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SINGULAR INTEGRAL OPERATORS OF CALDERON TYPE
AND RELATED OPERATORS ON THE ENERGY SPACES
BY
TAKAFUMI MURAI

ABSTRACT. We show the boundedness of some singular integral operators on the
energy spaces.

1. Introduction. For a complex-valued continuous function 4(x) on the real line R

and a real-valued continuous function A(x) on R, we define a kernel by
1, [A(x) - A(y)
Clh, 4l(x. y) = _yh{ L }

These kernels are important in harmonic analysis. Several authors have investigated
the boundedness of these kernels as operators from L ?-spaces to L ?-spaces [3, 7, 11],
and others have studied the boundedness on the Sobolev spaces only in the case
h(x) = x (generalizing 1/(x — y)) [1, 2]. In this paper we study the boundedness of
these kernels on the energy spaces for infinitely differentiable functions A(x).

Let C§° be the totality of infinitely differentiable functions on R with compact
support. For 0 < a <1 we denote by E, the Banach space of locally integrable
functions on R obtained by the completion of C° with respect to the norm

5 1,2
11, = | [ f L0 L] )

This is called the a-energy space [10, p. 77]. The a-capacity cap,(-) is the capacity

defined by the kernel « (x) = 1/|x|'~*[10, p. 131]. A function a(x) on R is called a

multiplier on E, if the multiplication operator M : f € E, — af € E_ is bounded

[10, p. 38]. The totality of multipliers on E_ is denoted by M(E,). The norm of M , is

simply denoted by ||a|| y(g,,- We say that C[h, A]is a-bounded if, for any f € E,,,
lim Clh, Al(x, y)f(y)dy (= Clh, A]f(x))

e—=0 Yix—y|>e

exists a-q.e. (that is, the limit exists except for a set of a-capacity zero) and

IC[h, Alllgo = sup{IIC[ A, Al fll,/Iflla; f € E,} < oo.
We show

THEOREM 1. Let 0 < a < 1. Then C[h, A} is a-bounded as long as A’ € M(E,) and
h(x) is infinitely differentiable.
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We also study some operators closely related to C[h, A]. We define two families,
B = {P(x)},50. 2 = {Q,(x)},5, of functions on R by

P.(x)=(1/2y)e™™” Q,(x) = (1/2y)sign(x/y)e 1/

For a complex-valued function a(x) on R with [gla(x)|/(1 + x?)dx < oo, we
define four operators on C§° by

T B0 = lim [V (Vs () dy (fECR).

where U = R or &, B = PR or . Operators of this type were studied by Coifman-
Meyer [6, Chapter VI]. These operators are considered weighted Hilbert transforms,
and we see that, in the case where A(x) = x and A'(x) = a(x), C[h, A] = T,[<, V]
is a negligible operator in a sense [cf. Remark 21]. For 0 < a <1 we say that
T,[uU, B]is E -bounded if it is extended as a bounded operator from E_ to itself. Let
us remark that 7,[*B, 8] is E_-unbounded in the case where a(x) = 1. We denote by
L* the Banach space of bounded functions on R and by BMO the Banach space of
functions of bounded mean oscillation on R, modulo constants [9, p. 141]. We show

THEOREM 2. Let 0 < a < 1. Then:

(1) Ifa € M(E,), then T [, B] is E -bounded.
2)Ifae€ L*, then T,[B, Q] is E -bounded.

(3) If a € BMO, then T,[ <, L] is E -bounded.

2. Preliminaries.

2.1. Throughout we fix 0 < a < 1 and use “Const.” for constants depending only
on a. The value of “Const.” generally differs from one occasion to another. For a
Banach space B, we denote by || - ||y its norm. Let L? denote the L*-space of
functions on R with respect to the Lebesgue measure dx. The maximal function of a
locally dx-integrable function f(x) on R is defined by

Mf(x)=supm,|f|, wherem,|f|= |—}Ij;|f(5)|ds(|1| =/lds)

and the supremum is taken over all finite intervals I containing x. We say that f(x)
is of bounded mean oscillation if ||f]lgmo = Supm,|f — m,;f| < oo, where the
supremum is taken over all finite intervals I. The a-capacity of a compact set Win R
is defined by

cap, (W) = inf{||gl}:; k0 * g(x) > 1(x € W)}

(10, p. 133, p. 138]. The a-capacities of Borel sets in R are usually defined [10, p.
143]. Let f € E_. Then:

(4) ||, = Const.{ [g €| f(£)|> d&}'/* (f(¢): the Fourier transform of f(x)).
(5)f(x) = K, ,, * g(x) almost everywhere (a.e.) for some g € L* with

llgll,: = Const.lIfll«  [10, p. 80].

