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A BIJECTIVE PROOF

OF STANLEY'S SHUFFLING THEOREM

BY

I. P. GOULDEN

Abstract. For two permutations o and u on disjoint sets of integers, consider

forming a permutation on the combined sets by "shuffling" o and u (i.e., a and co

appear as subsequences). Stanley [10], by considering P-partitions and a g-analogue

of Saalschutz's 3F2 summation, obtained the generating function for shuffles of o

and u with a given number of falls (an element larger than its successor) with respect

to greater index (sum of positions of falls). It is a product of two ^-binomial

coefficients and depends only on remarkably simple parameters, namely the lengths,

numbers of falls and greater indexes of o and u. A combinatorial proof of this result

is obtained by finding bijections for lattice path representations of shuffles which

reduce a and u to canonical permutations, for which a direct evaluation of the

generating function is given.

1. Introduction. For a sequence a = ax ■ ■ ■ anof integers ax,... ,an, we define the

descent set of a, denoted by 3>(a), by 2(a) = {i\a¡ > ai+x], the number of descents

in a by d(a) = \@>(a)\, and the greater index of a by 1(a) = E,eS(a) i. We say that a

has length \a\ = n.

Let a = {ax,...,am} and ß = {/?,,.. .,/?„} be disjoint subsets of •Arm + n =

{!,... ,m + n), where a, < • • • < a„, and ßx < ■ ■ ■ < /?„. For any permutation a

of the elements of a, and any permutation w of the elements of ß, we say that o and

w are (m, n)-compatible.

The shuffle product of a and to, denoted by £f(o, w), is the set of all permutations

of ~#~m + n in which a and w both appear as subsequences. The following result is

worth recording, since it leads to the lattice path representation of shuffle products

in §2.

Proposition 1.1. If a and to are (m, n)-compatible, then

|Wa,«)|-('* + *).

Proof. There is a bijection between elements p of y (a, w) and subsets a =

{<*!,...,am) of JVm + n defined as follows. If ax < ■ ■ • < am and a = ol ■ ■ ■ am, then

p contains a, in position a, for i = 1,... ,m.

The elements of w appear, in order, in the set of positions of p complementary to

a.    D
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148 I. P. GOULDEN

Consider the generating functions Sk(a, u) for the shuffle product y (a, w),

defined by

Sk(o,u) ,'(p)

pey(o.u)

i/(p) = A

Stanley [10] has obtained a compact expression for Sk(a, co) in terms of the Gaussian

(or ^-binomial) coefficient ['•], defined for nonnegative integersy by

(l-q')---(l-q'-J+l)

(l-qJ)---(l-q)

and ['] = 0 otherwise.

Theorem 1.2 (Shuffling Theorem). Let a and w be (m, n)-compatible, with

d(a) = r, d(u) = s. Then

Sk(o,o>) = qn°) + n")+(k-i){k-r)
m — r + s

k - r

n — s + r

k - s
D

The case r = s = 0 had been previously given by MacMahon [8, Vol. II, p. 210].

Stanley obtained the Shuffling Theorem by means of his theory of P-partitions, and

by applying the following identity.

Theorem 1.3.

;>o

n + s — r

s — i

m + n + i

i

[m;r]["íi- °

This identity was proved by Gould [4], and is equivalent to Jackson's [7]

g-analogue of Saalschutz's theorem (see [9, p. 243]). Combinatorial proofs of

Saalschutz's theorem (a 3F2 summation equivalent to the case q = 1 of Theorem 1.3)

have been given by Andrews [1] and Cartier and Foata [3].

Stanley [10] has asked for a proof of Theorem 1.2 which avoids the use of

Theorem 1.3. In this paper we present such a proof. Basic to our treatment is the

combinatorial interpretation of the Gaussian coefficient ['j\ as the generating func-

tion for integer partitions with at mostj parts, and largest part at most i — j, where i

and j are nonnegative integers.

Lemma 1.4.

1.

E
0«a,< ■ ■ ■ üa^i-j

a,+ ••■+«,  =

E
qß,+ ...+ßJ=q(J}l)

Proof. 1. See Andrews [2, p. 33] for a proof; historical references are given on p.

51.
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2. Obtained from (1) by letting ßm = am + m, for m - 1,.. .J, since 1 + 2 +

••■ +j = (J21)-   a

In §2 we discuss lattice paths and their relationship to shuffle products. A

bijective proof of the Shuffling Theorem is given in §3.

2. Lattice paths. Suppose that u = (ux,u2) ad v = (vx,v2) are pairs of integers

with ux < vx and u2 < v2. Then B(u, v) = {ux,ux + 1,.. .,vx} X {u2,.. .,v2) is

called a grid, and we shall denote B(u,v) by B in this section when the context

allows. We consider lattice paths on a grid, with horizontal and vertical steps. In

particular, let a¡ = (aa, a¡2) e B for /' = 0,... ,k, and let dt = a¡ - a,_, for i =

1,... ,k. Then if d¡ 6 {(1,0), (0,1)} for i = 1,.. .,k,a = a0 ■ ■ ■ ak is called apath on

B, from a0 to a¿, of length |a| = k. A path of length 0 (a single vertex) is called an

empty path. The /th difference dj is called the z'th step and a, is the ith vertex in the

path a. We say that J, follows a,_, and precedes a,. The difference (1,0) is called a

step across, and (0,1) is a step «p. The vertex a¡ is, for i = 1,... ,k — 1,

(i) an upper corner if d¡_, = (0,1) and ii, = (1,0),

(ii) a lower corner if d,_, = (1,0) and d¡ = (0,1),

(iii) a horizontal crossing of x = an if */,■_, = d¡ = (1,0),

(iv) a vertical crossing ofy = a,2 if d¡_x = d¡ = (0,1).

