BEST APPROXIMATION AND QUASITRIANGULAR ALGEBRAS¹

BY

TIMOTHY G. FEEMAN

ABSTRACT. If \mathscr{P} is a linearly ordered set of projections on a Hilbert space and \mathscr{K} is the ideal of compact operators, then $\operatorname{Alg} \mathscr{P} + \mathscr{K}$ is the quasitriangular algebra associated with \mathscr{P} . We study the problem of finding best approximants in a given quasitriangular algebra to a given operator: given T and \mathscr{P} , is there an A in $\operatorname{Alg} \mathscr{P} + \mathscr{K}$ such that $||T - A|| = \inf\{||T - S||: S \in \operatorname{Alg} \mathscr{P} + \mathscr{K}\}$? We prove that if \mathscr{A} is an operator subalgebra which is closed in the weak operator topology and satisfies a certain condition Δ , then every operator T has a best approximant in $\mathscr{A} + \mathscr{K}$. We also show that if \mathscr{E} is an increasing sequence of finite rank projections converging strongly to the identity then $\operatorname{Alg} \mathscr{E}$ satisfies the condition Δ . Also, we show that if T is not in $\operatorname{Alg} \mathscr{E} + \mathscr{K}$ then the best approximants in $\operatorname{Alg} \mathscr{E} + \mathscr{K}$ to T are never unique.

1. Introduction. The concept of quasitriangular operators on a Hilbert space was introduced by Halmos in [5], where an operator T is said to be quasitriangular if there is a sequence $\{E_n\}$ of finite rank projections strongly converging to the identity such that $\|(1 - E_n)TE_n\| \to 0$.

For a fixed increasing sequence $\{P_n\}$ of finite rank projections strongly converging to the identity, Arveson [2] defined the quasitriangular algebra $QT(\{P_n\})$ to be the set of all operators T for which $||(1-P_n)TP_n|| \to 0$. He proved a distance formula for $QT(\{P_n\})$ and showed that $QT(\{P_n\}) = \text{Alg}\{P_n\} + \mathcal{K}$, where $\text{Alg}\{P_n\} = \{T: (1-P_n)TP_n = 0 \text{ for all } n\}$ is the triangular algebra associated with $\{P_n\}$ and \mathcal{K} is the ideal of compact operators.

For any linearly ordered set \mathcal{P} of projections which is closed in the strong operator topology and contains 0 and 1, Fall, Arveson, and Muhly [4] showed that the algebra Alg $\mathcal{P} + \mathcal{K}$ is norm closed, where Alg \mathcal{P} is the triangular algebra associated with \mathcal{P} , namely Alg $\mathcal{P} = \{T: (1 - P)TP = 0, \text{ all } P \in \mathcal{P}\}$. They also gave a characterization of Alg $\mathcal{P} + \mathcal{K}$ as a generalized quasitriangular algebra.

In this paper we study the problem of finding best quasitriangular approximants to a given operator: given an operator T does there exist an operator A in Alg $\mathscr{P} + \mathscr{K}$ for which $||T - A|| = \inf\{||T - S||: S \in \text{Alg } \mathscr{P} + \mathscr{K}\}$? We prove that if \mathscr{A} is an operator subalgebra which is closed in the weak operator topology and satisfies a certain condition $\Delta(\mathscr{A})$, then every operator T has a best approximant in $\mathscr{A} + \mathscr{K}$.

Received by the editors March 13, 1984

¹⁹⁸⁰ Mathematics Subject Classification. Primary 47D25; Secondary 41A50, 41A52.

Key words and phrases. Quasitriangular operator algebras, nest algebra, best approximation.

¹This work represents a part of the author's doctoral dissertation at the University of Michigan. The author would like to thank Allen Shields for his guidance.

We also show that if $\{P_n\}$ is an increasing sequence of finite rank projections strongly converging to 1, then $Alg\{P_n\}$ satisfies the condition $\Delta(Alg\{P_n\})$. Hence, best approximants in $Alg\{P_n\} + \mathcal{K}$ exist for every operator T. Moreover, we show that if $T \notin Alg\{P_n\} + \mathcal{K}$, then such best approximants are never unique.

Some of our results are reminiscent of those proved in [3] by Axler, Berg, Jewell, and Shields, where it is shown, for example, that every L^{∞} function on the unit circle has a best approximant in the algebra $H^{\infty} + C$. In fact, the general approach to proving our main result is inspired by that paper.

2. Preliminaries. In what follows, H will be a separable infinite-dimensional Hilbert space with $\mathcal{L}(H)$ denoting the algebra of all bounded linear operators on H and $\mathcal{K}(H)$, or simply \mathcal{K} , denoting the ideal of compact operators in $\mathcal{L}(H)$. All subspaces of H are assumed to be closed and all projections are selfadjoint. For a projection P let $P^{\perp} = 1 - P$.

