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ON INFINITE DEFICIENCY IN /^-MANIFOLDS

BY

VO THANH LIEM

Abstract. Using the notion of inductive proper g-l-LCC introduced in this note, we

will prove the following theorems.

Theorem 1. Let M be an Rx-manifold and let H: X x / -» M be a homotopy such

that H0 and H¡ are Rx'-deficient embeddings. Then, there is a homeomorphism F of M

such that F° Hn = H¡. Moreover, if H is limited by an open cover a of M and is

stationary on a closed subset X0 of X and W0 is an open neighborhood of

H[(X - Xa) X /]    inM,

then we can choose F to also be StA(a)-close to the identity and to be the identity on

XaU(M- W0).
Theorem 2. Every closed, locally Rx(Qx)-deficient subset of an Rx(Qx )-manifold

M is Rx(Qx)-deficient in M. Consequently, every closed, locally compact subset of M

is Rx(Qx)-deficient in M.

0. Introduction and definitions. In this note, we introduce a criterion for Rx-

deficiency in Ä°°-manifolds, inductive proper (¡r-l-LCC, and prove some properties

similar to those in Hilbert-cube manifolds and Hilbert-space manifolds: (1) The

controlled version of the unknotting theorem for Ä°°-deficient embeddings in

Ä°°-manifolds (Theorem 2.1); (2) local Ä°°(Q°°)-deficiency implying global

Ä°°(ß°°)-deficiency in Ä00(Q00)-manifolds (Theorems 5.1 and 5.3); and (3) conse-

quently, every closed locally compact subset of an Ä00(o°°)-manifold being

/^(ö^-deficient.

Throughout this note, let R" denote the «-Euclidean space, / the unit interval

[0,1], Q the Hubert cube nî°/n, Rx the direct limit space lim{R"}, and Q°° the

direct limit space   lim{<2"}  where Q" is the product of « copies of Q. By

R00(Qx)-manifolds, we mean paracompact spaces that are locally homeomorphic to

Rco(Qx). A closed subset X of an Ä°°(g°°)-manifold M is said to be RX(Q°°)-

deficient if there is a homeomorphism «: M -* M X Rx (M X Qx) such that

h(X) c M X (0), where 0 = (0,0,...) (or «: M -» M X /, as we already observed

in [LJ and Proposition 1 in [L2]). An embedding /: X -» M is said to be

Rca(Qx)-deficient if f(X) is. For basic notions and results in g-manifold theory as

Z-set, unknotting theorem,..., we refer to [Ch].
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Given an open cover a of a topological space M, a homotopy H: X X / -» M is

said to be a-limited if for each x G X, there is an open i/£a such that //({jc} X /)

c U. Two maps / and g: X -* M are «-close if for each x ^ X there is an open set

i/ea such that f(x), g(x) g U. For a subset ^4 of Jf, let St(^4, a) denote

(J{U g «|{/ n /l # 0}. Let St(a) denote the open cover {St(U, a)\U G a} of M;

and inductively let St"(a) denote (St(F, a)|Ke St"_1(a)}. Let (Z, ¿) be a metric

space. Given a subset /I of X and a 8 > 0, we write NS(A) = { jc g X\d(x, A) < 8},

the 5-neighborhood of /I in X.

For basic notions and results in piecewise-linear (PL) topology as PL homeomor-

phism, PL embedding, PL collar, collapsing (\), etc., we refer to [Hd]. For a PL

manifold M, let 3M and Int M denote its boundary and its interior. Let aBd denote

the PL ¿/-ball [-a, a]X • ■ • X [-a, a] and Bd the unit PL d-ball.

Let M be an «-manifold. A closed subset X of M is locally simply co-connected

(1-LCC) if for every x g X and every e > 0 there is a 8 > 0 such that every loop in

Ns(x) — X is null-homotopic in Ne(x) — X. A closed embedding/: X -* M is 1-LCC

if /( X) is 1-LCC in M. The complement M — X is uniformly simply-connected

(1-ULC) (as in [B]) if given an e > 0 there is a 5 > 0 such that every <5-loop in

M — X is null-homotopic in an e-subset of M — X. It is observed that if X is a

compact subset of M, where M is a compact manifold or the interior of a compact

manifold, then X is 1-LCC in M iff M - X is 1-ULC (by use of the local

contractibility of M and M — X, and the local compactness of M ).

An embedding / of a polyhedron P into a PL manifold M is said to be tame (see

[R, p. 51]) if there is a homeomorphism h of M such that «/is PL. If /is a 1-LCC

embedding of a compact polyhedron into Int M" (n > 6) with 2 dim P + 2 < «,

then there is a PL embedding g: P -» Int M" which is arbitrarily close to /

(Corollary 1.6.6 in [R]); hence, it follows from [B] that/is locally tame (see definition

in [R, p. 120]), and from Theorem 3.8.1 in [R] that/is e-tame for any given e > 0.

Now, we restate some lemmas already observed in [LJ that we will need in the

sequel.

Lemma A. A space M is an Rx-manifold if and only if M is homeomorphic to lim M„

where, for each n, Mn is a compact finite-dimensional manifold and it is a 1-LCC subset

of the interior of Mn + X with 2 dim Mn + 2 < dim Mn+X.    O

Lemma B. Let X = lim {X„} where Xn is a metric subspace of Xn +, for each n. If K

is a compact subset of X, then there is an integer «0 such that K is contained in Xn .    D

Corollary 0. Every compact subset of an Rx-manifold is Rx-deficient; therefore,

by Theorem 5.3 in [Lx], strongly negligible.    D

Lemma C. // Y is an Rx-deficient subset of an Rx-manifold M, then M can be

written as lim M„, where Mn is a compact PL manifold such that, for each n = 1,2,...,

(l)M„c"oM„+1,

(2) Y n Mncz 3M„, 2dim(F n 3M„) + 3 < dim3M„, and

(3) each Mn = a PL submanifold of Rq with q = dim M„.
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Proof. Let M = lim A7,, as in Lemma A and let Rx = lim/". From the Open

Embedding Theorem [H5], we can assume that each N„ is homeomorphic to a PL

submanifold of Rdim N\ Now, we identify M with M X Rx such that Y c M X {0}

and define M„ = N„ x Id- with dim N„ + 4 < d„ < d„+x. Then, by Corollary III.l

in [H4], it follows that M X Rx = limMn which satsifies (1) and (2) since Id- = Ia-

X {0} c dId-*K   a

A closed subset X of a space N is collared (bicollared) in N if there is an open

embedding r>: X X [0,1) -» N (<f>: XX (-1,1) -» N) such that </>(jc,0) = x for all

x g X A collar <#>: A' X [0,1) -» TV is normal if <i>( X X [0, s]) is closed in TV for each

s g [0,1), and <#>|( X X [0, s]) of a normal collar <|> is called a closed collar of X in N.

Normal bicollars and closed bicollars are defined similarly.

Observe that if N is paracompact and X is a collared subset in N, then there is a

normal collar of X in N. Since N is paracompact, it follows that there is an open

neighborhood U of X in N such that (Ü c </>(X X [0,1 )). Then, <p~\U) is an open

neighborhood of A' X {0} inlx [0,1). Since X is paracompact, there is a map a:

X -» (0,1] such that for each 5 g [0,1), the set Cs = {(x, t)\x e X, t e [0, sa(x)]}

is contained in <t>~\U). Define »p: A" X [0,1) -» TV by ^(jc, 0 = </>(*, ?a(x)). Then, \p

is a normal collar of X in TV. For, if s g [0,1), t//(X X [0, s]) = <¡>(CS) is closed in

Im(<i>) and \p(X X [0, s]) c Ü c Im(</>); hence, i//(Ar X [0, s]) is closed in N.

Therefore, without loss of generality, we will use normal collars (bicollars) if the

involved spaces are paracompact.

The layout of this note is as follows. The inductive proper g-l-LCC, which is

defined in §1, is proved to be equivalent to the Rx-deficiency. Thereby, the union of

two Ä00-deficient subsets is shown to be /{"-deficient. Then, the unknotting theorem

is proved in §2. In §3, it is shown that a collared submanifold is /{"(ß^-deficient.

Next, some technical lemmas, which will be used to prove local deficiency implying

global deficiency in §5, are proved in §4.

1. Characterization of Rx-deficiency. In this section, we will establish a criterion,

the inductive proper g-l-LCC, that determines the /{""-deficiency in /(""-manifolds.

The result is similar to Proposition 1 in [L2]. Then, we prove that the union of a

finite family of Rx-deficient subsets is /{'"-deficient in Proposition 1.5. Finally, we

show that an inductive trivial boundary subset is also R°°-deficient (Theorem 1.6).