If b = ¿>0/y, ■ • • fy is a path on 5, then the product ab is defined when aA = b0 by

a¿j = a0ax ■ ■ ■ akbx ■ ■ ■ bj, and is not defined otherwise.

Note that a path is uniquely specified by its end-points and either its upper

corners or lower corners.

Proposition 2.1. If ux < x0 =$ xx < • • • < xk < vx and w2 < y0 < yx < ■ ■ ■ <

yk-x < yk < v2 are integers, then there is a unique path on B(u, v) from (xQ, y0) to

(xk, yk) with upper corners at (xx, yx),.. .,(xk_x, yk^x), and no other upper corners.

If ux < x0 < x, < • • • < xk_x < xk < vx and u2 < y0 < yx < ■ ■ ■ < yk < u2 are in-

tegers, then there is a unique path on B(u, v) from (x0, y0) to (xk, yk) with lower

corners at (xx, yx),... ,(xk_x, yk-X), and no other lower corners.

Proof. For upper corners, the path is px ■ ■ ■ pk, where

Pi = (xi-x,yi-i)(xl_l + l,y^i) •■:(xnyi_1)(xi,y^i + 1) •••(*,, y,).

For lower corners, the path is Ô, • • • 8k, where

8¡ = (x¡-i, ^-i)(jc,-ii y,-i + !)■■■ (xi_.u y,)(xi-i + 1, yt) ■ ■ ■ (x¡, v,).   d

For compactness, we also denote a path by its sequence of steps, using "A" for

steps across, and "I/" for steps up, subscripted by its initial vertex. If the initial

vertex is (0,0), then we suppress the subscript.

The path a on B(u, v) is said to cover B (or to be a cover of B) if a0 = u and

ak = v. If a covers B then it partitions B into 3 sets, consisting of the points in B that

are

(i) on a (points (tx, t2) such that tx = an, t2 = ai2 for some i = 0,.. .,k),

(ii) above a (points (tx, t2) such that tx < an, t2 > ai2 for some i = 0,...,k),

(iii) below a (points (<,, t2) such that tx > an, t2 < al2 for some i = 0,...,k).
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A path b on B is called a < a-path if b is nonempty, and all vertices of b are on or

below a. A path b on B is called a > a-path if ¿> is nonempty, and all vertices of b are

above a, except the first and last vertices of b, which may also be on a, but not both

on a if \a\ = 1. For example, if a = UAU2AUA, then U, A2U and (UA2U)(X2) are

< a-paths, while (U2A)(0X) and (UA2)m) are > a-paths. The path U2A is neither a

< a-path nor a > a-path.

Note that the use of "above" and "below" corresponds to the obvious meanings

of these words in a geometric representation of a path. The constructions which are

given later in this paper involve many parameters, and require a fair amount of

notation and terminology to state accurately. It is intended that the terminology

used throughout this paper be natural in the geometric representations of these

constructions, though no pictures will be supplied by the author.

The cover (Av'~u,UUl~"2)u is called the canonical cover of B(u, v).

If a covers B and b is a path on B, then we define C€B a(b) to be the set of all

upper corners of b that are above a and all lower corners of b that are below a. If c is

the canonical cover of B, then C€B c(b) is more simply described as the set of all

upper corners in b.

In order to define generating functions for sets of paths, we must define a weight

function for lattice paths. Let the weight of a vertex ex = (exx, ex2) be w(ex) = exx +

ex2, and the weight of a set e = {ex,...,ek} of vertices be w(e) = w(ex) + ■ ■ ■ +

w(ek).

The following weight-preserving mapping rp for paths is very important to our

proof of Theorem 1.2. Suppose that a covers B and g is a < a-path on B from z, to

z2 with lower corners below a given by (/,,, f2X),. ..,(fXk, f2k)- Then we define

^Ba(g) to be the path from zx to z2 whose upper corners are (fxx - 1, f2X +

1),... ,(fXk — 1, f2k + 1). (This path is unique, by Proposition 2.1.) If b is a path on

B, then we can write b uniquely as b = hxgxh2g2 ■ • ■ h¡g„ for some / > 1, where

gx,... ,g¡_, are < a-paths, g¡ is either a < a-path or empty, hx is either a > a-path or

empty, and h2,...,h¡ are > a-paths. Then we define ^B_a(b) = hx\pB a(gx) ■••

hi^B.u(gi)' where ^B%a(g¡), z' = l,...,/,  are given above. (If g, is empty, then

ÍB.a(8l) = g/-)

For   example,   if   B = B((0,0),   (7,6)),   a = AU2AUA3UAU2A    and   b =

(A3U3A3UAU)(OX), then b = hxgxh2g2, where hx = (^)(0,i) and h2 = (UA2)(33) are

> a-paths,  while  gi = (A2U2)(XX)  and  g2 = (AUAU)(5A)  are   < a-paths.  Now

*B.a(gi) = (AUAU)(U) and tBJg2) = (AU2A)(SA), so

tB,u(b) = (A2UAU2A3U2A)(0,X).