If \mathscr{S} is any subset of $\mathscr{L}(H)$ and $T \in \mathscr{L}(H)$, then the distance of T from \mathscr{S} is given by $d(T, \mathscr{S}) = \inf\{||T - S||: S \in \mathscr{S}\}$. Also, Lat \mathscr{S} will denote the set of all projections P for which PSP = SP whenever $S \in \mathscr{S}$. If \mathscr{P} is a set of projections in $\mathscr{L}(H)$, then Alg \mathscr{P} denotes the set of all operators T in $\mathscr{L}(H)$ for which PTP = TP whenever $P \in \mathscr{P}$. A subalgebra $\mathscr{S} \subset \mathscr{L}(H)$ is said to be reflexive if Alg Lat $\mathscr{S} = \mathscr{S}$.

A nest is a family of projections which is linearly ordered by range inclusion, contains 0 and 1, and is closed in the strong operator topology (SOT). A nest algebra is a subalgebra \mathscr{A} of $\mathscr{L}(H)$ for which $\mathscr{A} = \operatorname{Alg} \mathscr{P}$ for some nest \mathscr{P} . Equivalently, it is not hard to see that a nest algebra is a reflexive algebra \mathscr{A} such that Lat \mathscr{A} is linearly ordered (cf. [9]).

In [2] Arveson established the following distance formula for a nest algebra \mathcal{A} .

(2.1)
$$d(T, \mathcal{A}) = \sup\{\|P^{\perp}TP\|: P \in \text{Lat } \mathcal{A}\} \text{ for } T \in \mathcal{L}(H).$$

For a nest \mathscr{P} define the quasitriangular algebra associated with \mathscr{P} by $QT(\mathscr{P}) = \operatorname{Alg} \mathscr{P} + \mathscr{K}(H)$. In [4] Fall, Arveson, and Muhly showed that $QT(\mathscr{P})$ is a norm closed algebra and that

$$QT(\mathscr{P}) = \{ T \in \mathscr{L}(H) \colon (i) \ P^{\perp} TP \in \mathscr{K}(H), \text{ for all } P \in \mathscr{P},$$

the map $P \mapsto P^{\perp} TP$ is continuous
(ii) with respect to the SOT on \mathscr{P} and
the norm topology on $\mathscr{K}(H) \}.$

In the case when $\mathscr{P} = \{P_n\}$ is an increasing sequence of finite rank projections converging strongly to 1, this yields the definition of $QT(\{P_n\})$ given by Arveson in [2]. For this special case Arveson has established the following distance formula.

(2.2)
$$d(T, QT(\{P_n\})) = \overline{\lim} \|P_n^{\perp} TP_n\|, \quad n \to \infty, \text{ for } T \in \mathcal{L}(H).$$

In this case (2.1) can be written as

(2.1')
$$d(T, \operatorname{Alg}\{P_n\}) = \sup\{\|P_n^{\perp} T P_n\| : \operatorname{all} n\} \text{ for } T \in \mathcal{L}(H).$$

We also need the following known result.

LEMMA 2.3. If $\mathcal{A} \subset \mathcal{L}(H)$ is closed in the weak operator topology (WOT), then every T in $\mathcal{L}(H)$ has a best approximant in \mathcal{A} .

PROOF. The proof is a standard argument using the compactness, in the weak operator topology, of the closed unit ball in $\mathcal{L}(H)$. \square

Finally, we observe that if \mathscr{P} is a nest then Alg \mathscr{P} is closed in the WOT. Indeed, if $\{A_{\lambda}\}\subset \text{Alg }\mathscr{P}$ is a net of operators such that $A_{\lambda}\to A$ (WOT), then, for each $P\in\mathscr{P}$, $0=P^{\perp}A_{\lambda}P\to P^{\perp}AP$ (WOT), which implies that $A\in \text{Alg }\mathscr{P}$.