A codimension-4 closed subset A' of a compact manifold P is properly 1-LCC if

X n Int P and X n 3P are 1-LCC subsets of Int P and 3P, respectively. Given an

integer q, a closed subset A" of a compact manifold TV" is properly «7-1-LCC in TV if A"

is properly 1-LCC in N, 2dim X + q < « and 2dim(X n 3A/) + q <£ « - 1. A

closed subset X of an /?°°-manifold N is inductively properly ¿7-1-LCC if N can be

written as lim Nn as in Lemma A such that X n Nn is properly g-l-LCC in Nn for

each «.

In the following observations, N, K and B denote compact PL manifolds of

dimension greater than 5, and all spaces X, Y, Z and W are compact.

Observations, (a) If X is a subset of N, then for each PL ball Bq, 2 dim X + 2 <

q, there is an embedding /: X -> B" such that f^'aS") = X n 3/V (= Y). First,
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from [H-W], there is an embedding of Y into dBq which, then, extends to a map g:

X -> Bq such that g(X - Y) c Int Bq; finally, from Corollary 5 in [H-T], there is an

embedding /approximating g (rel. Y ) as we desired.

(a') In (a) if Z is a subset of X with Y C\Z= 0, and 1-LCC embedding «:

Z -> Int Bq is given, then the embedding/in (a) can be chosen to be an extension

of « [H-T, Corollary 5], since h(Z) is a Z^-set in Int Bq by Lemma 1 of [B] where

k < q — dim X — 1.

(ß)\lWis& 1-LCC subset of Int Kq and/: X -> Int Ä" is a map such that/|A"0 is

a 1-LCC embedding, where X0 is a compact subset of X and where 2 dim X + 2,

2 dim W + 2 < q, then there is a 1-LCC embedding g: X -> Int AT approximating /

(rel A'o) such that g( A" - A^) n W = 0. For, let Z (Z0, resp.) denote (X U !T)/~

(( A'o U W)/~ . resp.) where f(x) ~ x if x e I0 and /(x) g W. Then, the map /

and the inclusion W c K define a map /: Z -» Int AT such that /|Z0 is a 1-LCC

embedding (by Lemma 1.2 in [LJ). Then, g will be the restriction on X of an

approximation to/(rel. Z0) given by Corollary 5 in [H-T].

(y) If X c Z?'-1 c /{<? is a closed subset with dim X + 3 < q, then X does not

separate /?* x locally; consequently, by use of the natural bicollar of Rql in Rq, it

is straightforward to show that X is 1-LCC in Rq.

Lemma 1.1. Let X be a compact subset of a compact PL manifold N and assume that

2 dim X+ 3, 2dim(A' n 3TV) + 4 < it. Lei /: X -» aB*"1 c ¿zÄ* fee a« embedding

given by Observation (a). Then, each neighborhood V of f(X) in aBk contains a

compact-PL-manifold neighborhood Koff(X) such that

(l)f~\dK)= dN D X,and

(2) f(X) is a properly 1-LCC subset of K.

Proof. It follows from (y) that f(X) is properly 1-LCC in aBk. Let L be a

polyhedron neighborhood of f(X) in V. Define K to be a second derived neighbor-

hood of L in V, then K meets d(aBk) regularly [R, p. 23]; hence, it satisfies both

properties (1) and (2).   D

Proposition. 1.2. A subset X of an Rx-manifold N is Rx-deficient in N if and only

if it is an inductively properly q-l-LCC subset of N for q > 3.

Proof. Let X be an /{"-deficient subset of N = N X Rx. We can assume that

X c N X {0} c N X Rx. Let N = limN'k as in Lemma A, and let Nk = N'k X

kBdim Ni+q; then, it is clear that X n Nk cz N'k X {0} is properly çr-1-LCC in 7v¿ and

N X Rx = limNn.

(ii) Let X be an inductively properly 3-1-LCC subset in N. We will show that there

is a homeomorphism/: N X Rx -» N such that/"1(A') c N X {0}. Let N = lim/V,,

and Xn = X n Nn as in the definition of the inductive proper 3-1-LCC of X in N. In

the sequel, we will use two families of PL balls: {Bx }x=x and {Bk }x=x.

First, from Lemma 1.1, if mx = dim Xx + 1, there is a properly 1-LCC embedding

gx: Xx -» Kx c B2mi + 3 where .zY, is a compact-PL-manifold neighborhood of g^A",)

in B2mi + 3 which can be chosen so small that gf x\gx(Xx) has an extension «' over ATX
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into Int N2. Identify Kx with Kx X {0} c Kx X B\ and define « = «'°proj: Kx X B\

-* Kx -» Int N2. Without loss of generality, we can assume that 4m, + 10, 2 dim TV,

+ 2 < dim N2. Observe that

(a) 2 dim X2 + 3 < dim N2 from the definition of inductive proper 3-1-LCC,

(b) 2 dim(Kx X B\) + 2 = 4mx + 10 < dim 7V2, and

(c) h(gx(Xx)) = gx\gx(Xx)) = Xx is 1-LCC in Int N2. Therefore, from Observa-

tion (ß), it follows that there is a 1-LCC embedding/^ Kx X B\ -* Int 7V2 such that

(i-i) fi\gÁxx) = g1-%(xx),

and

(1.2) (A/, U X2) n Im(/,) = Xx    (sinceXx = X2 n TV, c Nx U X,).

Define M, = Imi/,).

Second, in a similar manner, we define K2,f2 and M2. Write A"2 = A'2 U TV, U M,

and let <p: Kxx 52 -» KXX [-1,1] be the natural PL homeomorphism. Let m2 =

dim X'2 + 1 = max {dim X2, dim A7,, dim M,} + 1. We have the following natural

inclusions: Kx X [-1,1] c B12mi+3 x [-1,1] = £2m>+4 c fi^+s c 2B2m^ + \ So, it

follows from Observations (a') and (y) that there is a 1-LCC embedding g2:

X'2 -+ 252"^ + 3 that is an extension of «fc/f1 with g2"1(9(2.B1m2 + 3)) = X2.n 8A/2.

Now, we assume similarly that 2 dim A^ + 2, 4w2 + 10 < dim N3; then, there is a

compact-PL-manifold neighborhood K2 of g2(X2) in 2B2n'2 + 3 such that by use of

Observation (/?) with g2(A"2) and N2 U ( A"3 n Int A^j) playing the role of A'o and W

respectively, we can define a 1-LCC embedding f2: K2 X 2B\ -» Int 7V3 (recalling

that A'2 c A^2 is 1-LCC in Int Aj) such that

(2.1) fi\g2(^) = g21\g2(X'2),

especially, if x S Kx X [-1,1] c g2(A-2), then /2'(x) = g2J(x) = (*^)rI(*) =

fx<p-\x), and

(2.2) (iV2UA-3)nIm(/2') = A-2.

Now, observe that the PL embedding y<¡>: Kx X B\ -* K2 X 2B2, where j is the

inclusion Kx X [-1,1] c K2 X {0} c K2X 2B2, is homotopic to the inclusion z, X

i2: KXX B\^> K2X 2B\ through a homotopy H, fixing A^ X {0}, such that

H(x, s, t) £ g2(X2) for x & Kx, s ^ B\ - {0), t g /. (Recall that 2dim X2 + 3 <

dim K2 and that g2(A'2) is properly 1-LCC in K2 X 2B2.) Hence, there is, by

Theorem 1.5 [L J, an isotopy h2 of K2 X 2B2 such that

(*) h2 = id,

(**) h2(x) = x   ifxe(Kxx{0))ug2(X2),

and

(***) hl(x) =j<b(x) = <b(x)    if x<=KxXBl.
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Then, we define/2 = /2'«2 and M2 = Im(/2) = Im(/2). Observe that the following

diagram is commutative,

Kxx B\       -»      Mx

I ¡1  X «2 i

h
K2 X 2B¡     -+     M2

since for each x g Kx X B\,f2(x) = /2«2(x) = fx4>~l^(x) = fx(x) by (2.1).

In a similar manner, we can continue to define X'3, g3, AT3,/3, h3,f3 = f^h\, M3,...

to extend the above commutative diagram.

Finally, let /= lim/,:  hm(Kn X nB2) -* limM,,, then / is a homeomorphism.