Note that ^Ba(b) = {(3,1), (3,4), (7,5)} and <$Bc(b) = {(2,2), (3,4), (6,6)}, where

b = ^Ba(b)andc = /l7(76is the canonical cover of B. Thus \^Btil(b)\ = 3 = \%Bx(b)\

and wy€B a(b)) = 4 + 7 + 12 = w(<ßB c(b)), equalities that are proved to hold in

general in the following result.

Lemma 2.2. Let x, y e B, and define £PB(x, y) to be the set of paths on B from x to

y. Then for any cover a of B,

!■ ̂ b.u- &'b(x> y) -* &b(x> y)-b>-*hisa bijection.
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Moreover, if c is the canonical cover of B, then

2- \VBJb)\ = \VBjb)\,
3. w(VBJb)) = w(VBJb))-

Proof. 1. First note that if g is a < a-path from zx to z2, then g = ^„(g) is also

a < a-path from z, to z2. This is because if the lower corners of g below a occur at

(/ii>./2i).--->(/i*»/2*)> then the uPPer corners of g occur at (/u - 1, f2x +

1),... ,(fXk — 1, f2k + 1), each of which must lie on or below a. Thus g is a path

from a point (zx) on or below a, to a point (z2) on or below a, in which all upper

corners are on or below a. Thus Proposition 2.1 tells us that g is unique, and is also a

< a-path. Moreover g is recoverable from g as follows. Suppose that g is a < a-path

from z, to z2, whose upper corners are (cxx, c2X),.. -,(cXk, c2k). Let g be the unique

path from z, to z2 whose lower corners are (cxx + 1, c21 — 1),... ,(cXk + 1, c2k — 1),

given by Proposition 2.1. Now g is not necessarily a < a-path, but we can write g

uniquely as g = dxexd2 ■ ■ ■ em_xdm for some m ^ 1, where d,,...,dm are < a-paths

(dx and dm can also be empty) and ex,...,em_x are > a-paths. Also, all lower

corners of g are below a since (cXi, c2i) is on or below a, so (cXj + 1, c2i - 1) must be

below a for i = l,...,k. Thus the lower corners of g must all be internal vertices in

one of the paths d,,... ,dm. The path e,Tor i = 1,..., m — 1 is a path from a vertex

on a, say a,, to a vertex on a, say a,., with a single corner (upper). For i = l,...,m

— 1, let r, be the segment of a from a, to a,. Then r,, of course, has no lower corners

below a, since r¡ has no vertices below a, and we have g = dxrxd2 ■ ■ ■ rm_xdm, so

\pBla exists for < a-paths.

Now, if b = hxgx ■ ■ ■ hjgj G ¿PB(x, y) in the notation of the definition of \pB a

above, then b = hxgx ■ ■ ■ h,g, G @B(x, y), where g, = ^Ba(g,) for /' = 1,...,/, the

ft,'s are > a-paths (by definition), and the g,'s are < a-paths (from above). Thus

\p~Ba is well defined, so y>fi a is a bijection.

2 and 3. From the description of \pB a above, we know that if g = pB a(g), where g

is a < a-path, then \VBJg)\ = \VBJg)\ (= k above) and w(VBa(g)) = w(^Bc(g))

( = /n +/21 + ' • • + /u + A* above). Again let b = hxgx ■ ■ ■ h,g, and b = hxgx

■■■ h,g!. Then

K„U)I= EK,(Ä,)| + Ku(g,)|
1-1

and

K,(g)\= EKoCOI + K,c(s,)l
(=1

since the intersecting vertex of a < a-path (like g, or g,) and a > a-path (like A,)

must be on a, and cannot be an upper corner. But (#Ba(h¡)= ^Bc(hj) for

7 = 1,...,/ since hi is a > a-path, and |#B,a(g,-)| = |#B,c(g,-)| from above, so

l^,a(^)l = l*fl.c(S)l- The proof that w(VBJg)) = w(^flt.(g')) is similar.    D

Finally, denote the grid ß((0,0), (m, n)) by G, and let the set of paths from (0,0)

to (m, n), which are the covers of G, be denoted by ¿P(m, n). (Note that íP(m, n) =

&>c((0,0),(m, n)) in the notation of Lemma 2.2.)
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Now we relate lattice paths to shuffle products of permutations. For (m, «^com-

patible permutations a and to, we represent the permutation p g Sf(o, co) by the

path <ba u(p) g 0>(m, n) as follows. If the /th element of p is in a, then the zth step

in <ba u(p) is across, and if the zth element of p is in w, then the zth step in <ba a(p) is

up for i = l,...,m + n. We say that the zth step of <t>au(p) represents the zth

element of p. For example p0 = 647325819 g ^(6358,47219) is represented by

<#>(p0) = AU2AUA2U2 g 0(4,5).

Proposition 2.3. // o and to are (m, n)-compatible permutations, then c£>n w:

y(o, to) -» ¿P(m, n) is a bijection.

Proof. Immediate from Proposition 2.1, since a subset of Jfm + n of cardinality m

uniquely specifies the path in 3P(m, n) whose m steps across occur in positions

belonging to that subset.    D

3. The Shuffling Theorem. In this section we establish the Shuffling Theorem by a

sequence of bijections for lattice paths and permutations. First we need some

additional notation.