3. Main results.

DEFINITION 3.1. A subalgebra \mathscr{A} of $\mathscr{L}(H)$ satisfies condition $\Delta(\mathscr{A})$ provided that, for each $T \in \mathscr{L}(H)$, for each sequence of operators $\{A_n\} \subset \mathscr{L}(H)$ satisfying $A_n \to 0$ (SOT), and for each $\varepsilon > 0$, there exists an N such that

$$d(T + A_N, \mathscr{A}) \leq \varepsilon + \max\{d(T, \mathscr{A}), d(T, \mathscr{A} + \mathscr{K}) + d(A_N, \mathscr{A})\}.$$

Two remarks are in order. First, if condition $\Delta(\mathscr{A})$ holds and T, $\{A_n\}$, and ε are chosen as indicated, then there exists an N such that

$$d(T + \beta A_N, \mathscr{A}) \le \varepsilon + \max\{d(T, \mathscr{A}), d(T, \mathscr{A} + \mathscr{K}) + d(\beta A_N, \mathscr{A})\}$$

for all $\beta \in [0, 1]$. Otherwise, for each n, take $\beta_n \in [0, 1]$ such that the inequality fails for $\beta_n A_n$. The sequence $\{\beta_n A_n\}$ satisfies $\beta_n A_n \to 0$ (SOT), so the assumption that condition $\Delta(\mathscr{A})$ holds yields a contradiction. Secondly, for any fixed M, N can be chosen so that $N \ge M$ by restricting attention to the sequence $\{A_n : n \ge M\}$.

The next result enables us to reduce the problem of finding best approximants in $\mathscr{A} + \mathscr{K}(H)$ to that of finding best approximants in \mathscr{A} .

THEOREM 3.2. Let $\mathcal{A} \subset \mathcal{L}(H)$ be a subalgebra satisfying condition $\Delta(\mathcal{A})$. Choose $T \in \mathcal{L}(H) \setminus \mathcal{A} + \mathcal{K}$ and suppose the sequence $\{T_n\} \subset \mathcal{A} + \mathcal{K}$ satisfies $T_n \to T$ (SOT). Then there is a sequence $\{a_n\}$ of nonnegative real numbers satisfying $\sum a_n = 1$ and such that, if $K = \sum a_n T_n$, then $d(T - K, \mathcal{A}) = d(T, \mathcal{A} + \mathcal{K})$.

PROOF. Let
$$A_n = T - T_n$$
 so that $A_n \to 0$ (SOT). For convenience let $r = d(T, \mathcal{A} + \mathcal{K})$.

CLAIM. There exists an increasing sequence of positive integers $\{n(k)\}$ and a sequence $\{\alpha_k\}$ of positive real numbers such that $\Sigma \alpha_k = 1$ and such that, for all $N = 1, 2, \ldots$,

$$d\left(\sum_{k=1}^{N} \alpha_k A_{n(k)}, \mathscr{A}\right) = r - \varepsilon_N, \text{ where } \varepsilon_N = r/3^N.$$

PROOF OF CLAIM. Choose n(1) = 1. Since $A_1 \notin \mathcal{A} + \mathcal{K}$, it follows that $d(A_1, \mathcal{A}) \neq 0$. Choose α_1 such that $\alpha_1 \cdot d(A_1, \mathcal{A}) = r - \varepsilon_1$. Since $\alpha_1 \cdot d(A_1, \mathcal{A}) = d(\alpha_1 A_1, \mathcal{A})$, it follows that $d(\alpha_1 A_1, \mathcal{A}) = r - \varepsilon_1$. The relations

$$d(A_1, \mathcal{A}) = d(T, \mathcal{A} + T_1) \geq d(T, \mathcal{A} + \mathcal{K})$$

imply $0 < \alpha_1 < 1$.

Suppose n(1), ..., n(N) and $\alpha_1, ..., \alpha_N$ have been chosen as required. Applying condition $\Delta(\mathscr{A})$ to the operator $\sum_{k=1}^{N} \alpha_k A_{n(k)}$, the sequence $\{A_n\}$, and ε_{N+1} , choose

n(N+1) > n(N) such that

$$(3.3) \quad d\left(\sum_{k=1}^{N} \alpha_{k} A_{n(k)} + \beta A_{n(N+1)}, \mathscr{A}\right)$$

$$\leq \varepsilon_{N+1} + \max\left\{d\left(\sum_{k=1}^{N} \alpha_{k} A_{n(k)}, \mathscr{A}\right), d\left(\sum_{k=1}^{N} \alpha_{k} A_{n(k)}, \mathscr{A} + \mathscr{K}\right) + d\left(\beta A_{n(N+1)}, \mathscr{A}\right)\right\}$$
for all $\beta \in [0, 1]$.