Moreover, since Mn + X contains X'n that contains Nn for each «, limM,, = N; and

since Kn and «B2 are compact, it can be shown that lim(.rv„ X nB2) is homemor-

phicto(limÄ'„) X(lim«52") = N X Rx; andf~l(X) C N X {0} since

f-\xn)=fn\xn) = (m)-\xn) = (KY\a-\xn)

= (KY\gn(xn))   by(«.i)

-gm(XH)cKn*KmX{0)    by(**)-

Hence, the proof is complete.   D

Remarks. La. The closed subset Rx X {0} is not /{"-deficient in R°° X R4.

Therefore, the dimension condition in the definition of inductive proper g-l-LCC

cannot be dropped.

Lb. From part (i) of the proof, up to a homeomorphism, we can assume as in

Lemma C that each manifold Nk in the definition of inductive proper g-l-LCC is a

PL submanifold of Rd, where d = dim A^.

In the following, we will use the same notation to indicate an upper semicontinu-

ous decomposition and the collection of its nondegenerate elements. By a pseudo-

isotopy g of a space X, we mean a surjective, level-preserving map g:A"X/-*A"x/

such that g0 = id x and g,: X -* X is a homeomorphism for each t G [0,1).

Lemma 1.3. Let N" be a manifold without boundary and p: E -* N X [0,2) an

Rk-fiber bundle. Assume that Ex is a closed subspace of p~l(N = N X {0}) such that

px = p\Ex: Ex -^ N is a Bk-fiber subbundle of p\p~1(N). Let Y be a closed subset of N

and G = {pll(y)\y ^. Y). Then, there is a homeomorphism f: E -* E/G such that

(i)f(x) = q(x)forallx g K = i(N X [0,2)) U (E - W) U p~\N X [1,2)) where

q: E -> E/G is the quotient map, i is the zero-section of p, and W is an open

neighborhood of i(N X [0,2)) U Ex in E, and

(ii) Pcf = P where pG: E/G -> N X [0,2) is the natural map induced from p.

Proof. Let {C,\i = 1,2,...} and {D,|z = 1,2,...} be nbd-finite covers [D] of W

each of whose members is a closed «-ball such that D¡ is a neighborhood of C, for

each z = 1,2,.... Let F, = Cx U • • • U C„ Y, = Y n F„ G, = {pxl(y)\y g Y,) for

each z = 1,2_, and G0= 0. For each i, let q,: E -* E/G¡, q¡ ¡: E/G¡ -* E/Gj if
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' <J> ai.x: E/G¡ -* E/G be the quotient maps, and pG: E/G¡ -» N X [0,2) the

natural map induced from p. In the sequel, we will use the same notation for any

restriction of a map if no confusion occurs.

We will prove by induction the following statement: For each i = 0,1,..., there is

a homeomorphism «,: E -* E/G¡ such that pGh¡=p and that if f = qi<aohi:

E -» E/G, then

(l)Pcf,=P,
(2)f\p 1(Fi X [0,2)) is a homeomorphism,

0)/i -/«-i onp-\(F, - A) X [0,2)), and

(4) f(z) = q(z) if z^K.

Then, by (2), (3) and the nbd-finiteness of {D¡\i = 1,2,...}, it follows that / =

limi_aofi is a well-defined homeomorphism that satisfies the lemma by (1) and (4).

For i = 0, let «0 = id£ and/0 = q; then, there is nothing to prove. Now, assume

by induction that «„ and fn have been defined. Consider the restrictions of «„ and /„

on p'\Dn + x X [0,2)) s Dn + X X [0,2) X Rk, and G', G'n, G'n + X the upper semicon-

tinuous decompositions of Dn + X x[0,2) X Rk induced from G,Gn, Gn + X, respec-

tively. Without loss of generality, we can assume that Dn+X X [0,2) xi'c W. Let

$'■ Dn + l  X [°> 2)  ~* [°' !] be a maP SUch that

(a)<i»(z) = lifzG A,+1x[l,2);

(b) <t>(x, 0) = 0 if x g Y„r\D„+x, and

(c) if we write Pz = {su\u G dBk, 0 < s < 1 + <?(z)} for each z g Z = (Dn+X

X[0,2)) - (Yn X {0}),   then   {z} X Pz c W   and   dian^^z} X Pz)) <

diamí/z-^ííz} X B*)) + dist(z, Yn X {0}).

For each z ^ Z, define a pseudo-isotopy gz,: /{* -> Ä* (( e /) by gz ,(ím) =

(A, +<>(Z),,(5'))W f°r eacn M G àBk and í g [0, oo), where for each a > 1, Xa is the

natural pseudo-isotopy of [0, oo) defined by: first, Xa t(0) = 0, Xa ,(s) — s if s > a,

Xa r(l) = 1 - t; then, extends linearly over each interval [0,1] and [1, a].

Observe that q„\(Z X Rk) is a fiber-preserving (f.p.) homeomorphism. Therefore,

we can define a f.p. pseudo-isotopy F of Z X Rk by

Fz,t(v)={h-nlqn)z(gz,,a^)(Klqnyzl(»)

where a: £>„ + 1 X [0,2) -> [0,1] is a map such that a'\l) = (Y n C„+1) X {0} and

a_1(0) contains Z0 = (9Z)„ + 1 X [0,2)) U (Dn + X X [1,2)). Observe that

(*)        F, = id    on(Z0X/{*)u(ZX/{*-«-1i7„(U{{z} XPz|zgZ})).

From (c) and (*), it is straightforward to verify that Ft can extend via the identity

to a f.p. pseudo-isotopy Ft of Dn + X X [0,2) X Rk that only shrinks the members of

{h~lq„({z} X Bk)\z G Yn + X - Yn} to points. Consequently, F, induces a homeo-

morphism

/: (DB+1 X[0,2) X 2?*)/G;+1 - P„+1 X[0,2) X Rk,

where G^'+J = {«^<7„(^)|yl G G'n + X), such that /<7 = Fx where <? is the quotient

map (refer to the diagram below).
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In brief, we obtain the following diagram, where the nondefined maps are the

natural ones,

(Dn + ] X [0, 2)XÄ*)/(T+-?1- Dn + , x [0, 2)XR*

(Dn+lX[0,2)XR")/Gn+1 £ (Z)m + 1X[0,2)XÄ*)/g;+1

that has the following properties:

(a) if the dotted map «„is deleted, then the diagram is commutative,

(ß) if the whole diagram is restricted to the subspaces corresponding to Z0 X Rk,

then we will obtain a commutative diagram since /?, = id on Z0 X /{*, and

(y) every map in the diagram is f.p. with respect to the natural maps induced from

P-
Now, define hn+1 = ipf'1. Then, by (ß), hn + x = qnn + xhn on Z0 X Rk. Therefore,

we can extend h„+x over E via q„,„ + xh„ and definé/, + 1 = q„+Uooh„+1. Then, hn+x

and /, + [ satisfy the inductive hypothesis and (l)-(4). So, the lemma is proved.    D

We will only use the trivial-bundle version of the following lemma in the proof of

Proposition 1.5. Note that the proof of the trivial-bundle version is much shorter.

Lemma 1.4. Let p: E —> Mm be a Bk-fiber bundle over a manifold M, Y a closed

subset ofdM and G = {p~l( y)\y g Y). Then, there is a homeomorphism f: (E, dE)

-* (E/G, dE/G) such that f(i(x)) = q(i(x)) where i is the zero-section of p and q is

the quotient map.

Proof. Identify 3M X [0,2) with an open collar of 3M in M such that 3M X [0,1]

is closed in M. Since there is a homeomorphism <f>: [0,2) X Bk -* [0,2) X Rk such

that <i>(0, x) = (0, x) and <b(t,0) = (í,0) for each x g Bk and t g [0,2), it follows

that there is an /{^-fiber bundle structure p: p'l(dM X [0,2)) -> 3M X [0,2) such

thatp_1({x} X [0,2)) = p~x({x) X [0,2)). From Lemma 1.3, there is a homeomor-

phism /: p_1(3M X[0,2)) -*p"1(3M X [0,2))/G such that f(x) = q(x) if x g

i(dM x[0,2))U (p-\W x[0,2)) - !F)Up-1(3Mx[l,2)), where IF is an open

neighborhood of p~\dM X {0}) U z'(3M X [0,2)) such that W np~\A) is compact

if A is a compact subset of 3M X [0,2). Hence, since 3M X [0,1] is closed in M, the

extension/of/over E via q is a well-defined homeomorphism that we wanted.    D.