Let 0 = t0 < • • • < tr+l = m, 0 = l0 < ■ ■ ■ < ls+x = n, t ={?,,.. .,tr) and 1 =

{/,,...,/,}. Let B,j be the grid B((t„ lj), (ti+l, lJ+l)) for i = 0,.. .,r,j = 0,... ,s, so

U,r=0Uy=05,7 = G. The grids #,- ■ and Blj + X intersect in the segment of>> = /; + 1 from

(t,,lJ + x) to (ti+x,lj+x), and the grids 5,7 and Bi+Xj intersect in the segment of

x = ti+x from (ti + x, lj) to (ti + x, Ij+i)- These segments are called borders for the grids

to which they belong. If b g 0>(m, n), define eu(b) to be the maximal subpath of b

on /?,... Let ^(b) be the set of vertical crossings of v-coordinates in 1, and Jft(b) be

the set of horizontal crossings of x-coordinates in t. Suppose that a is an array with

(i, 7)-entry aiJ for i = 0,...,r,j = 0,... ,s, where atJ covers Bjj. Then define

*■,,» = ■*;(*>) ú v,(6) ú lj  Ù ny..y(«v(*)).
/ = o y = 0

and

Pfc(t,l,a)=       S      fl>v(^..,(A)).
h(E3P(m, n)

l-^.u(*)l=*

Finally we say that a is legitimate if no pair of distinct a,-'s have a nonempty path as

their intersection. Note that if a pair of a^'s have a nonempty path as their

intersection, then the intersection path must lie on the mutual border of the

corresponding 5,,'s.

For example, let m = 9, n = 6, r = 2, s = 1, t = {2,6}, 1 = {3}, aœ = UA2U2,

a01 = (i/3/f2)(0.3), a10 = (t/2/l4t/)(2.0), au = (A<U3){Z3), a20 = («7/K7^2c/)(6.0), a21

= (/l3t73)(63) and A = AU2A3U2A2U2A\ Then Vx(b) = {(4,3)}, Jif,(b) = {(2,2)},

£oo(A) = AU2A, e10(/3) = (^l2i/)(22), en(b) = (UA2U2)^3), e2X(b) = (U2A3)(6A) and

eox(b) = e20(b)= 0. Thus ^ß,K),a(X)(%>(A)) = {(1-0), (1,2)}, VB¡¡an(exx(b)) =

{(4,4)}, ^B21,a21(e21(6)) = {(6,6)} and VB„,,,.(*,,(*>)) = 0 for other i, y. Note that a

is not legitimate since a^, and axo have the path (U)(2l) in common, where (t7)(2X) is

on the border shared by Bœ and /?10. Also note that each corner in b occurs, as a



A BIJECTIVE PROOF OF STANLEY'S SHUFFLING THEOREM 153

corner, in a unique e,,(A), though distinct e¡¡ can have a nonempty path (again a

portion of mutual border) as their intersection. For example eu(A) and e21(A) have

the path (U2),6A) in common in the above example.

We now give the first of the bijections that will allow us to deduce the Shuffling

Theorem. Examples of all of the results which lead to the Shuffling Theorem are

contained in Example 3.6, at the end of this section.

Lemma  3.1.  Let a = ax • • • am and to = ux • • • to,, be (m, n)-compatible,  with

2(a) = tandSi(u) = 1. If' atj is the cover ofBtj representing the shuffle ofot +x ■ ■ ■ a,

and W/ +l ■ ■ ■ to,     into increasing order, then

1. Sk(a, to) = P,(t,l, a).

2. a is legitimate.

Proof. 1. Let p g if (o, to) and let A = <¡>a¡u(p) g 0>(m, n). Suppose that p, is the

zth element of p, and A, = (bXj, A2,) is the vertex of A that follows that zth step, so

w(b¡) = i.

If A, is the horizontal crossing in A, then p, = oh and pi+l = oh +1, so p, > pi + 1 if

and only if bXi g 3)(a) = t, or equivalently, A, g J(?t(b). If A, is a vertical crossing in

A, then p, = w6 and p/ + 1 = <oé +1, so p, > p, + 1 if and only if A2, g i^(to) = 1, or,

equivalently, A, g Y~x(b).

If A, is a corner in A, then A, appears as a corner in ed/(b), say, and in no other

e, (A). If A, is an upper corner, then p, = cofci. and pi + x = ah + 1. Moreover, if A, is

above adl, then p; + 1 occurs before p, in adh so p, > p, + 1 by the construction of adl.

However if A, is on or below adl, then p¡ occurs before pi+1 in adl, so p, < p/+1.

Similarly, if A, is a lower corner, then A, is below adl if and only if p, > px+1,

Thus we have a bijection between descents i g ,@(p) and vertices A, ej¡ja(fj),

where w(A,) = z. This immediately gives d(p) = |^,i,a(^)l an^ ^(p) = w(^t,ia(b)) so,

from Proposition 2.3, we have

S,(a,co)=       £      q'^=       £       a^-'*»=JP,(t,l,a),

p6y(j.u) b^3s(.m,n)

d(p) = k |JW>)I = A

as required.

2. Suppose that alj_x and a;/ have a nonempty path in common. Then this path

must be (/, lj) ■ ■ ■ (g, lj) for some/, g with i, < / < g < r/+1. But the next vertex in

a¡j after (g, /,) must be (g, /; + 1), so by definition of atj, oy+1 < • • • < og < a, +1.