Consider the quantity $d(\sum_{k=1}^{N} \alpha_k A_{n(k)} + \alpha A_{n(N+1)}, \mathcal{A})$ as a function of α . When $\alpha = 0$ this quantity equals $r - \varepsilon_N$. Note that $r - \varepsilon_N < r - \varepsilon_{N+1}$. As $\alpha \to \infty$ this quantity also approaches ∞ . (Here we use the fact that A_k does not belong to \mathcal{A} for any k.) Thus, there exists some value of α , call it α_{N+1} , for which

$$d\left(\sum_{k=1}^{N}\alpha_{k}A_{n(k)}+\alpha_{N+1}\cdot A_{n(N+1)},\mathscr{A}\right)=r-\varepsilon_{N+1}.$$

Note that

$$r - \varepsilon_{N+1} = d\left(\sum_{k=1}^{N+1} \alpha_k A_{n(k)}, \mathcal{A}\right) = d\left(\sum_{k=1}^{N+1} \alpha_k (T - T_{n(k)}), \mathcal{A}\right)$$

$$\geq d\left(\sum_{k=1}^{N+1} \alpha_k T, \mathcal{A} + \mathcal{X}\right) \quad \text{since } T_{n(k)} \in \mathcal{A} + \mathcal{X}$$

$$= \left(\sum_{k=1}^{N+1} \alpha_k\right) \cdot d(T, \mathcal{A} + \mathcal{X}) = \left(\sum_{k=1}^{N+1} \alpha_k\right) \cdot r$$

and, hence, $\sum_{k=1}^{N+1} \alpha_k < 1$. It remains to show that $\sum \alpha_k = 1$.

Referring to inequality (3.3), with α_{N+1} in place of β , suppose that

$$d\left(\sum_{k=1}^{N+1}\alpha_kA_{n(k)},\,\mathcal{A}\right)\leqslant \varepsilon_{N+1}+d\left(\sum_{k=1}^{N}\alpha_kA_{n(k)},\,\mathcal{A}\right).$$

Then $r - \varepsilon_{N+1} \le \varepsilon_{N+1} + (r - \varepsilon_N)$, which implies that $\varepsilon_N \le 2\varepsilon_{N+1}$, a contradiction of the definition of $\{\varepsilon_n\}$. It follows that

$$r - \varepsilon_{N+1} = d \left(\sum_{k=1}^{N+1} \alpha_k A_{n(k)}, \mathcal{A} \right)$$

$$\leq \varepsilon_{N+1} + d \left(\sum_{k=1}^{N} \alpha_k A_{n(k)}, \mathcal{A} + \mathcal{X} \right) + d \left(\alpha_{N+1} A_{n(N+1)}, \mathcal{A} \right)$$

$$= \varepsilon_{N+1} + \left(\sum_{k=1}^{N} \alpha_k \right) \cdot r + \alpha_{N+1} \cdot d \left(A_{n(N+1)}, \mathcal{A} \right).$$

If $N \to \infty$ then $\varepsilon_{N+1} \to 0$ and, since $\Sigma \alpha_k \le 1$, it follows that $\alpha_{N+1} \to 0$. Since $A_n \to 0$ (SOT) we see that $\{||A_n||\}$, and hence $\{d(A_n, \mathscr{A})\}$, is a bounded set. Thus,

letting $N \to \infty$ in the above yields $r = d(\sum \alpha_k A_{n(k)}, \mathcal{A}) \leq (\sum \alpha_k) \cdot r$, which implies that $\sum \alpha_k \geq 1$. This completes the proof of the claim.

To complete the proof of the theorem, define the sequence $\{a_n\}$ by $a_{n(k)} = \alpha_k$ and $a_j = 0$ if j is not of the form n(k) for any k. Also, let $K = \sum a_n T_n = \sum \alpha_k T_{n(k)} = T - \sum \alpha_k A_{n(k)}$. This sum converges since $\sum \alpha_k = 1$ and since $\{\|A_n\|\}$ is a bounded set. It follows from the foregoing discussion that $d(T - K, \mathcal{A}) = d(\sum \alpha_k A_{n(k)}, \mathcal{A}) = r = d(T, \mathcal{A} + \mathcal{K})$, which completes the proof. \square

Note that if $\mathscr{A} + \mathscr{K}(H)$ is norm closed then $K \in \mathscr{A} + \mathscr{K}(H)$. Also, if $\{T_n\}$ is taken to be a sequence of *compact* operators converging to T (SOT), then $K \in \mathscr{K}(H)$, since $\mathscr{K}(H)$ is norm closed.

We are now in a position to prove one of our main results on the existence of best approximants.

THEOREM 3.4. Let $\mathcal{A} \subset \mathcal{L}(H)$ be a subalgebra which is WOT-closed and satisfies condition $\Delta(\mathcal{A})$, and suppose $T \in \mathcal{L}(H)$. Then there exists $B \in \mathcal{A} + \mathcal{K}(H)$ such that $||T - B|| = d(T, \mathcal{A} + \mathcal{K}(H))$.