(6) lim, _,(1/e)[X"° f(s)ds = Kk, ,, * g(x) a-q.e.
(7) m_.|f] < Const. e~ V2| f||, (e > 0).
(8) cap,(x; Mf(x) > €) < Const./e” - || fllz [4, p. 70].
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Equality (4) is deduced from Parseval’s formula. Equality (6) is deduced from (5)
and the Lebesgue dominated convergence theorem. Inequality (7) is also deduced
from (5). Let a € M(E,). Then by (7) we have, forany ¢ > 0 and s € R,

-1)/2
m(—e.e)la‘lbe.s! < ConSt.S(a 4 Ila\lle.s”a
-1)/2 -
< Const.gl*~ 1/ lall pce1Weslla = Const. /¢ - llall p e,y

where ¢, (x) = (1/ Vm e)exp(—(x — 5)?/¢?). Since € > 0, s € R are arbitrary, we
have ||a|| ;= < Const.||a|| yg,)- Let b € L™ satisfy |b(x) — b(y)| < mla(x) — a(y)|
(x, y € R) for some n > 0. Then we have, forany f € E,

1b(x)f(x) = b(¥) (I <IbX)Nf(x) = fP) +1b(x) = b(¥)1f(»)]
< 1Bl =l f(x) = F(¥)1 + mla(x) —a(¥)1f(p)]
< {118l = + mllall = }1f(x) = fF(P) + mla(x) f(x) = a(y)f(¥)],

and hence
(9) 1Bl s,y < Const. {161l = + mlall s, | -
In particular, if a(x) is real-valued, then

/(1 + ia)ll e,y < Comst. {1 + lall e, }-

2.2. Let L, be the Banach space of integrable functions on R with respect to the
measure dx/(1 + |x|). For a kernel K(x, y) (x, y € R), we define Q(K) by the
minimum of C’s satisfying the following two inequalities: |K(x, y)| < C/|]x — y|,
[0K(x, y)/0x| + [0K(x, ¥)/dy| < C/(x — y)* (x # y). If such a C does not exist,
we put €(K) = co. For f € L, and a kernel K(x, y) with (K) < oo, we put

K.f(x) = fl R K(x,y)f(y)dy (e>0), K*f(x)= 801(3)|Kef(X)I~
x—y|>e £>
We say that K(x, y) is a Calderon-Zygmund kernel (CZ-kernel) if Q(K) < oo,
Kf(x)=1lim,_ K, f(x)exists a.e. forany f € L,, and
1Kl 2 12 = sup{IK*f 1| 2/ fll 23 f € L?} < oo.
We write simply | K*|| - = 2(K) + [|K*|| ;2 ;2. Let K(x, y) be a CZ-kernel, f € L,,
and let (f,);-, be a sequence in L, such that lim,_, || f, — fll,, = 0. Then the
weak L'-inequality [6, p. 90] yields that lim j—wKfn (x) = Kf(x) ae. for some
subsequence (f,,l);";l. We also have X*f(x) < Const.{ M(Kf ) x) + ||K*||cz M f(x)}
everywhere [6, p. 95]. Let h € C§° and A(x) be a real-valued function with 4’ € L™,
Then [7] (cf. [11, 6, p. 98]):

||C[h»A]*||cz<COHSt-LIi'("E)Kl+"|§|)9d§+9(C[h’A]) (r =114 =)

We may replace h(x) by (hy)(x) for any y € C§° with y(x) = 1 (|x| < r). Choosing
v(x) suitably, we obtain

(10) IC[h, Alllcz < Const.dy(r)(1 + 1) (r=|41I,=),

where

dy(r) = Y max{|hV(x)|;|x|] < 2r + 1}.

j=0
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Let A,(x) = [A*¢,(s)ds (m = 1, ¢,(x) = \/m/'rre"'""z). Then the argument in
[11, Lemma 11] yields that, for each n > 0,

lim C[¢", 4, ] f(x) = C[¢", 4]f(x) ae.

j— oo !

for some subsequence (4,, )72, Since

oC

Cle. Bl(x.») = ¥ (5 )clen. Bl(x. »)

n=0 :

and
Clh, Bl(x. y) = cOnst.fRiz(g)c[e", ¢B](x, y) dt

(x # y; B(x) = A(x), A, (x) (m = 1)), we have, by (10),
lim C[h, 4,,]/(x)=C[h, A]f(x) ae.

J— oo

for some subsequence (A, )7~ . Inequality (7) shows that, for any g € E,,

o] o]
I18ll.., < Const. X m_y 58l < {Const- )y 2“’_“k/z}llglla-
k=0 k=0

This shows that E, € L and|| - ||, < Const.|| - ||,. Let f € E,. Then, consequently,
we have:
(11) C[h, A]f(x) exists a.e.
12) If lim,_ _||f, — fll. = 0, then lim
some subsequence ( f, )7~
(13) lim,_, , C[h, Aml]f(x) = C[h, A]f(x) a.e. for some subsequence (A,,,l)j-il.
(14) C[h, A1*f(x) < Const.{M(C[h, Af)(x) + d,(r)(1 + NOMf(x)} (r =
[|4’]| =) everywhere.