Similarly oy+1 > to,, by considering ß/y-i, and we deduce that to, < oy+1 < to, +1, so

to, < co/+1. But, by definition, /y g @(u), so to, > to, +1 and we have arrived at a

contradiction. Thus atj_x and a, have at most one vertex in common, for all z, j.

Similarly, we can show that a,_, and a;/ have at most one vertex in common, for

all z, j, and conclude that a is legitimate.   □

To proceed from here, it is convenient to define the following total order for the

set J = {0,. ..,r) X {0,...,i}. If (rx, sx) and (r2, s2) are in 1, then we say that

(/•,, sx) < (r2, s2) if sx — rx < s2 — r2 or if s, — rx = s2 — r2 and sx < s2. Thus the

arrangement of â in increasing order is (r,0), (r — 1,0), (r,l),...,(0, s — 1), (1, s),

(0, s). Now let c be the array whose (z, y')-entry is c/;, the canonical cover of Z?/y, for

z = 0,...,r,y = 0,...,s.
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For i = 0,... ,(r + l)(s + 1), let a(,) be the array obtained from a by replacing the

first i elements (in terms of the above total order) of a by the first i elements of c, so

a(0| = a,anda«r+1,(s + 1» = c.

For A g 0>(m, n), we define A<0 g &(m, n) for i = 0,...,(r + l)(s + 1), recur-

sively as follows. Let A(0) = A. For i = l,...,(r + l)(s + 1):

(i) Let (a, ß) he the zth element of â.

(ii) If eaß(b('-X)) = 0, then A(,) = A(i_1).

(iii) If eaß(bu~l)) = 8 is a path in ßa/3, then

A(,_1) = o\ô<52 for unique paths 8X, 82, each with a single vertex in Baß. Let A(,) =

Si4>B^a^,(S)S2-
For example, if m = 10, n = 8, r = s = 1, t = {4}, 1 = {3}, am = AUA2U2A,

a01 = (A2U5A2)m), a10 = (t/l46)(4,0), au = (U2A3V2A3 U ) (4J) and A =

/I4i7l42t7l42(73/l2t7, then A<0) = A, A(1> = A(2) = A5U3AUA2U3A2U and A(3) = A<4) =

A5U4A2UA3U3. Now, for compactness, denote J*tI,a(.>(A<,)) by &u\ Then, in the

above example, JF(0) = {(4,0), (6,2), (6,3), (8,4)}, J*"'(1) = ,F(2) = {(4,0), (5,3), (6,3),

(8,4)}, J^(3) = jT(4) = {(4,0), (5,3), (5,4), (7,5)}, so |jF<"| = 4, and w(&{,)) = 4 +

8 + 9 + 12 = 33 for z = 0,... ,4. This equality is proved to hold in general for any a

that is legitimate, as in this example, in the following result.

Theorem 3.2. If a is legitimate, then, for all k > 0, Pk(t, 1, a) = Pk(t, 1, c).

Proof. If, in the construction of A<0 from A<,_1) above, we have ea^(A(,_1)) = 0,

or eaß(b°~l)) is a single vertex (either top left or bottom right corner of Baß), then it

is immediate that |J^'0! = |JF<,-1)| and w(3fr(i)) = w(^li~l)).

Otherwise, we have A*'"1' = 8X882, where 8 = eaß(b°'l)), and the final vertex, say

vx, of 8X is in Baß, and the initial vertex, say v2, of 82 is in Baß. Suppose that vx is the

y'th vertex in A0"11 (and A(,)) and that v2 is the A:th vertex in A(,1) (and A(,)). Then,

for u = 0,... ,j — 1 and k + 1,... ,m + n, the i/th vertex of A0I) is in Jf <'_1) if and

only if the zvth vertex of A(,) is in^"(,), because these are vertices internal to 5, and

82, unchanged in the construction. Also, for u = j' + 1,... ,k — 1, the wth vertex of

A(,_1) is in jrl'-D if anfj only if the «th vertex of A<0 is in J*"01, from Lemma 2.2,

with x = vx, y = v2, B = Baß, a = aaß. But the «th vertex in any path in &(m, n)

has weight equal to u. Thus we prove l^^l = \^{i'l)\ and w(^(i)) = w(^°~1))

by proving that zjj G J2"*0 if and only if vx g J*"(,_I), and v2 g J^(,) if and only if

v2 eJ1'-1».

Consider first vx. If a = ß = 0, then f,^ = (0,0), so Ô, is empty, and vx <?. &r{'~l\

vx G J5"01. Otherwise Uj might lie on the lower border of Baß, with a step up

immediately preceding it. This means that vx is either a vertical crossing (of y = lß)

or an upper corner in A0-1' and A'". But if vx is an upper corner in either A0-11 or

bU), it is an upper corner of Baß_x which is above the canonical cover caß_x.

Moreover, by our partial order, (a, ß - 1) < (a, ß), so caß is contained in a(,_1) and

a(,). Thus, whether vx is a vertical crossing or upper corner in A(,_1) and A(,), we have

vx Gj^'-^andt;, GjF«>.

The other choice for vx is that it lies on the left border of Baß, with a step across

immediately preceding it. Then u, appears in A(,_1> as

(i) a horizontal crossing of x = ta, so vx G J^"('_1), or
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(ii) a lower corner in Ba_lß, below aa_xß, so vx g JT(,_1), or

(iii) a lower corner in Ba_xß, on aa_xß, so zy, G J^*'"1'.