PROOF. Assume $T \in \mathcal{L}(H) \setminus \mathcal{A} + \mathcal{K}$, since otherwise the result is obvious. Let $\{e_j: j \geq 0\}$ be an orthonormal basis for H and define E_n to be the projection onto the subspace spanned by $\{e_j: j \leq n\}$. Each E_n has finite rank and $E_n \to 1$ (SOT). Set $T_n = E_n T E_n$. Each T_n is compact and $T_n \to T$ (SOT).

By Theorem 3.2 there is a sequence $\{a_n\}$ of nonnegative real numbers satisfying $\sum a_n = 1$ and such that, if $K = \sum a_n T_n$, $d(T - K, \mathscr{A}) = d(T, \mathscr{A} + \mathscr{K})$. Note that $K \in \mathscr{K}$. By Lemma 2.3 there exists $A \in \mathscr{A}$ such that $||(T - K) - A|| = d(T - K, \mathscr{A})$. Therefore, the operator B = A + K is in $\mathscr{A} + \mathscr{K}$ and satisfies

$$||T - B|| = d(T, \mathscr{A} + \mathscr{K}).$$

In other words, B is a best approximant to T in $\mathscr{A} + \mathscr{K}$. \square

We remarked earlier that every nest algebra is WOT-closed, so Theorem 3.4 applies, in particular, to any nest algebra \mathcal{A} which satisfies condition $\Delta(\mathcal{A})$.

The following corollary shows that if $\mathcal{A} + \mathcal{K}$ is norm closed, then the operator K in the conclusion of Theorem 3.2 is not unique.

COROLLARY 3.5. Let \mathscr{A} , T, and $\{T_n\}$ be as in the statement of Theorem 3.2, and also suppose that $\mathscr{A} + \mathscr{K}$ is norm closed. Then there exist two sequences $\{a_n\}$ and $\{b_n\}$ of nonnegative real numbers such that $\sum a_n = \sum b_n = 1$ and such that, if $K = \sum a_n T_n$ and $K_1 = \sum b_n T_n$, then $K \neq K_1$ and $d(T - K, \mathscr{A}) = d(T - K_1, \mathscr{A}) = d(T, \mathscr{A} + \mathscr{K})$.

PROOF. Let $\{a_n\}$ and $K = \sum a_n T_n$ be as in the conclusion of Theorem 3.2. Then $(T_n - K) \to (T - K)$ (SOT). Let \mathcal{O} be a convex neighborhood of T - K in the strong operator topology whose closure does not contain \mathcal{O} . Deleting a finite number of terms if necessary, assume that $T_n - K \in \mathcal{O}$ for all n.

Since $\mathscr{A} + \mathscr{K}$ is norm closed, we see that $K \in \mathscr{A} + \mathscr{K}$ and, hence, $(T_n - K) \in \mathscr{A} + \mathscr{K}$ for all n. Thus by Theorem 3.2 we can construct a sequence $\{b_n\}$ such that $\sum b_n = 1$ and such that if $K' = \sum b_n (T_n - K)$, then

$$d((T-K)-K',\mathscr{A})=d(T-K,\mathscr{A}+\mathscr{K})=d(T,\mathscr{A}+\mathscr{K}).$$

Thus, the operator $K_1 = K + K'$ satisfies $d(T - K_1, \mathcal{A}) = d(T, \mathcal{A} + \mathcal{K})$. Since K' is a convex combination of elements of \mathcal{O} , it follows that $K' \neq 0$ and, hence, $K_1 \neq K$. This proves the corollary. \square

We noted earlier that $\mathscr{A} + \mathscr{K}$ is norm closed whenever \mathscr{A} is a nest algebra, so Corollary 3.5 applies, in particular, to any nest algebra satisfying condition $\Delta(\mathscr{A})$. Also note that if $\{T_n\}$ is taken to be a sequence of compact operators, then K is compact as well and the requirement that $\mathscr{A} + \mathscr{K}$ be norm closed is superfluous.

4. More main results. Throughout this section let $\mathscr{P} = \{P_n\}$ be a fixed increasing sequence of finite rank projections such that $P_n \to 1$ (SOT). Let

$$\mathscr{A} = \text{Alg}\{P_n\} = \{T \in \mathscr{L}(H): P_n^{\perp} TP_n = 0 \text{ for all } n\}$$

and let

$$QT = QT(\lbrace P_n \rbrace) = \left\{ T \in \mathcal{L}(H) \colon \left\| P_n^{\perp} T P_n \right\| \to 0, n \to \infty \right\}.$$

The following result establishes the validity of condition $\Delta(\mathscr{A})$ in this special case. It then follows from Theorem 3.4 that best approximants in QT exist for every operator in $\mathscr{L}(H)$.

PROPOSITION 4.1. The algebra $\mathscr{A} = \text{Alg}\{P_n\}$ satisfies condition $\Delta(\mathscr{A})$.