Given an /{''-vector bundle p: S'-> M, there is a Euclidean metric ¡ti: E -* [0, oo)

on éÍ [M-S, p. 23]. Given a map X: M -> [0,1], and letting Y denote a-1(0), we define

a pinched k-tube neighborhood ( pinched bicollar for the trivial /^-bundle p ) at 7 of M

in <f to be N = {x g ¿>\h(x) < X(p(x))). If E is the corresponding closed B*-fiber
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subbundle of S, {x g £\¡i(x) *S 1}, and if 7 c 3M, then by Lemma 1.4, E = E/G

= N by homeomorphisms that leaves the zero-section fixed.

Proposition 1.5. // X and Y are two Rx-deficient subsets of an R°°-manifold M,

then XV Y is Rx-deficient in M.

Proof. By taking subsequences, we can choose M = lim M, and M = lim M'

such that the following hold:

(1) Xi.. = X n M, is a properly 4-1-LCC compact subset of M,, dim M, > 6 and M,

is a 1-LCC compact subset of Int M, +,, for i = 1,2,... (from Proposition 1.2),

(2) Yj= Y n M'j c 3M;, 2 dim Yj + 3 < dim 3M,', and M] is a compact PL sub-

manifold of 9M'+, for each/ = 1,2,... (from Lemma C),

(3) M, c 3M/ for /' = 1,2,... (from Lemmas C and B),

(4) M] c Int MJ + X, 2dim M] + 4 < dim My+1 for /= 1,2,... (from (1) and

Lemma B), and

(5) each of M/s and MJ's are PL submanifolds of Rdim M> and Rdim M>, respectively

(from Remark i.b and Lemma C).

We will construct a sequence of manifolds {N-C Int MJ+x\j = 1,2,...} each of

which is homeomorphic to a PL manifold such that

(i) (X U Y)D dNj is 3-1-LCC in 3JV},

(ii) 3m; is 1-LCC in 9A/,., and

(iii) dim A^ = dim M-+1.

Consequently, 3M,' is tame in dNj by (4), (iii) and Theorem 3.8.1 in [R]; hence,

3A^ c dNj+x is 2-1-LCC from (3), (4), (iii) and Observation (y). Then the proposi-

tion will follow from Proposition 1.2 since X U 7 will be inductively properly

3-1-LCC in limdNj = M by (i).

For fixing our idea, let/ = 1. We can assume that M[ is a 1-LCC compact subset

of Int M2; hence, it is e-tame in Int M2 (see the Introduction). Then, without loss of

generality, we can assume that M[ is a PL submanifold of M2 and that (see [R, p.

24]) its second derived neighborhood F (rel. 3M[) in Int M2 is a PL manifold which

is, by (5) and Theorem 1.6.6 in [R], homeomorphic to M[ X Bk, where k = dim M2

— dim M[. Let W he a pinched /c-tube neighborhood of M{ at 7, contained in

(Int V — Y) U Yx. Since 7, is contained in 3M{, from Lemma 1.4, there is a

homeomorphism 6: V -* W such that 6(x) = x for all x g M[. Hence, 7, and

3MÍ are 1-LCC subsets of dW. Let G (a) = {{y} X [-a, a]\y g 7,} and T(a) =

(dWX [-a, a])/G(a).

Now, let c: T(l) -* (Int M2 - 7) U 7, be a closed embedding that defines a

pinched bicollar of 3IF at 7X (refer to [R, p. 41]). Let W = lm(c) U W, then W is

homeomorphic to W. Now, observe that X n 3Mj' c 3MÍ c 3 IF is a 1-LCC subset

of 31F; hence, there is a 1-LCC embedding /: X n 3IF -+ 3IF approximating the

inclusion (rel. A' n 3Mi)<#). Observe that the restriction f\ : X C\ (dW - 7,)-*

Int IF' is a proper 1-LCC embedding. Therefore, from 1.3 of [L J, if /is chosen to be

close to the inclusion, then there is a proper, 1-LCC embedding g: X D Int IF' -»

Int IF' such that

(a)g(x)=/(jc)ifx g AT) (3IF- 7,),
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(h) g(x) = x if x £ c(T(l/2)),

(c) g =p i: X n Int W c Int W (rel. X n [{Int IF' - c(r(l/2))} U MJ) say by a

proper homotopy H, and

(d) g-\dW) = X n (dW - 7,) (by use of a bicollar of 3IF - 7, in Int IF').

Extend H, and g via the identity over Int M{ to obtain a proper homotopy H,:

G =pi: (X U Mi) n Int W c Int IF' (rel. (X n {Int IF' - c(T(l/2))}) U Int M{).

Then, since 2dim{(X U M{) n Int IF'} + 4 < dim IF' = dim M2 > 6 by (1) and (4),

it follows from Corollary 1.6 of [L J that there is a homeomorphism h of Int W that

extends g and equals the identity on the complement of c(T(l/2)). So, h can extend

via the identity to a homeomorphism « of IF'. Observe that « = id on M[ U aW'{*\

Define Nx = h~l(W).

First, since 7, c 3M{ is 1-LCC in 3IF, 7, = h~l(Yx) is a 1-LCC subset of

«_1(3IF) = dNx. From (a) and (#), observe that h is an extension of /; hence,

h(Xn W')ndW=h(Xn 3IF) = f(X n 3IF) is 1-LCC in 3IF, where the former

equality follows from (d) and (*). So,

xndNx = (xn w)ndNx = h~\h(xn w) ndw) = h~l(f(xn 3IF))

is 1-LCC in h-\aW) = 6NX. Therefore,

(A"u 7) ndNx = (xn dNx) u(7n dNx) = (xn dNx) u 7,

is 1-LCC in dNx by [Lt, Lemma 1.2]. Second, 2 dim Yx + 3 < dimSA', from (2) and

(4), and 2dim(A' n 3^) + 3 < dim M2 - 1 = dimSA^, by (1). Therefore, (i) fol-

lows. On the other hand, since h'l(dM[) = 3M{, it follows that 3Mj is a 1-LCC

subset of 3A,; hence, (ii) is verified. Moreover, (hi) is trivially satisfied.

Similarly, by use of M- c Mj+X c dM'+x,j > 1, we can construct A^ such that

dNj c 3M;+ ! and ( X U Y) n dNj is 3-1-LCC in 9ATy, Hence, lim 3A, = lim 3M,' = M

by (2) and (ii). Therefore, IU 7 is an inductively properly 3-1-LCC subset of M

with respect to {dNj}; hence, it is Rx-deficient in M by Proposition 1.2, and the

proof is complete.   □

Observe from the proof of the above proposition that we only need that 7 satisfy

(2). Therefore, if we call such a subset 7 of M an inductive trivial boundary subset of

M, combining with Lemma C, we can state the following result. (Note that Yj is not

required to be 1-LCC in dMj in (2).)

Theorem 1.6. A closed subset Y of an Rx-manifold M is Rx-deficient in M if and

only if Y is an inductive trivial boundary subset of M.   D

2. Unknotting theorem. In this section, we will prove the controlled relative version

of the unknotting theorem for Rx-deficient embeddings in /{°°-manifolds, which is

similar to Theorem 19.4 in [Ch] for ß-manifolds, and Main Theorem in [L2] for

ß°°-manifolds. Besides that, as in the /2-manifold theory, we also show that every

locally compact, closed subset of an R°° (or ß°°)-manifold is R00 (or ß°°)-deficient.

Theorem 2.1 (Unknotting Theorem). Let X be an Rx-deficient subset of an

Rx-manifold M, and let f: X -* M be an Rx-deficient embedding homotopic to the
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inclusion i: Xa M. Then, there is a homeomorphism F of M onto itself such that the

following hold.

(l)F\X = f.
(2) Given an open cover a of M, ifH: i — f is limited by a, then F can be chosen to be

StA(a)-close to the identity.

(3) Moreover, if Ht\XQ = inclusion for each (£/, where X0 is a closed subset of X,

and if W0 is an open neighborhood of H[(X — X0) X I] in M, then F can be chosen to

be the identity on X0 U (M - W0).

Proof. Since X U F(X) is Rx-deficient in M by Proposition 1.4, we can think of

M as M X Rx and A' U /( A") c M X {0}. The theorem then follows from Lemma

3.1 in [L J and its addendum.   D

We now prove an apphcation of the unknotting theorem for later use. A family

{Xn} of closed subsets of a space M is said to be discrete if the union of any

subfamily is closed in M. Recall that each Xn is paracompact if M is an /{°°-manifold

[H,, Proposition III].

Lemma 2.2. Let {Xn\n = 1,2,...} be a discrete sequence of pairwise disjoint

Rx-deficient subsets of an Rx-manifold M. Then, X = U^A^ is Rx-deficient.