Let S be a dense set in E,. Then (11) and (12) show that, for any f € E,,
lim,_ ||f, — fll. =0 and lim,_, C[h, A]f,(x) = C[h, A]f(x) a.e. for some se-
quence ( f,)%_; in S. We have, by Fatou’s lemma,

Clh, Alf, (x) = C[h, A)f(x) ae. for

Jo oo

1/2
IC[h. AL f1l, = {” IC[h,A]f(x)—gEIZ,A]f(ynzdxdy}
R°R |x =yl
_ 2 172
Smm%//wwAmu>§ywmunﬂ@}
n—oo [/RIR |x — y|*e
= liminfl|C[A, A] /]l < sup{IIC [k, A]gl./lgll.; & € SHIS Mo
Thus
(15) IC[h, Allly.. = sup{IIC[h, A fll/flla: fE S}

2.3. Let X be the totality of open squares in the complex plane C with sides
parallel to the coordinate axes. For a nonnegative function w(z) on C, we denote by
L?*(C, w) the L-space on C with respect to the measure w(z) do(z), where da(z)
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denotes the area element. For p > 1 we say that w(z) satisfies (4,) with a constant
= if

sup (ﬁzxw)(ﬁzxw’l/(”_“)p_l < EP,
Xex

where

myw =

o(lx) fxw(z)do(z) (a(X) = fxdo(z))'

We say that w(z) satisfies (A4,,) with two constants =, 0 < § < 1, if, for any X € X
and any Borel set E in X,

- 8
w(E)/w(X) < E{o(E)/a(X)}",
where w(F) = [rw(z) do(z). The following two lemmas are well-known (cf. [5]).
LEMMA 3. Let 1 < p < 2 and let w(z) be a nonnegative function in C satisfying (4,)
with a constant = and satisfying, for any X € X, w(X*) < Const. w(X), where X* is

the square in X with the same center as X and o(X*) = 20(X). Then, for any
F € L*(C, w),

IMFN| 2c. < GENF Il 2(c0ys
where M F(z) = SUp, < x, xex™ x| F| and C, is a constant depending only on p.
LEMMA 4. Let w(z) satisfy (A,) with two constants Z, 0 < 8 < 1. Then, for any
F e L¥C, w),
”©F”L2(C w) Cs—||F||L2(C w)?
where
®F(z) = lim _FQ®)
=0 Jz-tp>e (2 = ¢)°
and Cj is a constant depending only on 8.

3. Proof of Theorem 1.

3.1. Let hA(x) be an infinitely differentiable function on R, 4(x) a real-valued
function on R with A’ € M(E,), and B(x) an infinitely differentiable real-valued
function on R with 1Bl mce,) < 14 mce,)- We write simply N =1 + || 4]~ +
NANpce,) Let T ={(x, B(x)); x €R} and V= {x+iy€C; y> B(x)}. We
define

——5do({)

wix+iy)=ly-Bx))* (x+iyeC).
Then w(X*) < Const.w(X) (X € X). We say that a function g(z) on T is differen-
tiable if lim,_,,,cr{g(z + {) — g(2)}/{ exists everywhere on I'. We denote by
E - the Banach space obtained by the completion of differentiable functions on I
with compact support with respect to the norm

2 1/2
Iglr = { o R Id||d{|} ,
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where dz is the curvilinear integral element. This is the a-energy space on I'. In this
section we estimate ||C[A, A]||, .-

LEMMA 5. The function w(z) satisfies (A4 _,, ,,) with a constant Const. N.

PROOF. We write simply p = (4 — «)/2. For X € X we put / = \Jo( X) . First we
suppose that / > dis(X, I') (= n), where dis(-, -) denotes the distance. Since || B’|| ;=
< Const. N, we have dis(z, zp) < Const. NI (z =x + iy € X, zp = x + iB(x)).
Hence,

- Const. Const. NI
M yw < { ! }f st7*ds = Const. N2/}«
0
and
. Const. | [Const. NI
g VP {_}f ca=1/p-1) g
! 0
= Const. Nl"‘((ﬁ_1)/(P_1))[(u‘1)/(P“1)'
Thus,

(i yw) (42~ D)7 " < Const. N?.
Next we suppose that / < n. Thenn < dis(z, z-) < Const. Ny (z € X). Hence,
myw < Const. N'7%p'® and 4w /77D < Const. n@~ /(=D
Thus
(1 yw ) (g /P"D) "7 < Const. N'~* < Const. N>.  Q.E.D.
LEMMA 6. The function w(z) satisfies (A, ) with two constants Const. N1 7% 1.
PrROOF. Let X € X and EC X. We put / = m and n =dis(X, ). If [ > ¢
then w(X) > Const. I>~* w(E) < Const. N!7%/1"%(E), and hence, w(E)/w(X)

< Const. N'"%(E)/a(X). If I <, then w(X)> n' %2 w(E)<
Const. N'~*yp! =% (E), and hence, w(E)/w(X) < Const. N! "% (E)/a(X). Q.E.D.