PROOF. Choose $T \in \mathcal{L}(H)$ and let $\{A_n\} \subset \mathcal{L}(H)$ satisfy $A_n \to 0$ (SOT). Fix $\varepsilon > 0$. If condition $\Delta(\mathcal{L})$ is not satisfied, then by the distance formulas (2.2) and (2.1') there is a sequence $\{m_n\}$ of nonnegative integers such that $\|P_{m_n}^{\perp}(T+A_n)P_{m_n}\| > \varepsilon + \alpha_n$, where

$$\alpha_n = \max \left(\sup_{j \ge 0} \left\| P_j^{\perp} T P_j \right\|, \ \overline{\lim}_k \left\| P_k^{\perp} T P_k \right\| + \sup_{j \ge 0} \left\| P_j^{\perp} A_n P_j \right\| \right).$$

Consider two cases.

Case 1. Suppose no nonnegative integer appears infinitely often in the sequence $\{m_n\}$. Passing to a subsequence if necessary, assume that $\{m_n\}$ is an increasing sequence. By the definition of \limsup , there exists some N such that $n \ge N$ implies that $\|P_{m_n}^{\perp}TP_{m_n}\| \le \overline{\lim}_k \|P_k^{\perp}TP_k\| + \varepsilon/2$. Thus, for $n \ge N$, we have

$$\begin{aligned} \left\| P_{m_n}^{\perp}(T+A_n) P_{m_n} \right\| &\leq \left\| P_{m_n}^{\perp} T P_{m_n} \right\| + \left\| P_{m_n}^{\perp} A_n P_{m_n} \right\| \\ &\leq \overline{\lim}_{k} \left\| P_k^{\perp} T P_k \right\| + \varepsilon/2 + \sup_{j} \left\| P_j^{\perp} A_n P_j \right\| \\ &\leq \alpha_n + \varepsilon/2. \end{aligned}$$

This contradicts the definition of the sequence $\{m_n\}$.

Case 2. Suppose some nonnegative integer, call it M, appears infinitely often in the sequence $\{m_n\}$. Passing to a subsequence if necessary, assume that

$$||P_M^{\perp}(T+A_n)P_M|| > \varepsilon + \alpha_n$$
 for all n .

Since P_M is compact and $A_n \to 0$ (SOT), it follows that $||A_n P_M|| \to 0$. Choose N such that $||A_N P_M|| < \varepsilon/2$. We then have

$$\begin{aligned} \left\| P_{M}^{\perp} \left(T + A_{N} \right) P_{M} \right\| & \leq \left\| P_{M}^{\perp} T P_{M} \right\| + \left\| P_{M}^{\perp} A_{N} P_{M} \right\| \\ & \leq \sup_{i} \left\| P_{i}^{\perp} T P_{i} \right\| + \varepsilon/2 \leq \alpha_{N} + \varepsilon/2. \end{aligned}$$

This yields a contradiction to the definition of the sequence $\{m_n\}$ and completes the proof of the proposition. \square

We now show that best approximants in QT are never unique for operators not in QT.

PROPOSITION 4.2. For each $T \in \mathcal{L}(H) \setminus QT$ there exist operators B and B_1 in QT such that $B \neq B_1$ and $||T - B|| = ||T - B_1|| = d(T, QT)$.

PROOF. Consider two cases.

Case 1. Suppose there is a subsequence $\{n_k\}$ such that $(P_{n_{k+1}} - P_{n_k})TP_{n_0} \neq 0$ for all $k \geq 0$. Set $E_k = P_{n_k}$ and let $T_k = E_k T E_k$. Now, let $K = \sum a_k T_k$ and $K_1 = \sum b_k T_k$ be as in the conclusion of Corollary 3.5. Note that K and K_1 are compact. By Lemma 2.3 we can find operators A and A_1 in $\mathscr A$ such that $||T - K - A|| = d(T - K, \mathscr A)$ and $||T - K_1 - A_1|| = d(T - K_1, \mathscr A)$. Thus, B = A + K and $B_1 = A_1 + K_1$ are best approximants in QT to T. To show that $B \neq B_1$, it suffices to show that $K - K_1 \notin \mathscr A$.