Proof. Let ß be an open cover of M such that St(A"m, ß) n St(X„, ß) = 0 if

m + n. The existence of such an open cover is from the paracompactness of each Xn

and the discreteness of the sequence {Xn} as follows. First, there is inductively a

locally neighborhood-finite family {F„a|a g An) of open sets in M covering Xn

such that the closure Xn of (J{Vn a\a G An) is disjoint from ^U • • • U Xn_x U

(U{ Xj\j > n}). Then, choose ß to be a refinement of { V„Ja g \JxAn} U {M - X}.

Let Wn denote St(A"„, ß) and let/: X -» M be an /{""-deficient embedding which

is ß-homotopic to the inclusion i: X a M (from [L,, Theorem 2.3]). From the

Unknotting Theorem 2.1, there is a sequence of homeomorphisms {/„} of M such

that, for each «,

(l)/B|Af„-/|A-n,

(2) f„(x) = x if x e wn.

Now, if we let F: M -* M be defined by

F(x)=íf"^    ÚX*W«>
KX)     \x ifxiUî°IF„,

then F is a homeomorphism of M such that F|A' = /; consequently, X is Rx-

deficient in M.

To conclude this section, we prove the following theorems that provide nontrivial

examples of /{""(ß^y-deficient subsets in /{°°(ß00)-manifolds. Although they are

also corollaries to Theorems 5.1 and 5.2 below, we take the liberty to state them here

because of the simplicity of their proofs.

Theorem 2.3. Every locally compact, closed subset X of an Rx-manifold M is

Rx-deficient.
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Proof. Let g: X -» [0, oo) be a proper map, and define Xn = g~l([n - 1, «]). Let

Xe = { Xn\n is even} and Xo = {Xn\n is odd}. Then, A'* and A*° are discrete families

in M. Moreover, each Xn is /{""-deficient in M since it is compact. Therefore, by

Lemma 2.2, the union of each family Xe and X" is Rx-deficient; so, X is /{°°-defi-

cient by Proposition 1.4.   D

Remarks. 2.a. Let X0 c X be Qx-deficient subsets of a Qx-manifold M, and let H:

F = i be a homotopy (rel. X0) where f: X -» M is Qx-deficient embedding. Let W be

an open neighborhood of H[(X — X0) X I] in M. Then, the ambient isotopy Ft(t G /)

of M with FX\X = f in Main Theorem [L2] can be chosen to be identity on X0U (M —

IF). As in the proof of Main Theorem [L2], without loss of generality, we can

assume that H[(X - X0) X i) n X0 = 0. Also from that proof, there is a sequence

of compact ß-manifolds {Nk\k = 1,2,...} such that M = limA^ and that for each

k, (a) Nk is a Z-set of Nk + X, (b) H,\Xk: Xk -* Nk is a Z-set embedding for each t g /

where Xk = X n Nk, and (c) H[(X - Xk) X I] n Nk = 0. On the other hand,

observe that the fiber version of the Z-sets unknotting theorem [F] can be restated as

follows: "Let X0 c X be Z-set compacta in a Q-manifold N, and let Ht: X -» N

(t g /) be a continuous family of Z-set embeddings such that H0(x) = x if x g X and

that H,(x) = x if x g X0. If ß is an open neighborhood of H[(X — X0) X I] in N,

then H extends to an isotopy H of N with H0 = id and H, = id on X0 U (N - ß)."

Now, let Wx be a closed neighborhood of H[( Xx - X0) X I] in W n Nx such that

IF, U Xx is compact. Define inductively Wk to be a closed neighborhood of

H[(Xk - X0) X I) in W n Nk such that Wk U Xk is compact and Wk_x C

lntN(Wk) = Wk. Then, from the above fiber version of the Z-sets unknotting

theorem, we can construct inductively a sequence {Hk\k = 1,2,...} where Hk is an

isotopy of N, such that Hk = id on (X0 n Nk) U (Nk - Wk) and Hk+1\Nk = Hk

(t g /). Therefore, the map F: M X I -> M defined by F,|A^ = Hk,k = 1,2,..., is

an ambient isotopy that we wanted.

2.b. A result similar to Lemma 2.2 for ß°°-manifolds also holds true by use of

Theorem 3.3 in [L3], Proposition 2 [L2] and the above version of the Main Theorem

in [LJ.
Consequently, we also have the following.

Theorem 2.4. Every locally compact closed subset of a Qx-manifold is Qx -deficient.

D

The author thanks Dr. M. Hale for reminding him about the question of whether

Theorem 2.3 above holds true.

3. Deficiency of closed collared submanifolds. We now detect a special class of Rx

(or ß"°)-deficient subsets of R00 (or ßco)-manifolds, the class of closed collared

submanifolds. This is a special case of Theorem 5.1; however, it is an ingredient of

the proof of the latter.

Lemma 3.1. Let (N; M0, Mx) be a triad of Rx-manifolds such that M0 and M, are

disjoint and collared in N, and that the inclusion M, -> N is a homotopy equivalence
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(h.e.)for each i = 0,1. If N has the homotopy type of a finite complex K, then

(N; M0, Mx) = (M0 X /; M0 X {0}, M0 X {1}).

Proof. (1) From [H2, Theorem 3], there are homeomorphisms p0: K X Rx = M0

and ¡xx: K X Rx = Mx such that p0 = ft, in N. Let p: p0|(A: X {0}) = nx\(K X {0})

be a homotopy. By [L„ Theorem 2.3], we can assume that p is an embedding since

the compact subspace n(K X {0} X 3/) is /{""-deficient in N (Corollary 0). More-

over, by use of collars of M0 U Mx in N, we can assume that n(K X {0} X (0,1)) n

(M0 U Mx) = 0. Now, by use of p0, p,and p, we can define an embedding

f0: (KX Rx X 3/) L)(KX{0} XI)-* N

such that/„(AT X Rx X {i}) = M„ z = 0,1.

In the rest of the proof, let A" = lim Nk where Nk = K X /"* with «, < «2 < «3 <

(2) By Lemma B, we can assume that f0(K X {0} X /) c A^. We will define a

subset Qx of N such that Qx = AT,, /0(ä: X {0} X /) c Qx, and there is an embed-

ding «,: M0 U M, U ß, -> K X Rx X I that extends/0_1 and

hx(Qx) n(Kx Rx X 3/) = KX {0} X 9/<*>.

First, by use of pinched collars of M0 U Mx at /0(/^ X {0} X 3/) in N that miss

f0(K X {0} X (0,1)), we can obtain a subset ß, of A" homeomorphic to Nx such that

Qx n (M0 U Mx) = f0(K X {0} X 3/) and Qx D /„(/: X {0} X /). Then, since

f0\(K X Rx X {0}): KX Rx X {0} ^ N is a h.e., it follows that the inclusion

f0(K X {0} X /) c Nx is a h.e.; hence, so is the inclusion /0(ä: X {0} X /) c ßx.

Moreover, since (Qx, f0(K X {0} X /)) is a pair of compact ANR's, it has the

absolute homotopy extension property [Hu, p. 31]; consequently,f0(K X {0} X /) is

a strong deformation retract of ß, [Sp, Corollary 1.4.10]. So, there is a retraction r:

M0 U M, U ß, — M0 U M, U /0(Ä" X {0} X /). Now, from [L„ Theorem 2.3], there

is an embedding «,: M0 U Mx U ßj -> A' that approximates /0-1/- (rel. M0 U M, U

fo(K X {0} X /».Then, by use of a pinched collar of Kx Rx X dl at K X {0} X 3/

in K X Ä00 X /, we can obtain from «, an embedding «, as we wanted.

(3) For some large integer dx, let Cx denote the ball dxBdK We will constsruct an

embedding/,: (K X Rx X 3/) U (K X Cx X I) -> N which is an extension of hxl

(also of /0). Assume the compact ANR subset hx(Qx) of K X Rx X I is contained in

K X Cx X I. Then, the inclusion hx(Qx) c AT X C, X / is a h.e. since C, \ 0 and

since K X {0} X / c «,(ß,) is a h.e. Moreover, since C, \ 0 and since «,(ß,) n

(tf X C, X 3/) = K x {0} X 3/ it follows that

hx(Qx) U(KXCXX 3/) \ A1(f21) U(KX {0} x 3/) = hx(Qx)   by (*).