LEMMA 7 (CARLESON (4, p. 55]). Let F(z) be a differentiable function in U = {x +
iy € C; y > 0} such that

1/2
1Pl = { [I9FCx+ ) wdo(x + )] < o0,
U
Then F (x) = lim, o F(x + iy) exists a.e. on R and || F ||, < Const.|| F|| -

LEMMA 8. Let G(z) be a differentiable function in V such that
1,2

IGlla = {flvé(z)ﬁw(z) do(z)} < 0.
Then G (z) = hmva(z + iy) exists a.e. on T and||G .|| ,+ < Const. N2||G||,,

PROOF. Let F(x +iy)= G(x + i(y + B(x))) (x + iy € U). Then ||F|,,
Const. N||G||,,. Lemma 7 shows that F,(x) exists a.e. on R and ||F,||,
Const. || F|| - Since 4’ € L®, G (z) = F (Re z) exists a.e. on I and

<
<

lG .l < Const. N||F,]||, < Const. N||F||,, < Const. N?||G||,,,. Q.E.D.
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LEMMA 9. For g € E - we define
_ [28)
Cg(z) = frz_{dg“ (ze V).

Then € ,g(z) =lim,, ,Cg(z + iy) exists a.e. on I and
1€, &llar < Const. N*~||g| .-

PrROOF. Let f(x)=g(x + iB(x)) and F(x +iy)= R, * f(x) (y > 0), where
R, (x) =y/{m(x* + y*)}. Then we have

(16) [IF|12y = Const. [~ y'~*dy [ IR, (£)¢/(¢)I? d¢
0 R

= Const. [ £1°1/(€)1” d¢ = Const.|I {112 < Const. N *“lgr-

Weput G(x + iy) = F(x + i(y — B(x)))(x + iy € V'), Then
g(z) = lvi{l(l)G(z +iy) a.e.onT.
By (16) we have
IGllay < Const. N||F||oy < Const. NC*972||g|| .

We fix z€ V, ¢ >0, and apply Green’s formula to G({) and 1/(z - ¢{) in
V.=V —-{§1z2—§<s}(0 <s <e¢). Then
G 9G 9
(17) sx(a)= [ a-aif 20 3GV 4o ()
lz=81=s Z
as long as dis(z, I') > e. Integrating each quantity in (17) by (2/€) ds in (g/2, €), we
have

(18) Cg(z) = -3 st[ G(z + se) dt
ez = £)(36(5)/3F)
—21[ P 7 — { dO({),

where p,(w) = 0 (Jw| < /2), p,(w) = (2/eX(Iw| — £/2) (¢/2 < |w| < ¢) and p,(w) =
1 (Jw| > €). We denote by 7°(z) and J*(z) the first and second quantities, respec-
tively, on the right side of (18). Note that (3G/3{)%, € L*(C, w), where X (2)
denotes the characteristic function of V. Lemmas 3-6 show that

18(3G /3% - X )l 12(c.wy < Const. Nl (3G/F - %y )l 2(c.o
< Const. N>7%3G /3% - %y |l 12(c.0y < Const. N27|G|l -

Note that lim,_ ,(91¢/0)(x + iy) = —ZthaG/aé)(x +iy) ae. in V (§=1x,y)
and lim__ ,(3J°/0¢)(x + iy) = 2ig®(9G /3¢ - X, )N x + iy) a.e. in V, where ¢ = 1 if
£ = xand g = iif £ = y. Hence, we have
(3G g/8¢)(x + iy) = -2mi(3G/3¢)(x + iy) + 2ig® (3G /8 - %, )(x + iy)
ae.in V (¢ = x, y). Thus
N€gllar = NV EgIX VI 12(c.0y < Const.|[| VGIX Il 12(c.w

+Const.||® (3G /% - )(,,)||Lz(C o < Const. N2~%|G||,, -
Using Lemma 8 with G(z) = € g(z), we obtain the required assertion. Q.E.D.
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LEMMA 10. Let
C[B](x,y) =1/{(x —y) +i(B(x) — B(y))}
Then ||C[B]|| .o < Const. N3~/2,
PrOOF. For f € C&® we put f(x) = f(x)(1 + iB’(x)). Then
C[B]f(x) = C.g(x +iB(x)) — mif (x),
where g(z) = f(Re z) (z € T') (cf. [3]). Thus Lemma 9 shows that
IC[B]flla <1IC.g(- + iB()lla+ 7l flla
S N6 gllor + 7N||f ||, < Const. NO~ 72| ig| . + 7N || f]l,
< Const. N2 £ + N|f||, < Const. NU3~/2|| f| .
Since { f(1 + iB’); f€ Cg°} is dense in E_, (15) shows the required inequality.
Q.ED.
LeEMMA 11. ||C[e", B]||, . < Const. N 13772,

PrOOF. We consider the anticlockwise contour A = A; U A, U A; U A,, where
Al ={x+iy;|x|<2N,y=-1}, A, = {x+iy; x=2N,|y| <1}, A; = {x + iy;
x| < 2N,y =1}and A, = {x + iy; x = -2N,|y| < 1}. Then

e

B - L
Cle", Bl(x. y) = 2vri-[,\§(x—y)—(3(x)—3()’))d§

4

1 & 1
) 2_7”/;1 '/;\/ (= E7112 C[Aj](x’y),say ’