Suppose, to the contrary, that $K - K_1 \in \mathcal{A}$. Then it follows, in particular, that

$$0 = E_0^{\perp} (K - K_1) E_0 = \sum_{k \ge 0} (a_k - b_k) E_0^{\perp} E_k T E_k E_0$$
$$= \sum_{k \ge 1} (a_k - b_k) (E_k - E_0) T E_0.$$

Letting $C_k = \sum_{i \ge k} (a_i - b_i)$, a summation by parts shows that

$$\sum_{k=1}^{N} C_k (E_k - E_{k-1}) T E_0 = \sum_{k=1}^{N-1} (a_k - b_k) E_k T E_0 + C_N E_N T E_0 - C_1 E_0 T E_0.$$

As $N \to \infty$, $|C_N| \to 0$, so $||C_N E_N T E_0|| \to 0$. Thus,

$$\sum_{k=1}^{\infty} C_k (E_k - E_{k-1}) T E_0 = \sum_{k=1}^{\infty} (a_k - b_k) E_k T E_0 - C_1 E_0 T E_0.$$

We thus have that

$$\sum_{k=1}^{\infty} \left(\sum_{j \ge k} (a_j - b_j) \right) (E_k - E_{k-1}) T E_0$$

$$= \sum_{k=1}^{\infty} (a_k - b_k) E_k T E_0 - \sum_{k=1}^{\infty} (a_k - b_k) E_0 T E_0$$

$$= \sum_{k=1}^{\infty} (a_k - b_k) (E_k - E_0) T E_0 = 0.$$

Since the range of $(E_l - E_{l-1})$ is orthogonal to that of $(E_j - E_{j-1})$ whenever $l \neq j$, and since, by assumption, $(E_k - E_{k-1})TE_0 \neq 0$ for $k \geq 1$, it follows that

$$\sum_{j\geqslant k} \left(a_j - b_j \right) = 0 \quad \text{for } k \geqslant 1.$$

The fact that $\sum a_n = \sum b_n = 1$ implies that $\sum_{j \ge 0} (a_j - b_j) = 0$ as well. Hence, $a_j = b_j$ for all $j \ge 0$, which contradicts the assumption that $K \ne K_1$. Thus, $K - K_1 \notin \mathcal{A}$ and, consequently, $B \ne B_1$.

Case 2. Suppose there is no subsequence $\{n_k\}$ for which $(P_{n_{k+1}} - P_{n_k})TP_{n_0} \neq 0$ for all k. Then for each k there is a smallest integer m(k) such that $P_{m(k)}^{\perp}TP_k = 0$. We claim that $m(k) \geqslant k+1$ for infinitely many k. Indeed, were this not so then there would exist N such that $m(k) \leqslant k$ for $k \geqslant N$. Hence, $P_k^{\perp}TP_k = 0$ for $k \geqslant N$, which implies that d(T, QT) = 0, contradicting the assumption that $T \notin QT$.

We make the following remarks.

- (a) If $m(k) \ge k + 1$, then $(P_{m(k)} P_k)TP_k \ne 0$. This follows from the choice of m(k) as the *smallest* integer such that $P_{m(k)}^{\perp}TP_k = 0$.
 - (b) It is clear that if $(P_{m(k)} P_k)TP_k \neq 0$, then $(P_j P_k)TP_k \neq 0$ for $j \geq m(k)$.

Now, choose k_0 such that $m(k_0) \ge k_0 + 1$ and $TP_{k_0} \ne 0$. For $j \ge 1$ inductively choose k_j such that $m(k_j) \ge k_j + 1$ and $k_j > m(k_{j-1})$. Set $E_j = P_{k_j}$ and let $T_j = E_j TE_j$. From this we get $K = \sum a_n T_n$ and $K_1 = \sum b_n T_n$, as in the conclusion of Corollary 3.5. To complete the proof it suffices, as in the previous case, to show that $K - K_1 \notin \mathcal{A}$.

First observe that remarks (a) and (b) imply that $(E_n - E_l)TE_l \neq 0$ for $n \geq l+1$. Also, by the construction of the sequence $\{E_n\}$, it follows that $(E_{j+1} - E_j)TE_l = 0$ for $j \geq l+1$. Putting these together we see that, for $n \geq l+1$,

$$(E_n - E_l)TE_l = \sum_{j=l}^{n-1} (E_{j+1} - E_j)TE_l = (E_{l+1} - E_l)TE_l \neq 0.$$

To see that $K - K_1 \notin \mathcal{A}$, suppose the contrary. Then, for $l \ge 0$, we must have

$$0 = E_{l}^{\perp} (K - K_{1}) E_{l} = \sum_{n \geq 0} (a_{n} - b_{n}) E_{l}^{\perp} E_{n} T E_{n} E_{l}$$

$$= \sum_{n \geq l+1} (a_{n} - b_{n}) (E_{n} - E_{l}) T E_{l}$$

$$= \sum_{n \geq l+1} (a_{n} - b_{n}) (E_{l+1} - E_{l}) T E_{l}$$

$$= \left[\sum_{n \geq l+1} (a_{n} - b_{n}) \right] (E_{l+1} - E_{l}) T E_{l}.$$

Since $(E_{l+1}-E_l)TE_l \neq 0$, it follows that $\sum_{n\geqslant l+1}(a_n-b_n)=0$ for $l\geqslant 0$. Since $\sum a_n=\sum b_n=1$, it follows that $\sum_{n\geqslant l}(a_n-b_n)=0$ for all $l\geqslant 0$ and, hence, $a_n=b_n$ for all n, contradicting the assumption that $K\neq K_1$. Hence, $K-K_1\notin \mathscr{A}$ and the corollary is proved. \square