So, the inclusion hx(Qx) U (K X C, X 3/) c K X Cx X I is a h.e. As in (2), there is

a retraction from (AT X C, X /) U (AT X Rx X dl) onto hx(Qx) U (K X Rx X dl),

then an embedding

/,: (A"x C, X /) U(ATX Rx Xdl)^ N

extendingh-xl\[hx(Qx) U (K X Rx X dl)].
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(4) By Lemma B, without loss of generality, we can assume that Nx n (M0 U M,)

c fx(K X C, X 3/) c /j(K X C, X /) c #2. Then, following the constructions of

ß, and hx in (2), we can similarly construct a compact ANR subset ß2 of N such

that

(a)N2 = Q2^Nx,

(b) ß2 n (M0 U M,) = fx(K XCXX dl),

(c)fx(K X Cx X I) c ß2 is a h.e., and

(d) there is an embedding h2: M0 U M, ü ß2 -» K X Rx X I extending /f1

(consequently, «2 extends «,) such that h2(Q2) n (K X Rx X dl) = K X Cx X dl.

(5) Finally, in a similar manner, we construct inductively C2 = d2Bdl (for a large

d2), f2, Q3, h3,... such that the following diagram is commutative,

(KX Rx X dl) L)(KX 0 X I) 4       M0 U M, U Qx

I hx / I

(KX Rx X dI)u(KX Cx X I)       4       M0UM,Uß2

1 h2 i/ i

(KX Rx XdI)u(Kx C2X I)       4       M0UM,Uß3

I h, S I

where the vertical maps are inclusions. It is easy to check that /= lim/, and «

= lim hn are inverses of each other. Also, it is clear that

lim [(A"X Rx X dl) U(KX CnX /)] = KX Rx X I s M0 X /.

Moreover, lim(M0 U Mx U Q ) = N since N c ß; + 1. Therefore, / is a homeomor-

phism that we desired; and the proof is now complete.    □

In the process of proving Theorem 3.3 below, we need the following special case.

Lemma 3.2. Let M be a collared Rx-submanifold of an Rx-manifold N. If M = K X

Rx, K a finite complex, then M is Rx-deficient in N.

Proof. Let <j>: M X [0,2) -> A^ be a normal collar of M in N, and let M, and

M[ab] denote <i>(M X t) and (¡>(M X [a, b]), respectively. From [H2] there is a

homeomorphism g: N X I -* N which is so close to the projection pN that (i)

M n g(Mx X I) = 0, and (ii) g\M X {0} is homotopic to the inclusion M X {0} c

g(M[01]x/)ing(M(01]x/).

Now, it can be shown that the triad (g(M[0X] X I); M, g(Mx X I)) satisfies

Lemma 3.1 (recall that g(Mx X I) is bicollared in N); so, it is homeomorphic to the

triad (M X [0,1]; M X {0}, M X {1}). Therefore, g(M[0X] X /) is a closed collar of

M in N whose frontier is g(Mx X I). Then, by use of a closed collar of g(M, X /) in

N — g(M[0X] X /), we can construct a homeomorphism h: N -> N - g(M^0X) X I)

such that

h(M) = g(MxXl).
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Moreover, the latter is R°°-deficient in N - g(M,0X) X I) since Mx X I is Ä°°-defi-

cient in (N - Mr01)) X / by Lemma 4.4 in [L J. Consequently, M is /{""-deficient in

N.    □

Theorem 3.3. Let M be a closed Rx-submanifold of an Rx-manifold N. Then, M is

R°°-deficient in N if and only if M is collared in N.

Proof. By Theorem 4.2 in [L J, we only have to show the "if" part. Let K be a

countable locally finite simplicial complex such that M = K X Rx, and let <t>: K

-» [0, oo) be a PL proper map. Then, K = l)x=0Kn where Kn = <¡>~\[n, « + 1]). It is

clear that Kn n Km = </> if |« - »i| > 2, and each Kn is a finite complex. Moreover,

Me = U{ K„ X Rx\n is even}, M° = U{AT„ X Rx\n is odd} are discrete families of

closed subsets of M. Therefore, by Lemma 3.2, Lemma 2.2, and Proposition 1.4, the

theorem will follow if Kn X Rx is collared in N for each « = 1,2,_

Fix an «, and let e > 0 be so small that Kn is a strong deformation retract of

Ne(Kn); in particular, the inclusion A", c Ne(K¡) is a h.e. Now, from Addendum to

Lemma 4.1 in [L J, KnX Rx X {0} is «""-deficient in both KnX Rx X [0,1) and

Ne(K„) X Rx X [0,1); hence, the inclusion Kn X Rx X [0,1) c Ne(Kn) X Rx

X [0,1) is homotopic to a homeomorphism « (by [H2, Theorem 3]) such that

h(x,0) = (x,0) for all x G KnX Rx (by Theorem 2.1 above). Finally, the open

embedding <bh: Kn X Rx X [0,1) -* N, where <p is a given collar on M in N, will be a

collar on Kn X Rx in N as we desired; and the proof of the theorem is now

complete.   D

Remarks. 3.a. In the proof of Lemma 3.1, if we substitute the cell C„ by

Q" = ßi x ' ' ' x ß«> then we obtain a result similar to Lemma 3.1 for ß""-mani-

folds.

3.b. In the proof of Lemma 3.2, we use nothing but Lemma 3.1, Lemma 4.4 in

[LJ, the projection pN: N X I -» N being a near homeomorphism, and the unknot-

ting theorem. Recall that the ß"°-manifold version of Lemma 4.4 in [L J is Lemma

2.6 in [L3]. Moreover, for ß°°-manifolds, results similar to the last two theorems

have been proved in [H3 and LJ. Therefore, a result similar to Lemma 3.2 for

ß"°-manifolds also holds true; and we can prove the following.

Theorem 3.4. Let M be a closed Qx-submanifold of a Qx-manifold N. Then, M is

Qx-deficient in N if and only if M is collared in N.

Proof. Similar to the proof of Theorem 3.3, we will use the ß°"-manifold version

of Lemma 2.2 (see Remark 2.b) to prove the "if" part. The "only if" part is Theorem

2.3 in [L3].    D

4. Some primary properties of Ä°°(ß°°)-deficient subsets. Given a subset A of a

topological space 7, let Fr(A, 7) denote the topological frontier of A in 7, and A

the closure of A in 7 A closed subset Z of a paracompact space M is said to be clean

in M if there is a normal bicollar </>: Fr(Z, M) X (-2,2) -> M. In the following, we

will use a closed bicollar <?>|(Fr(Z, M) X [-1,1]) with <i>(Fr(Z, M) X [-1,0]) c Z

when we say Z is clean in M.

We now begin this section by proving a technical lemma.
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Lemma 4.1. Let X be a proper closed subset of a connected Rx-manifold M. Given an

open neighborhood V of X in M, then X has a clean Rx-manifold neighborhood W in V

(also in M) whose frontier is an Rx-manifold.

Proof. As in §1, from Theorem 2 in [HJ, we can think of M as an open subset of

R°°. Consequently, M is the union of a sequence of compact PL manifolds {M,,}

such that, for each «,

(a) M„ is a compact PL submanifold for Rd- n M where dn is defined to be

(b) dim M„ = dn, and Mn c Int M„ + 1.

For each n, Xn = X n Mn is a compact subset of the ¿„-manifold Vn= V n M„,

an open subset of M„. Observe that F„ c Int Vn+X. We will construct inductively a

sequence of compact PL manifolds {Wn} enjoying the following properties:

(l)A-„c IF„c Wn+X,

(2) Wn is a clean PL submanifold of Vn with a bicollar <pn: Fr(IF„, Vn) X (-2,2) -*

Vn,

(3)Wn+xn V„= W„,and

(4) <b„ + x is an extension <J>„.

Then, IF = lim IFn will be a clean neighborhood of X with a bicollar <j> = lim <í>„ that

we desired.

First, to construct IF,, </>,, let us assume A^ # Fj. Let IFÍ be a PL-manifold

neighborhood of Xx in Ft, and let IF, be a second derived neighborhood of W'x in F,

([Hd, p. 57 or R, p. 23]) which meets dVx regularity [R, Theorem 1.6.5(1), p. 24].

Hence, there is a PL bicollar <¡>x on Fr(Wx, Vx),

<bx:Fr(Wx,Vx)x[-l,l]^ Vx,

such that ImO,) n X = 0 (since X c W[).

Second, to construct IF2, let IF2' be a compact-PL-submanifold neighborhood of

X2 in V2 such that IF; n Im(<(>,) = 0 and IF,' n F, c IF,. Let W2 be a second-

derived neighborhood of IF,' U Wx(modFr(Wx, F,)) in F2 such that IF2 n F, = IF,.