=1
Let f € C§°. Then we have

Clads(x) =ef Cls--BOIf(x) a5 ae.
and hence, by Lemma 10,

ICTA] 1l < Const. [*VIC[s - ~B(+)] fllds < Const. N3~/ f].
-2N

In the same manner ||C[A;]f||, < Const. N5~/ f|| . We have
ClA,]f(x) = eZN’fIC°f(x)e“‘ds ae.,
-1
where
C*(x, y) =1/{(2Nx — B(x)) —(2Ny = B(y)) +is(x — y)}.
We now consider a mapping x = x = 2Nx — B(x), its inverse mapping 7(X) = x,

and put A(x) = fer(X)/(2N — B’o7(x)). Then C*f(x) = C[sT]h(2Nx — B(x))
a.e. Hence, we have

(19) IC[A, 11l < Const. [ |C*f1]ds = Const. [ IC[s71h (2N - ~B())ll,ds
-1 -1

1
< Const. N“"“/zf C[sT]h|,ds
-1

1
< Const. N 72 [ Cls7] s 1Al
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By (9)
W7 prce,y = /(2N = B"o 1)l pre,

< Const.{l/N +||Bo ¢||M(E¢)/N2} < Const./N.

Using Lemma 10 with B(x) = s7(x), we have

1 1
JClsmIlaads < [ {1+ ls7lim + smllace,y

(13-a)/2
} ds < Const.

We also have
- 2
Whlle < W7 prce, |l f © Tllq < Const. N-C*a72)| £ .

Thus the last quantity in (19) is dominated by Const./N - || f||,. In the same manner

IC[A4]fllo < Const./N - || flla
Consequently,

IC[e", B]flla < Const. N#=272)|f|] .
Since Cg° is dense in E, (15) yields the required inequality. Q.E.D.
LEMMA 12.
IC[h, A]ll,.o < Const.d}(N)N*7'=/2
where d}(N) = L_ymax{|hV(x)|; |x| < 2N }.

PrOOF. We choose a function y(x) in Cg° so that y(x) =1 (Jx| < 1), y(x)=0
(|x] = 2), and put y*(x) = y(x/N). Then

— Const. © Const. d¥(N)N
hy*)(§)] < hy*) (x)|dx € —M————.
() ()] m /|( )(x)] i)

Let 4, (x)= [§A4 * ¢,,,(s)ds (m =1, ¢,(x)=m/7 e"""z). Then we have, for
anym > 1l and f € Cp°,

Clh, 4,1f(x) = C[hy*, 4,]1f(x) = cOnst.[(T.F)(g)c[e"', ¢4, f(x) dé ae.

Since ||4'(- — YN, =14 I rrce,) for any y € R, we have || 47, lrrce,) < "A/”M(E‘,)’
and hence,

N(§4,,) = 1 + 4]l 1= + I1EAL e, < (1 + EDN.

Using Lemma 11, with B(x) = £4,,(x), we have

IC[A, 4,]fl. < Const. fk (=) E)NC e, £4,,] f1l. ¢

N(£ m)(ls a)/2

+1¢)°
< Const.d;f(N)N‘”_"VzIIfIIa.

< Const.d} (N)Nf dé|lfll,
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Thus Fatou’s lemma and (13) show that, for some subsequence (A,,,/ )71
IC[k, A1fll, < liminf||C[h, A,, | fll. < Const.df(N)NUT==/2) f,.
j— !

Since Cg° is dense in E,, we have the required inequality. Q.E.D.
3.2. In this section we discuss the pointwise existence of C[h, A]f(x) forf € E,.

LEMMA 13. cap,(x; C[h, A]*f(x) > X) < (Const./A?)d,(N)NY||f|l, (A > 0,f€
E).
PrOOF. We write simply d* = d,(N)N'". Inequality (14) gives that, for any
x € R,
Clh, A%/ (x) < Const{ M(C[h, A1£)(x) + dy (I1411,) (1 + 411 1) "D f (x) )
< Const.{ M(C[h, A]f)(x) + d*Mf(x)}.
By Lemma 12 and (8) we have, with two absolute constants ¢, c,,
cap,(x; C[h, A]*f(x) > \)
< cap,(x; M(C[h, A)f)(x) > ¢;A) + cap,(x; d*Mf(x) > c,A)
< (Const./N){IIC[h, A1 F11Z + d*IIf11%)
< (Const./A?)d*|| f||2. Q.E.D.
LeEMMA 14. Let n > 0. Then
(%), Clt", A]f(x) exists a-q.e. forany f € E,.
PrROOF. We inductively prove (x),. We have, for any f € C§°,
0 _ f(x) - f(»)
[, 4], f(x) = _/|x-y|>e Ty (>0

Hence C[t°, A]f(x) exists everywhere. From this and Lemma 13, (%), is deduced.
Let f € C§°. Then we have by integration by parts,

(20) C[1", 4] f(x) = C[+"7}, A](Af)(x)
_l{(A(x +¢e) — A(x) )nf(x +e) _(A(x) —A(x —¢) )"f(x _ e)}

n € €

o AR AN (o> o).