In case (i) then either (a) vx is a horizontal crossing in A<0, so v1 g J^'', or (b) vx

is a lower corner in A01. But (b) can only happen if vx and vx + (0,1) are both on

aaß, which means that vx is below aa_xß (contained in a(,) since (a — 1, ß) > (a, ß))

since a is legitimate, so vx g J^(,).

In case (ii) vx appears in A<0 as either a lower corner (below aa_xß) or perhaps a

horizontal crossing, so Uj G J^(,).

In case (iii), vx is either on or above aaß in A<,_1), since a is legitimate, so zj,

remains as a lower corner in A(0, on aa_lß. But aa_lß is contained in a(,) (since

(a - 1,0) > (a, ¿8)) sou, C^(".

Thus, for all choices of vx, we have zj, g Jf*'-1' ¡f and only if vx g J^(,). Similarly

(by considering the above arguments reflected about the line y = x) we can show

thatzj2 g ßru-D if and onjy ¡f Vi e^-(')

Therefore, as noted above, we have |J^(,)| = l^""11! and w(&U)) = w(^~u~1)),

and furthermore, Lemma 2.2 tells us that our construction of b0) from A(,_1) is

bijective. This gives Pk(t,l, a(,)) = Pk(t, l,a('_1)) and the result follows by applying

this result for i = l,...,(r + l)(s + 1), since a(0) = a and a«r+1Xi+1)) = c.       D

The above result allows us to consider only upper corners, and no lower corners,

as well as horizontal crossings of arbitrary x-coordinates t and vertical crossings of

arbitrary ^-coordinates 1. The next result allows us to consider only horizontal

crossings of x-coordinates in m — r = {m — r,... ,m — 1} and vertical crossings of

j'-coordinates in s = {1,...,í}. For compactness, we let A = (s2+1) - (r2+1) + mr.

Theorem 3.3. For all k> 0,

P,(t,l,c) = qz'->'<+v>->'>-*Pk(m - r,s,c).

Proof. First we prove that

^(t,l,c) = a^-'--'^'> + "'T,(w-r,l,c).

If t = m - r this is obviously true. Otherwise, let h be the largest value of z such that

t, < m - r - 1 + z, so th + 1 > th + 1. Now take an arbitrary A g &(m, n) and

define ¿(A) = £,,(A) as follows.

Let y be the maximal segment of A with x-coordinates th and th + 1, and

b = YiYy2, so y, has its final vertex (and no others) with x-coordinate th, and y2 has

its initial vertex (and no others) with x-coordinate th + 1. Moreover y = (th, yx)

■ ■ ■ ('a, y2Xh + !. yi) • • • (h + 1. tt). where yi<yi < a- We define £(è) sep-

arately in three cases, depending on the values of yx, y2, y3 and their interaction with

1. Thus we have either

(i)^! =72 ~y* or

(ii)yx <y2= y3, oryx < y2 < y3 mthy2 g 1, or

(iii) v-, = v2 < y3, oryx < y2 < y3 withy2 G I.

In case (i), set £(A) = A.

In case (ii), let {yx + l,...,y2 - 1} C\l = {/,_,...,/, }, where /,-,<••• < /,■, and

set ¿(A) = y,(í„ ft) • • ■ (th, l,j)(th + 1, /ff) ■■■((„+ Í, y3)y2. (U{yx + 1,.. .\y2 -

1} n 1 = 0 then let/,  = yx.)
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In case (iii), let {y2 + l,...,y3 - 1} nl = {lh,..., ¡. }, where ljt < ■ ■ ■  < lf. Let

e be the maximum value of i such that l, = y2 + i, and set |(A) = yx(th, ^i)

• ' ' (h> yi + e + !)('* + L y2 + e + i) • • ' ('/, + i> y?)y2- (If there is no such i,

then let e = 0.)

Now it is routine to check that £ is reversible, so £tl: 3P(m, n) ~* &(m, n):b ^> b'

is a bijection. Let f = (tx,...,th_x, th + 1, th + x,...,tr), &' = ^VJc(A') and we ex-

amine the effect of £tl on IF = &xXx(b). Let ^consist of the elements of J^that are

also in &' and let 9' consist of the elements of 3F' that are not also in J5".

In cases (i) and (ii), 9 = {(th, y2)) and 9' = {(th + 1, y2)}, so \9'\ - \9\ = 1 - 1

= 0 and w(9') - w(9) = (th + l+ y2) - (th + y2) = 1.

In case (iii), 9={(th,y2), (th + 1, y2 + 1),.. .,(th + 1, y2 + e)} and 9' =

{(th, y2 + l),... ,(th, y2 + e + 1)}, so \9'\ - \9\ = (e + 1) - (e + 1) = 0 and

w(<9') - w(9) = (th + y2 + 1 + • • • + th + y2 + e + 1) - (th + y2 + th + 1 + y2 +

1 + ■•• + th + 1 + y2 + e)= 1.

Thus in all cases \&'\ - \&\ = \9'\ - \9\ = 0 and w(&') - w(&) = w(9') -

w(9) = 1, so for the bijection £tl: A -> A' we have |^V,lc(A')| = |^,i,c(A)| and

w(J^lc(A')) = w(J^lc(A)) + 1. This immediately gives Pk{t',l,c) = qPk(t,l,c), and

applying this mr - (r2+1) - E-=1 /, times yields

Pk(m - r,l,c) = qmr-^l)-V-*''Pk(t,l,c).