Observe that IF2' U Wx is link-collapsible on Fr(Wx, Vx) [R, Example 1.6.3(c), p. 22],

and Fr(Wx, Vx) n dV2 = 0 since Vx c Int F2. Therefore, IF, is a compact PL

submanifold of F2 meeting 3F2 regularly [R, Theorem 1.6.5(1), p. 24]. Hence,

Fr(IF2, F2) is bicollared in F2, say a bicollar t//2: Fr(IF2, V2) X [-1,1] -* V2 such that

Im(tp2) n A" = 0. Now, observe that

+1+i1|*2(Fr(iylfK1)x[0,l]):*2(Fr(ïF1,K1)xiO,l])

-* <bx(Fr(Wx,Vx) X[0,1])

is a PL homeomorphism, which is homotopic (rel. Fr(Wx, F,)) in V2 - W2 to the

inclusion

^2(Fr(IF1,K1)x[0,l])c   V2 - W2.

Moreover, since

4>2(Fr(Wx, Vx) X(0,1]) U <¡>x(Fr(Wx, Vx) x(0,l]) c Int(F2 - IF2)
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and

2dim(Fr(lF1,F1) x[0,l]) + 2 = dim F2 - IF2,

there is a PL homeomorphism « 21 of F2 — IF2 fixing 3(F2 — IF2) such that

h2^2(Fr(Wx,Vx) X[0,1]) = <i,1^1|^2(Fr(lF1,F1) X[0,1]),

from Theorem 10.1 in [Hd] (Theorem 9.8 will play the role of Theorem 9.2 in the

proof of Theorem 10.1). Similarly, there is a PL homeomorphism h2_x of IF2 fixing

Fr(fF2,F2) such that

h2i_x<t>2\Fr(Wx,Vx)x[-l,0] = <px\Fr(Wx,Vx)x[-l,0].

Combining h2x and h2_x, we obtain a homeomorphism «2 of F2 such that <p2 = h2\p2

is a PL bicollar extending <¡>x, i.e. the following diagram is commutative,

Fr(Wx,Vx)x[-l,l]       *        Vx

ii J, i

Fr(lF2,F2)x[-l,l]      S      F2.

Finally, in a similar manner, we can continue to construct inductively W3, <p3,...

to extend the above commutative diagram. Then, by (1) and (3), observe that

Vk - (JXW„ =Vk-Wk for each k. So,

00 00    / 00 \ 00

v-\Jw„= Uk-IM =U(^- if,).
i        i \       l/i

Hence,

OC 30 00

v-{jw„ = [J(vn- wn) =\jvn-wn
1 1 1

since the latter is closed in V. Therefore, UrFr(IF„, V„) = Fr(W, V)(= Fr(W, M)

since IF = (JxWn is closed in M). By (a), (3) and Lemma A, we observe that

Fr(IF, V) is an Ä°"-manifold. Now, if we define <j>: Fr IF X ]-l, 1[ -> Fby <i>(^:, t) =

<?„(x, t) if x g Fr(IF„, V„), then <p is an open embedding which defines a bicollar that

we desired.    D

To prove a result similar to Lemma 4.1 for ß°"-manifolds, we need the following

lemma.

Lemma 4.2. Let Vx and X be compact subsets of a Q-manifold V2. Assume that Vx is

a Q-manifold Z-set in V2. If Wx is a clean neighborhood of X n Vx in Vx, then there is

a clean neighborhood W2 of X in V2 such that W2n Vx= Wx.

Proof. Since F, - IF, is a compact ß-manifold Z-set in V2, it is collared in F2.

Let Ux be a pinched collar (refer to [R or LJ) on Vx - Wx at Fr(Wx, Vx) in F2 such

that Ux n X = 0. Then, we can show that Ux is a ß-manifold homeomorphic to

Vx - Wx, and Fr(Ux, V2) = (Vx - Wx) U FrilF,, Vx) = Vx - Wx since F, - Wx is

open in Vx. By use of Theorem 3.1(3) in [Ch], we can show that Fr(Ux, V2) is a Z-set
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in both Ux and V2 — Ux. Therefore, Fr(Ux, V2) is bicollared in V2; consequently,

IF2 = V2 — Ux is a clean neighborhood of X in F2 that we wanted.    D

Lemma 4.3. Let X be a proper closed subset of a Qx-manifold M. Given an open

neighborhood Vof X in M, then Xhas a clean Qx-manifold neighborhood W in V(also

in M) whose frontier is a ß°°-manifold.

Proof. We will go along with the proof of Lemma 4.1 and use similar notations.

Now, M„ is a ß-manifold Z-subset of M„+1 as in Lemma A in [LJ. In F n M„, we

take a compact ß-manifold Vn (inductively) such that Xr U Vn_x c V„ and UXXV„ = V

(assume F0 = 0 ). Then, the existence of clean neighborhoods {W„} in the inductive

construction is from Lemma 4.2, and matching up these bicollars will follow from

the relative version of the unknotting theorem for Z-embeddings [Ch, Theorem 19.4].

The rest of the proof is the same.    D

Following are a few lemmas that we need in §5.

Lemma 4.4. Let X be an Rx-deficient subset of an Rx-manifold V and let W be an

Rx-manifold neighborhood of X in V, then X is Rx-deficient in W (the interior of W in

V) and W.

Proof. Let g: F-> Vx [0,1] be a homeomorphism such that g(x) = (x,0) if

x g X. Let U = g-\V X {0}), then <> = g'\(g\U) X id,): Ux I -» F is a homeo-

morphism. For convenience, let U also denote U X {0}. Define IF' = <p~l(W) and

W = $-\W).
Observe that U n IF' is a neighborhood of X in U, then let Z be a clean

neighborhood of X in U n IF' with a bicollar X: Fr(Z, U n IF') X [-1,1] -* U n W

from Lemma 4.1. Since A" is a closed subset of Z, the proof of Lemma 4.4 will be

complete by Theorem 3.3 if we can show that Z is collared in IF'. Let >//:

U n W' -* (0,1) be a map such that

U{{*} x[0,^(j0]|x g i/n IF'} c IF'.

Let

Z'= ZuX(Fr(Z,UnW')x[0,l))    and    ß = {{z} X [0, ^(z))|z g Z'}.

Then, ß is an open subset of IF' and there is a natural homeomorphism <o:

Z' X [0,1) -» ß. Now, by use of a homeomorphism from [-1,0] X [0,1) onto

[-1,1) X[0,1) fixing ([-1,0] X {0})U({-1} X[0,1)), and the bicollar X, we can

construct a homeomorphism 0: Z X [0,1) -» Z' X [0,1) such that 6(x,0) = (x,0),

x g Z, then an open embedding « = uO: Zx[0,l)->S!c W' such that h(z,0) = z

for each z G Z. Therefore, « is a collar on Z in W and IF'. The proof of the lemma

is now complete.    D

Using Lemma 4.3 and Theorem 3.4, we can similarly prove the following.

Lemma 4.5. Let X be a Q°°-deficient subset of a Q°°-manifold V and let W be a

Qx-manifold neighborhood of X in V, then X is Qx-deficient in both W and W.   D

Lemma 4.6. Let X be a closed subset of an Rx-manifold M. If X has an open

neighborhood V in M such that X is Rx-deficient in V, then X is Rx-deficient in M.
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Proof. By use of a clean neighborhood IF of A" in F and in M, from Lemma 4.1,

we will construct a homeomorphism /: M X / -> M such that f(x,0) = x for all

x g X. Recall, that by Lemma 4.1, the /{""-manifold Fr(IF, M) is bicollared in M,

say by <i>. For the sake of simplicity, let Fr IF and IF denote the topological frontier

and the interior of IF in M, respectively. Then, Fr IF is an «""-deficient subset of

both IF and M - IFby Theorem 3.3 and so is Fr IF X /in IF X / and (M - IF) X /.

We will, first, obtain special homeomorphisms h: W X I -+ W and «0: (M - W)

X I -> M — W, near the corresponding projections, such that «|(FrIFX/) =

«0|(Fr IF X /). For the existence of h, using the stability theorem in [H J, we have

homeomorphisms «: IF X / -» IF and «': Fr IF X / -» Fr IF, all of which are so

near the projection that we can assume that «|(FrIFx /) and «' are homotopic

through a homotopy missing X. By use of the unknotting theorem (Theorem 2.1), we

can assume that «|(Fr W X I) = h' (so, «(Fr IF X /) = Fr IF). Similarly, we can

have a homeomorphism h0: (M - W) x I -» M - IF, near the projection, such

that h0(Fr W X I)= FrW. Furthermore, we can assume that ««VlFr W: Fr IF -*

Fr W is homotopic to the identity. By Theorem 2.1 again, we have a homeomor-

phism k of M - W which extends hh^lFr W. Define «0 = kh0. Then, « and «0 will

agree on Fr IF X /.