-vme (x = )"
By (*),_,, C[t" 7!, AJ(A’f)(x) exists a-q.e. By (6) the second quantity on the right
side of (20) tends to zero as ¢ = 0 except for a set of a-capacity zero. The third

quantity tends to zero as ¢ = 0 everywhere. Thus C[t", A]f(x) exists a-q.e. From
this and Lemma 13, (), is deduced. Q.E.D.

LEMMA 15. Let f € E,. Then C[h, A]f(x) exists a-q.e.

PrOOF. We put

[oe]

Daxy)= [ HE)C[e" eal(xy) dE = T urclen al(x, )
m—1<|[|§{|<xm n=0
x¢y,m>1;uim’=;—: h(£)¢mdE|.

m—1<|§{|<m
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Then we have, forany f € C° and m > 1,
e o}
Dif(x) < X oimCe”, A1/ (x)
n=0

everywhere (v{™ = |u{™)). Since d,.(N) < Const.(n + 1)!'N", we have, by (5) and
(14),

C[t", A]*f(x) < Const.{ M(C[t", A]f)(x) + d.(N)NDMf(x)}
< Const. k, , * {Emg,, +(n+ l)uN”“OSUEg}(x) everywhere (n > 0),

where g,(x) and g(x) are defined by C[t", A]f(x) = Koy * 8,(x) and f(x) =
Ko, * g(x) a.e. We have, forany x € Rand m > 1,

[o ]
Drf(x) < Const.{xaﬂ* Y v,‘,”"[img,, +(n + l)uN"“OEIRg]}(x)
n=0

(= Const. k, , *h,,(x), say).
Since

”Ka/Z*hm"a = COHS[.”hm” L?

o0
< Const. 3 o™ {[|Mg, |l +(n + 1)"'N"* 1O mg] )
n=0

o0

< Const. 3 o8 {lig,ll2 +(n + 1) N g]| . ]
n=0
o0

= Const. Y o{™{IIC[¢", A fll, +(n + 1)"'N"* 1 711, }
n=0

o0
< Const. Y of™{ds(N)N=072 4 (n + 1)'N" 04y £,
n=0
oo}
< Const.{ Y oim(n + 1)“N”+1°}||f||a < o0,
n=0
Lemma 13 shows that D} f(x) < o a-q.e. (m > 1). Since the a-capacity of a set
where C[t", A]f(x) does not exist for some n > 0 is equal to zero according to
Lemma 14, the Lebesgue dominated convergence theorem gives that D, f(x) exists
a-q.e. (m > 1). We also have

[

Clh, A1*/(x) < X Drf(x)

m=1

< Const. f|i1(g)|c[e'“, ¢A]*f(x) d¢ everywhere.
R

In the same manner as above, we have fR|71(£)|C[e", EAT*f(x) d€ < o0 a-q.e. Since
the a-capacity of a set where D, f(x) does not exist for some m > 1 is equal to zero,
Clh, A]f(x) exists a-q.e. Q.E.D.

Lemmas 12 and 15 show that C[h, A] is a-bounded. This completes the proof of
Theorem 1.
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4. Proof of Theorem 2.
4.1. We begin by showing some lemmas. Let E__, be the Banach space of
distributions on R obtained by the completion of C§° with respect to the norm

11l = { . |£r“|f(§)|2d§}l/2.

This is the dual space of E, [10, p. 354]. We denote by (-, -) the inner product of
functions on R with respect to the measure dx. Let P, Q, be the operators defined
by Pf=Pxf, Qf=0 *f(y>0,fe ). Let M, denote the multiplication
operétor associated with a function a(x) onR. For hy(x) = x and a complex-valued
continuous function A(x) on R, we denote by C[h, A] the operator associated with
a kernal (A(x) — A(y))/(x — y)*. We denote the identity operator by I.

LEMMA 16 (COIFMAN - MCINTOSH - MEYER [8)). Let a € L™. Then
Clho, 4] = lim /;I/E{P_VM‘,QY + Q_},MaPy}‘i—y on C,
where A(x) = [§ a(s) ds.
LEMMA 17. Let a € BMO. Then, as operators on C§°:
(21) My .oP,=QM/P -PM, . Q -QMy,.,Q,.
(22) M,.,Q,=PM;.,Q -QM,.,Q +QM, ., (I-P).

(23) M(Q_,.‘a)Qy = PyM(Q,.-u)Qy + QyM(a—P‘.ta)Qy + QyM(Q‘,:u)(I - P»)

ProOOF. Equality (21) is already known [8, p. 371]. Since the proofs of other
equalities are analogous, we give only the sketch of the proof of (22). We may
assume that a(x) = e** (s € R). Note that

P(&)=1/(1+¢&%2), Q,(8)=-ity/(1+¢Y?).