But we can similarly show that

Pk(t,s,c) = q^-V->'>Pk(t,l,c)

(by applying £,"/ to the reflection of A about y = x, then reflecting back, and

applying this £-=1/,- (Y1) times). The result follows by combining these two

results.    D

By considering the first three results of this section, we obtain a theorem

expressing the generating function for the shuffle product of an arbitrary pair of

permutations in terms of the generating function for the shuffle product of the

canonical pair pr = r + 1 ■ • ■ mr • • • 1 and vs = m + s + 1 ••• m + 1 m + s + 2

■ • ■ m + n.

Theorem 3.4. If o and to are (m, n)-compatible, with d(o) = r, d(w) = s, then for

all k>0,

Sk(o,o>) = q'^+I^-%(ixr,vs).

Proof. Applying Theorems 3.2 and 3.3 to Lemma 3.1, we obtain

Sk(a, w) = q'^+I^-^Pk(m - r,s,c).

But Lemma 3.1 also yields Sk(¡ir, ps) = Pk(m - r, s,c), since 3>(pr) = m - r,

2(vs) = s, and all elements of vs are larger than all elements of pr. The result follows

immediately.   D

We now give a direct evaluation of the canonical generating function Sk(pr, px).

Theorem 3.5. For all k > 0,

s + r]
s*(f»,.o-iA^-,x'-)[mjt !*'][" k-s
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Proof. In any p g Sf(\Lr, vs), each of m + s + l,...,m + 2 must be larger than

the objects that immediately follow them, and each of r,..., 1 must be smaller than

the objects that immediately precede them. Thus Sk(pr, vs) = 0 unless k > s and

k > r, so the result holds when k < max{r, s}.

Now assume /c > max{r, s), and consider arbitrary a = {a1,...,ak_r} £ Jt"m_r+S

and ß = {ßx,..- ,ßk-s) £ ¿Ki-s+r We construct p g 5^(pr, r,) from a, ß as fol-

lows, considering two cases.

Case 1 (k > r + s). Place the first s + 1 elements of vs in positions a,,... ,aJ+1 of

p, and put the first as + x — s — 1 elements of pr in the remaining positions from 1 to

as + x. We have now filled the first as + x positions of p. We follow with the next

ßx — 1 elements of vs and then, for zr = 2,... ,k — s — r, we alternate blocks of the

next aJ + , - aJ + 1._, elements of pr, and the next ßi - /?,_, elements of vs. Then we

place the next m — r + s + 1 — ak_r elements of pr, so that the first m — r + s +

ßk._t_r positions of p are now filled. Next we place the remaining r elements of pr in

positions m - r + s + ßk_s_r+x,...,m - r + s + ßk^s, and fill the remaining n -

s — /3A._s_r positions of p with the final n — s — ßk-s-r elements of vs. For example

if m = 5, n = 4, r= 2, s = 1, k = 5, a = {1,2,4} ç JfA and ß = {1,2,3,5} £ Jfb,

thenp = 763485291 g y (34521,7689).

Now the descents of p are the positions occupied by m + s + 1,. ..,m + 2, the

positions preceding those occupied by r,...,l, and the positions occupied by an

element of vs, which is immediately followed by an element of pr (these are not

mutually exclusive). Thus for p constructed above, we have

2>(p) = {ax,...,as,as+x + ßx - l,...,ak_r+ ßk_s_r- 1,

m - r + s - 1 + ßk_s_r+x,...,m - r + s - 1 + ßk_s),

so d(p) = k and I(p) = s - k + r(m - r + s) + T.kI{ai + Efj/jS,.

Case 2 (k^ r + s). Let {yx,. ■ ■ ,ym-k+s} =^m^r+s~ « and {8X,.. .,8n_k + r) =

•fn-s+r-ß, where Yi < ••• < ym-k + s and 8X < ■ ■ ■ < &„_k + r. Place the first

m - r elements of pr in positions yx,-..,ym^r, and put the first ym^r - m + r

elements of vs in the remaining positions from 1 to ym_r, so that the first y

positions of p are filled. We follow with the next 5,-1 elements of pr and then, for

z: = 1,... ,s + r - k, we alternate blocks of Ym-r+, - Ym_,+/_i elements of ^ and

blocks of 5i + 1 - 8¡ elements of pr. Then we place the next m — r 4 s — Ym-k+s

elements of *,, so that the first m - r + s - 1 + 8s + r_k + l positions of p are filled.

Then we place the remaining n - s elements of vs in positions m - r + s +

8s + r_k + l,...,m - r + s + 8„_k+r, and fill the remaining r'+T— 8s + r_k + x posi-

tions with the final r + 1 - 8s+r_k + 1 elements of pr. Thus we can identify positions

that are not descents, and have

@(P) -^» + ».-1 -{Yl»"-.Y*-r-l.Yw-r + ôl  - L'-vTm-A+j, + 5S + /-* + l ~ ^

m-r + s- 1 + rjJ+r_¿ + 2,...,m - r + j - 1 + <5,,_A+r},
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so d(p) = (m + n - 1) - (m + n — k — 1) = k and

