1} - y_j^k|| < n(\gamma - \theta)^{-1/2} \varepsilon^{k/2},$$

$$1 \le i, \ i \le n, 1 \le k < \infty.$$

It is obvious that the sequences $\{x_i^k\}_{k=1}^{\infty}$ and $\{y_j^k\}_{k=1}^{\infty}$, $1 \le i, j \le n$, are Cauchy and $\phi_{i,j} = [x_i' \otimes y_j']$, $1 \le i, j \le n$, if

$$x'_i = \lim_{k \to \infty} x_i^k, \quad y'_j = \lim_{k \to \infty} y_j^k, \qquad 1 \leqslant i, j \leqslant n.$$

Finally,

$$||x_{i}' - x_{i}|| \leq ||x_{i}^{1} - x_{i}|| + \sum_{k=1}^{\infty} ||x_{i}^{k+1} - x_{i}^{k}||$$

$$< n(\gamma - \theta)^{-1/2} \left(b^{1/2} + \sum_{k=1}^{\infty} \varepsilon^{k/2} \right)$$

$$= n(\gamma - \theta)^{-1/2} \left(b^{1/2} + \varepsilon^{1/2} (1 - \varepsilon^{1/2})^{-1} \right), \quad 1 \leq i \leq n,$$

and analogously

$$||y_i' - y_j|| < n(\gamma - \theta)^{-1/2} (b^{1/2} + \varepsilon^{1/2} (1 - \varepsilon^{1/2})^{-1}), \quad 1 \le j \le n.$$

It suffices therefore to choose ε so small that $b^{1/2} + \varepsilon^{1/2} (1 - \varepsilon^{1/2})^{-1} < a^{1/2}$. The theorem is proved.

We are now able to prove the promised criterion.

COROLLARY 12. Suppose $\mathcal{M} \subset \mathcal{L}(\mathcal{H})$ is a linear subspace with property $x_{\theta,\gamma}$ for some $\gamma > \theta \geqslant 0$. Then \mathcal{M} has property $(\tilde{\mathbf{A}_n})$ for every natural number n. In particular the ultraweak closure \mathcal{M}^- of \mathcal{M} is weakly closed and reflexive.

PROOF. The last part of the statement follows from the first part, combined with Lemma 3 and Corollary 4. To prove the first part we only have to use Theorem 11. Observe that we can take $\delta(\varepsilon, n) = \varepsilon^2 n^{-2} (\gamma - \theta)$.

We finally note that one could give a definition analogous to Definition 8, in which the space \mathcal{M}_* is replaced by the set \mathcal{M}_- of all weakly continuous functionals on \mathcal{M} . The property thus defined would however be stronger than $X_{\theta,\gamma}$ since \mathcal{M}_* coincides with the norm closure of \mathcal{M}_- ; this is why we restricted ourselves to the space \mathcal{M}_* and the properties (\mathbf{A}_n) . We do not know whether the weaker properties (\mathbf{A}_n) imply reflexivity. Property (\mathbf{A}_1) alone does not imply reflexivity. Indeed, the algebra \mathcal{M} of 2×2 matrices defined as

$$\mathcal{M} = \left\{ \begin{pmatrix} a & b \\ 0 & a \end{pmatrix} : a, b \in \mathbf{C} \right\}$$

is not reflexive, but it has property (A_1) (and even (A_1)), as can be seen by an easy computation).

REFERENCES

- 1. C. Apostol, H. Bercovoci, C. Foias and C. Pearcy, Invariant subspaces, dilation theory, and the structure of the predual of a dual operator algebra. I, J. Functional Anal. (to appear).
- 2. H. Bercovici, B. Chevreau, C. Foias and C. Pearcy, Dilation theory and systems of simultaneous equations in the predual of an operator algebra. II, Math. Z. 187 (1984), 97-103.
- 3. H. Bercovici, C. Foias, J. Langsam and C. Pearcy, (BCP)-operators are reflexive, Michigan Math. J. 29 (1982), 371-379.
- 4. H. Bercovici, C. Foias and C. Pearcy, Factoring trace-class operator-valued functions with applications to the class A_{\aleph_0} , J. Operator Theory (to appear).

- 5. _____, Dilation theory and systems of simultaneous equations in the predual of an operator algebra. I, Michigan Math. J. 30 (1983), 335–354.
- 6. A. Brown and C. Pearcy, Introduction to operator theory. I. Elements of functional analysis, Springer, New York, 1977.
- 7. D. W. Hadwin and E. A. Nordgren, Subalgebras of reflexive algebras, J. Operator Theory 7 (1982), 3-23.
- 8. A. I. Loginov and V. S. Sulman, Hereditary and intermediate reflexivity of W*-algebras, Izv. Akad. Nauk SSSR Ser. Mat. 39 (1975), 1260–1273. (Russian)
- 9. G. Robel, On the structure of (BCP)-operators and related algebras. I, J. Operator Theory 12 (1984), 23-45.

DEPARTMENT OF MATHEMATICS, MASSACHUSETTS INSTITUTE OF TECHNOLOGY, CAMBRIDGE, MASSACHUSETTS 02139

Current address: Mathematical Sciences Research Center, 2223 Fulton Street, Berkeley, California 94720