We have
1 ity _ 1 1 -i§y
1+ s2p2 1 + £%2 1.;.(54_,5)2);21+s2y21+$2y2
-i(s+ &)y _ -isy  -ify

1+(s+£)7y2 1 +sHy2 1+ &H?

—i(s+ &)y 1 {1 1 }’

1+(s+£)2y2 1+ 52 1+ ¢%y?

which gives (22). Q.E.D.

We write 8 = a/2. We say that a nonnegative measure du(z) on U = {x + iy €
C; y > 0} is a (B,1/y)-measure with a constant = if, for any A > 1 and any finite
interval 7 in R,

f du(z) < ENA|I),
S(A 1)

where

SN, I)={x+iyeC;xe I, \I|<y<2)\I|}.
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LEMMA 18. Let a € BMO. Then |a(x) — P_‘,*a(x)l2 do(x + iy)/y and
10, * a(x)|*dae(x + iy)/y are (B,1/y)-measures with a constant Const.||a|| 3o
PrROOF. We have, for any x + iy € S(A, 1),
a(x) = P, a(x) = {a(x) = mja) = P, *(a ~ m,a)(x).

where J is an interval with the same midpoint as I and of length 2|7|. We have
4
/ la(x) — m,ale = log2 /la(x) — m,a|*dx
S\ D y 1

< Const.||a||guol |

(cf. [9, p. 141)). Since
f la(s) — m,al
x—si= 1) |x — s|'*A/2

(cf. [9, p. 142]), we have

ds < Const.||a|lpmol /|72 (x €1)

do(x + i
[ 1B(a—ma)(opdett)
S D) Y
do(x + iy)
< P, *|a — m,a|(x)*——2=L
L, Prela=mpalx) ==
2
< Const./ do(x + iy) {/ ):y >la(s) — m,alds}
S, 1) y R(x—s)" +(Ay)
sa.n Yy
2
{—l—f la(s) — m,a|ds +(>\)/)B/2/ lals) —m,al m’alds}
W1 x—s1<101 Ix=si>1) |x — s|' T8/

do(x + i
< Const.||a||,2,Mof {1 +(}\y)B|J|‘B}M
s, y

< Const.||a||3poNPI .

Hence, |a(x) — P, * a(x)|*de(x + iy)/y is a (B,1/y)-measure with a constant
Const.||a||3mo-
We have

f |Q *a(x)|2M
s

y

do(x + i
— [ 1oy, +(a - ma)(x)pdetxt )
S, 1) Yy

d + i
2‘@ < Const.||al|gmoA? |1,

<[ Pyrla-malx)
sa,n -

and hence, |Q, *a(x)|*de(x + iy)/y is also a (B,1/y)-measure with a constant
Const.||al|3uo- Q.E.D.
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LemMA 19. For f € C§°, we put

(24) u(x,y>=/RRy(x-st(s)—f(x)us (x +iy € U),

(25)  0(xp) = [R(x=$)If(s) =R, [(x)lds  (x+iy€U).

where R (x) =y/{m(x*+ y?)}. Then, for any n > 0 and any finite interval I,
sup  v(x,27"y) < Const. inf u(x,27"y)  (S,(1)=SQ2".1)).

x+iveS, (1) x+iy€S, (1)

PrOOF. Let x +iy, x + iy € S,(I). Then R,-.,(x —s) < Const. R,-n (X — 5)
(s € R). We have

v(x,27"y) < Const. _/Rz-";-()? = $)|f(s) = Ry 1, * f(x)| ds
R 2" .
< Const. u(x,27"y) + Const. fRz-n;,()? = 8)|Ry-u1, % f(x) = f(X)| ds
2 .
< Const. u(x,27"y) + Const. /Rz-., L (x = $)1f(s) = f(x)|ds
R ,
< Const. u(x,27"),

and hence, the required inequality holds. Q.E.D.

LEMMA 20. Let dp(z) be a (B,1/y)-measure with a constant =. Then for any

fe Ccs:
2dp(x + iy) =1 £12
(26) J1£(x) = Pox f) PRS2 < Const. 2112,
U y
27) [10,# (P2 cong. .
U y
PrROOF. We have
L= [17G0) = o ) p 22
dp(x + iy)
<C 2———
onst. fu(x y) e
< Const. fU{ 'g:ou(x,r"y)} w

+
< Const. z (n+1) fv(x 27" )2M
n=0 Y

(= Const. Y (n+ 1)1, say).

n=0




SINGULAR INTEGRAL OPERATORS OF CALDERON TYPE 175

We fix n > 0 and divide U into countable rectangles { ik} ik=—o0s Where S‘j‘k =
S,.(1; ), jk—(12"",(1+l)2" "l (j,k=0,+1, i2 ..). Since dp(z) is a
(B.1/y)-measure with a constant =, we have, by Lemma 19,

n

9 f= T [o(rryp i)

k=-00 sjk Y
0
< Const. Y, (2"I,]) fdu(z) sup v(x,27"y)?
Jk=-00 X+lv€Sk

0

< Const. 22" Y. (2"|L,l) Ll inf _ u(x,27"y)?
Jk=-00 X+iyE Sy

2do(x + iy)

1+a

0
< Const. 22" ) _/:u(x,Z‘”y)
Jok=-00 “Sjk
2do(x + iy)

1+a
y

= Const. 32"3/ u(x,27"y)
U

2do(x + iy)

l1+a

= Const. E2‘”‘°""fu(x, y)

< Const. Z2(A~ "’"/ 1Mdyf fR (x = 5)1f(s) = f(x)|*ds dx
= Const. Ez(ﬁ-a)n/‘ /l;|f(|;)— sf|1(f“)|

= Const. 22~ £||2.