(, ( m — k + s n — k-\-r \

""X" j'       E    Y,+     E    8i+(n-s-l)(m-r + s)-(n-k + r)\.
\     '=1 i-l j

But

and

E  y,=
f-i

m — r + s + 1

2

Zí-r

E«,
/=i

n-k + r
' n — s + r + 1

2

Zt-i

z=i

— A. -r / ,

E «,- '

so simplifying gives

I(p) = s - k + r(m - r + s) + E «, +  E ß,-
k-r k-s

1 = 1 1 = 1

It is easy to check that there is a unique such pair of subsets a and ß associated

with each p g £f(pr, vs) with d(p) = k, so the construction is bijective. Thus

•S*(r*r. "J
,/<p>

</(p)=*

_   -j — A:-t-r(m — r+j)
E 9Q'

1 < «] < • ■ ■  < aA __ r < m — r + .v

X j; ÇA + -+A-.
!</},<••• < /3j _,. < n - ,s + r

_  -j-* + r(m-r+s)   ('-;*')[

from Lemma 1.4, and the result follows since

\ m — r + s

k-r
" r')fn -* + '•'

(k     2+1)+(k     2+ l) +s~k + r(m-r + s) = \+(k - s)(k - r).    D

MacMahon [8, Vol. I, p. 169] has given a direct evaluation of Sk(p0, v0) at q = 1;

one of his proofs involved the lattice path representation given in Proposition 2.3.

The special case s = 0 of Theorem 3.5 has been used in Goulden [5] as one of three

ingredients in a combinatorial proof of an identity equivalent to Theorem 1.3.

We now have completed all ingredients for a proof of the Shuffling Theorem.

Proof of Theorem 1.2. The result follows immediately from Theorems 3.4 and

3.5.    □
We conclude with an example that illustrates all of the results of this section.

Example 3.6. Let

p = 510841227613   11319 g y (5 10   122713   11_ 9,8 46 3 1),

so a = 5  10 12 2 7 13 11  9, u = 84631, m = 8, n = 5, r = s = 3, I(o) = 16,

I(u) = 8, d(p) = k = Tañdl(p) = 47.
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Then, in the notation of Lemma 3.1, we represent p by 4>aoj(p) = b =

A2U2A3UA2U2A. Moreover t = {3,6,7}, 1= {1,3,4}, a«, = AUA2, a10 = A2UA{3ß),

a20 = UA{bQ), a30 = UA{lß), a01 = UAUA(0X), axx = AU A(3X), a2X = U A{6X), a31

=   U ^(7,1)' a02 =  ^(0.3)' a\2 = ^^(3,3)' a22 =   ^(6.3)' a32 =   ^(7,3)' a03 =  ^(0.4)'

«13 = UA33A), a23 = UA{6A) and a33 = UA(1A). Also FtXa(b) = {(2,0), (2,1), (3,2),

(5,2), (6,3), (7,3), (7,4)}, so indeed |i^,,.a(A)| = 1 = d(p) and w(J^u(A)) = 47 =

I(P).

In   the   notation   of   Theorem   3.2,   we   have   A(6) = • • •  = A(0) = A,   A(7) =

AUAUA3UA2U2A,   A(8) = AUAUA2UA3U2A,   A(9) = AUAUA2UA2UAUA,   A<10) =

AUAUA2UA2UA2U,   A(U) - AU2A3UA2UA2U   and   A<16) =  •••   = A(12> =

AU2A3UAUA3U. NowJ*lc(A<16)) = {(1,1), (1,2), (3,2), (4,3), (5,4), (6,4), (7,4)}, so

l^r,i,c(è<16))l = 7 = d(p) and w(^,,.C(A(16))) = 47 = I(p), as required.

In Theorem 3.3, by applying £ twice (mr - (r2+1) - Lri=x ti = 2), we get the path

A" = /lt/2/l2í//lc/^4í/, and obtain ^,_r4,c(A") = {(1,1), (1,2), (3,3), (4,4), (5,4),

(6,4), (7,4)}, so |JVr,,.c(A")| = 7 = d(p) and w(^m_rlc(b")) = 49 = I(p) + 2, as

required. Finally, by similarly reducing 1 to s, we obtain the path A0 =

AU2AUAUA5U,with3rm_rsc(b0)= {(1,1), (1,2), (2,3), (3,4), (5,4), (6,4), (7,4)}, so

l^,-r,s..(60)l = 7 = d(P) and »(&m-r»*(bo)) = 47 = I(p) + A - EU tt - LUi 'z>
as required.

In Theorem 3.4, we finally obtain that p g ¿/'(o, to) corresponds to

p' = 4 12   115 10 697832113_G Sf(pr, vj),

where pr = 45678321 and v, = 12 11 10 9 13, and d(p') = 7 = d(p), Z(p') = 47 =

/(p) + A-/(a)-/(to).

Finally in Theorem 3.5 we have rc = 7>3 + 3 = z- + i, so we have Case 1, with

a = {2,3,5,7}, ß = {1,2,3,4} corresponding to p'. Of course I(p') = 41 = s - k +

r(m - r + s) + LkZ{a, + Z*~{ß,.    D

We say that this proof of the Shuffling Theorem is bijective because we are able to

explicitly give a bijection between elements of y(o, to) and pairs of subsets of

•A^n-s+r and jV„,_r+s, the existence of which is implicit in its statement. Thus, in

Example 3.6 we have demonstrated that

p = 51084 12 276 13   11 319 G y (5 10   122713   IT 9, 8 46 3 1)

corresponds to a = {2,3,5,7} Q^Vm_r+s and ß = {1,2,3,4} £ JVn_s + r.
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