5. Remarks. The obvious question is to ask which subalgebras \mathscr{A} satisfy the condition $\Delta(\mathscr{A})$. Our proof of Proposition 4.1 and Arveson's proof of the distance formula (2.2) both use the finite dimensionality of the projections P_n in an important way. Some means of eliminating this dependence would apparently be needed to establish a broader validity of condition $\Delta(\mathscr{A})$. A generalization of Proposition 4.2 to the setting of §3 would also be useful.

A question related to Theorem 3.2 is the following. If the operators $\{T_n\}$ are taken to be compact, then the resulting K is also compact. It is possible that this K is a best compact approximant to T?

In [3] Axler, Berg, Jewell, and Shields employ what they call the "Basic Inequality" for a Banach space X. This inequality is similar to condition $\Delta(\mathscr{A})$ for $\mathscr{A} = \{0\}$, the zero operator. They show that the Basic Inequality is satisfied for $X = l^p$, $1 . They also prove that the closed unit ball of <math>L^{\infty}/H^{\infty} + C$ has no extreme points. Two questions which arise are whether $\Delta(\mathscr{A})$ holds when \mathscr{A} is the algebra of operators on l^p $(1 with upper triangular matrix representations with respect to the standard basis, and whether the closed unit ball of <math>\mathscr{L}(H)/\mathscr{A} + \mathscr{K}(H)$ has any extreme points if \mathscr{A} is a nest algebra satisfying condition $\Delta(\mathscr{A})$.

Another line of questioning is related to the theory of M-ideals, introduced in 1972 by Alfsen and Effros [1]. Luecking [8] showed that $H^{\infty} + C/H^{\infty}$ is an M-ideal in L^{∞}/H^{∞} , and it seems reasonable to ask if $\mathscr{A} + \mathscr{K}(H)/\mathscr{A}$ is an M-ideal in $\mathscr{L}(H)/\mathscr{A}$ for any nest algebra \mathscr{A} . An affirmative answer would imply, by a result of Holmes, Scranton, and Ward [7], that the collection $\mathscr{S}_T = \{A + \mathscr{A} \in \mathscr{A} + \mathscr{K}(H)/\mathscr{A}: d(T-A,\mathscr{A}) = d(T,\mathscr{A} + \mathscr{K}(H))\}$ would algebraically span $\mathscr{A} + \mathscr{K}(H)/\mathscr{A}$ for each $T \in \mathscr{L}(H) \setminus \mathscr{A} + \mathscr{K}(H)$.

REFERENCES

- 1. Eric M. Alfsen and Edward G. Effros, Structure in real Banach spaces, Ann. of Math. (2) 96 (1972), 98-173.
 - 2. William Arveson, Interpolation problems in nest algebras, J. Funct. Anal. 20 (1975), 208-233.
- 3. Sheldon Axler, I. David Berg, Nicholas Jewell and Allen Shields, Approximation by compact operators and the space $H^{\infty} + C$, Ann. of Math. (2) 109 (1979), 601-612.
- 4. T. Fall, W. Arveson and P. Muhly, Perturbations of nest algebras, J. Operator Theory 1 (1979), 137-150.
 - 5. P. R. Halmos, Quasitriangular operators, Acta Sci. Math (Szeged) 29 (1968), 283-293.
- 6. Richard B. Holmes and Bernard R. Kripke, *Best approximation by compact operators*, Indiana Univ. Math. J. 21 (1971), 255-263.
- 7. Richard Holmes, Bruce Scranton and Joseph Ward, Approximation from the space of compact operators and other M-ideals, Duke Math. J. 42 (1975), 259-269.
- 8. Daniel H. Luecking, The compact Hankel operators form an M-ideal in the space of all Hankel operators, Proc. Amer. Math. Soc. 79 (1980), 222-224.
 - 9. J. R. Ringrose, On some algebras of operators, Proc. London Math. Soc. 15 (1965), 61-83.

DEPARTMENT OF MATHEMATICS, BUCKNELL UNIVERSITY, LEWISBURG, PENNSYLVANIA 17837