Thus,
o0
I < Const.{ Y (n+ 1)22(”‘“)"}E||f||f,.
n=0

We have

[ 10, f(x)2 2t )
U y

- J [0 x = (106 = Ry )} af 22D

< Const.j;J v(x, y)zw = Const. /,,

and hence, we obtain (27) by (28). Q.E.D.
4.2. In this section we prove Theorem 2. Let a € M(E)), f, g € C5°. Then we
have, with A(x) = [ a(s) ds,
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(29)

. 1/ d
(T.[2.B1/.8) = lim [(Mg . P/ g)

. e d
= lim [{(M,P,/.Q,5) —(M(P‘_.u)Q_vf, P.g) -(M,..Q./Qu8)}

e—0
(€l Al 5) - tim [(M,Q,1.Pg) &

) e d
- lim 1/( (Pta)Qng) e

e—0 Y¢

- lim E‘“(M(Q...a,QyﬂQ}-g) n
=L, -L,—L,- L,
according to Lemma 16 and (21). Theorem 1 shows that
ILy) < ICLAo, Al fllaligl-a < IC Aoy Alllaall fllal&l- o

Since a € L* we have

L7 < [ 10000, + (P U [ 1py e g 222
,do(x +iy) do(x + ty)

<lalii= f 10, f()1? e [ 1P g (P =

= Const.||al| 7=/l flIZlI gl
In the same manner we have
|Ls|* + L4l < Const.||all7=[ 112l glI%
Since g € C§° is arbitrary, we have
IT,[2, B]flla < Const.{|IC[hg, Allla.o + llall = } 11 flla

for any f € C§°. Hence (1) holds.
In the same manner as in the estimate of L,, we have (2) by (22) and

J 1100 = 2o p P ST < Comsif i

At last we prove (3). Let a € BMO. Equality (23) shows that, for any f, g € C;°,

. € d
(Tu[“g’ S]f’ g) = 31_1;% j;l/ (M(Ql.ta)ny? g)_y

. 1/e d
= Fh_rf:) ( 0, +aQf>P ) 2
. 1/¢ dy
M h—l»r(l) (M(a—P‘ *a)ny* Q_rg) T,
: 1/¢ d ’ ’ ’
+ lim (M(Q oI =P)f, Qvg) L4 (=L, + Ly + L}, say).

e—0 Y¢
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Since|Q, * a(x)|* do(x + iy)/yis a(B,1/y)-measure with a constant Const. |a|| o
we have, by (27),

do(x + iy)

L < [ 10, S()P1Q, » a()P = [ 17, + ()P f’—"i’ii’—yl

2 2 ol12
< Const.|a||moll Sl 81124

Since |a(x) — P, * a(x)|®*do(x + iy)/y is a (B,1/y)-measure with a constant
Const.|lal|3mo, We have, by (27), |L5|? < Const.||all3moll fIIZIg]%.. We have, by
(26), |L3|? < Const.||a||3moll f1I211gl1% .- Thus (3) holds. This completes the proof of
Theorem 2.

5. Remarks.

REMARK 21. We denote by F, the totality of functions a(x) in L* such that
af € E, for any f € Cg°. We easily see that F, ¢ L™. Let us show that if, fora € L®
with compact support, 7,[Q, B] is E,-bounded, then a € F,.

Without loss of generality, we may assume that [ a(x) dx = 0. Since a € L™,
(29) and the estimates of L,, L,, L, show that T,[Q, B] — C[h,, 4] is E_ -bounded,
where A(x) = [ a(s) ds. Hence, C[h,, A] is E -bounded according to our assump-
tion. Let f € C§°. Then we have, by (20),

Clho, A1f(x) = H(af )(x) — A(Hf')(x) + H(Af')(x) a.e.

where Hg(x) = lim,_,/|,_,>.8(y)/(x — y) dy. Note that Hg € E, if and only if
g € E,. Since A € M(E,), we have A(Hf'), H(Af') € E,. Hence, H(af) € E,,
which shows af € E,. Since f € C{° is arbitrary, we have a € F,.

ReEMARK 22. The 1-energy space E, is analogously defined. Let f(x) = 0 (x < 0),
=x/e(0 <x <e)and = 1/log x (x > e). Then f € E,. Since

lim f(y) —2dy = _—c0 forallx €R,
n-o00 Yi<x—yj<nX TV

1/(x — y) is 1-unbounded according to our definition. On the other hand, we easily
see that 1/(x — y) is E,-bounded.
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