Moreover, we can assume that h(x, 0) = x for all x g X as follows. Since we can

choose « to be as close to the projection as we wish, we assume that h\X X {0} is

homotopic to the inclusion i:X X {0} -» IFX {0} in IFX {0} = IF. Furthermore,

without loss of generality, we also can assume that both X and h(X X {0}) miss the

collar <i>(Fr W X [-1,0]) in IF, and so does the homotopy from h\X X {0} to z; i.e.

the homotopy is limited by a family ^of open sets of IF missing <>(Fr IF X [-1,0]).

Observe that h(X X {0}) is «""-deficient in IF since A'X {0} is «""-deficient in

IF X /. On the other hand, X is R ""-deficient in IF by Lemma 4.4 above. Again, by

the unknotting theorem (Theorem 2.1), there is a homeomorphism g of IF such that

(1) gh(x, 0) = x if x G X, and (2) g(x) = x if x <É U{ w|w g iV}. Let g denote the

extension of g over IF by the identity. Then, g«: W X I -* IF is a homeomorphism

such that

(l)g«(x,0) = * if x g X, and

(2) gh(x, t) = h0(x, t) if x s Fr W, t e /.

Now, if we define/: MX/->Mby

J(X,t)     \h0(x,t)     iix g M- IF,

then/is a homeomorphism (near the projection pM) such that/(x, 0) = x for x g X.

Therefore, X is «""-deficient in M, and the proof is complete.   D

Finally, if we use Lemma 4.3, Theorem 3.4 above, and the stronger version of the

unknotting theorem in [LJ as observed in Remark 2.a, we can prove a similar result

for ß°°-manifolds.

Lemma 4.7. Let X be a closed subset of a Qx-manifold M. If X has an open

neighborhood Vsuch that X is Qx-deficient in V, then X is Qx-deficient in M.    D
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5. Local «°°(ßco)-deficiency. A closed subset Jfof an «""-manifold M is said to be

locally Rx-deficient if each x G X has an open neighborhood V in M such that

In F in «""-deficient in V. It is clear that an «""-deficient subset is locally

«""-deficient. We define similarly the notion of local ß""-deficiency, and obtain a

similar observation in ß°°-manifolds.

Theorem 5.1.^1 locally Rx-deficient subset X of an «""-manifold M is Rx-deficient.

To have the proof to be more readable, we include an intermediate lemma. For the

notion of nbd-finite family, we refer to [D].

Lemma 5.2. There is a countable nbd-finite family {Ws} of open subsets of M

covering X and a countable nbd-finite family {Xs} of closed subsets of X covering X

such that

(1) A; c Ws, and

(2) A; is Rx-deficient in M.

Proof. Let {Va\a g A) be a family of open subsets of M covering X such that

X n Va is «""-deficient in Va. Since X is closed and M is paracompact, there is a

nbd-finite family of open sets {Ws} of M covering X which is a refinement of {Va}.

Then, since X is Lindelöf [D, p. 175], we can assume that {Ws) is countable. Next,

since X is paracompact [D, p. 165], there is a nbd-finite open covering {A^'} of X

such that the closure Xs of X's in A" is a subset of X n Ws for each s. Finally, since A^

is contained in X n Va for some a, Xs is «""-deficient in Va for some a; so, it is

«""-deficient in M by Lemma 4.6. The proof of the lemma is complete.   D

Proof of Theorem 5.1. We will construct a closed embedding f: Z ^> M

extending the inclusion X c M, where Z is a closed «""-manifold neighborhood of X

in M such that/(Z) is collared in M. Then, the theorem will follow from Theorem

3.3. Let us consider a countable family {(Ws, Xs)) from the above lemma, and for

each 5 let Va denote a member of {Va} containing Ws.

First, let IFj' be a clean neighborhood of Xx (in M) contained in IF, (see Lemma

4.1), and let Í/, be a clean neighborhood of Xx (in M) contained in W[. Observe that

X n W[ is «""-deficient in Va ; so, it is «""-deficient in M by Lemma 4.6. From the

relative approximation theorem [LI; Theorem 2.3], there is an «""-deficient embed-

ding/{: {/, U ( X n W[) -* M enjoying the following properties:

(l)/i is so close to the inclusion that f'x(Ux) c W'x, and

(2)f'x(x) = x if x g ATi IF;.

Extend/Í by identity to a closed embedding/,: X U Ux -» M.

Next, let W'2 be a clean neighborhood of X2 (in M) contained in IF2, then fx~1(W2)

is an open subset of X U Ux. Let 7 be an open subset of M such that/f l(W2) = 7

n ( X U Ux), then 7 is also a neighborhood of X2. Let U2 be a clean neighborhood

of A"2 (in M ) contained in 7 n IFj" such that /, can extend to a map /, : A" U £/, U i/2

-» M with /jit/,) c IT.; (Proposition III.3 of [H J), and let X'2 denote (X n W'2) U

(U2 n £/,). Observe that fx\X'2: X'2 -» M is an «""-deficient embedding by Proposi-

tion 1.4, and fx(U2 n Ux) c W2. Again, by Theorem 2.3 in [L J (rel. X'2), there is an

«°°-deficient embedding f2: U2U (X n W2) -+ M such that

(l)/2'(x) =/,(*) if xeA-2, and
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(2)/2 is so close to/, that f¡(U2) c W2.

Then, define f2: X U Ux U U2 -* M by

f(x)-fö*^   ííx^u2u(xnwí),
\fx(x)     otherwise.

Observe that f2\Ux U U2 U [ATI (IF{ U IF,')] is an «""-deficient embedding (Prop-

osition 1.4).

Then, let us construct/, after/„_, has been defined with/„_,}: (U" ̂ t/J U [X n

(U"-1^')] ~* M being an «°°-deficient embedding. Let IF„' be a clean neighborhood

of Xn in H/„ as above. Then, f„'lx(W^) is an open neighborhood of Xn in X U t/, U

• • • U £/„_,, the domain of/„_,. Let 7 be an open neighborhood of A',, in M whose

intersection with the domain of /„_, is f„~lx(W^), and let [/„ be a small clean

neighborhood of Xn contained in 7 n W'n. Then, f„-X(Unn Us) c IF; for each

s = 1,...,« — 1. In a similar manner, we can obtain a closed embedding /„:

X U Ux U • • • U £/„ -> M extending/„_, such that/, is «""-deficient on [X n (IF[

U • • ■ U IF„')] U ([/, U ■ • • U U„) and /„(i/„) c W'„. Therefore, the inductive con-

struction is complete.

Now, let us define U = Ufe/ and/: U -> M by/(x) = ¿(x) if x G &r. Then,/is

a well-defined and continuous injection since the family {Us} is nbd-finite [D, p. 83].

Moreover, since the family {f(Us)\s = 1,2,...} of closed subsets of M, a refinement

of {Ws}, is also nbd-finite, f(U) = Uf/W) is closed in M [D, p. 82]; and f~u.

f(U)-* U, which is continuous on each f(Us), is continuous. Therefore, / is a closed

embedding.

Now, it is clear that U is a neighborhood of X in M. We will show that f(U) is

locally collared in M. For a given reí/ has a clean neighborhood w^ in t/ meeting

only finitely many 17/s, say Us ,...,US . So, being contained in/^ U • • • U t/s ),

f(ux) is «""-deficient; hence, it is collared in M [Lx, Theorem 4.2]; therefore, f(U) is

locally collared in M.

Let A be an open subset of M such that A n f(U) = f(Ù)(f(Ù) being a
relatively open set in the subspace/([/)). Then, f(U) is relatively closed in A since

/(Í7) is closed in M. Therefore,/(t/) is collared in A [Br, Theorem 4.3, p. 228] since

f(U) is also locally collared in A. Now, let Z be a clean neighborhood of X in Ù.

Then, f(Z) is collared in A (consequently, in M) as in the last part of the proof of

Lemma 4.4. So, it follows from Theorem 3.3 that f(Z) is «""-deficient in M;

therefore, so is X = f( X) in M. The proof now is complete.   D

We conclude this note with the following theorem in the ß ""-manifold theory.

Theorem 5.3. A locally Qx-deficient subset X of a Qx-manifold M is Qx-deficient.

Proof. The proof is similar to that of Theorem 5.1. Here, we use the paracom-

pactness of X and M, Lemmas 4.7 and 4.3, Theorem 3.4, and the relative approxima-

tion theorem and Proposition 2 in [LJ.   D
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