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SOBOLEV SPACE PROJECTIONS

IN STRICTLY PSEUDOCONVEX DOMAINS1

BY

HAROLD P. BOAS

Abstract. The orthogonal projection from a Sobolev space WS(Q) onto the

subspace of holomorphic functions is studied. This analogue of the Bergman

projection is shown to satisfy regularity estimates in higher Sobolev norms when ß is

a smooth bounded strictly pseudoconvex domain in C".

The Bergman projection P0: L2(ü) -» L2(S2) n {holomorphic functions}, where

S2 c C" is a smooth bounded domain, has proved to be a key element in the study of

boundary behavior of holomorphic mappings (see [4, 7, 13] and their references). In

the important special case in which Í2 is strictly pseudoconvex, a great deal is known

about the projection P0 and the Bergman kernel function K0(w, z) which represents

it (see e.g. [14, 16, 19]). In particular the following two regularity theorems are well

known consequences of Kohn's theory of the 9-Neumann problem [15, 17].

Theorem A [17]. Let Q, c C" be a smooth bounded strictly pseudoconvex domain.

Then the Bergman projection P0 admits both global and local regularity estimates in

Sobolev norms:

(i) \\PQu\\, < Cr\\u\l,       r > 0,

and more generally, if Çx, f2 G CX(C") are real-valued cut-off functions with f 2 = 1 in

a neighborhood of the support o/f,, then

(ii) ïfi*o«l,<Ç(Hr2«Hr + Mo),       r>0.

Theorem B [16]. Let ß c C" be a smooth bounded strictly pseudoconvex domain.

Then the Bergman kernel function KQ(w, z) is smooth up to the boundary off the

boundary diagonal, that is,

KQ(w,z) G C°°(ñ XÍ2\{z = W G en}).

The objects studied in this paper are the analogous projection Ps: W(Q) -»

IFs(ß) n {holomorphic functions}, where Q is a smooth bounded strictly pseudo-

convex domain and Ws(ü) is the Sobolev space of functions with 5 square-integrable

Received by the editors October 24, 1983 and, in revised form, May 29, 1984.

1980 Mathematics Subject Classification. Primary 32A25, 32H10.

Key words and phrases. Bergman kernel function. 3-Neumann problem, pseudoconvex domains.

1 This material is partially based on work supported by the National Science Foundation under Grant

No. MCS-8201063.

©1985 American Mathematical Society

0002-9947/85 $1.00 + $.25 per page

227
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derivatives, and the kernel function Ks(w, z) that represents Ps. The main result is

that the analogues of Theorems A and B hold.

Theorem As. Let ß c C" be a smooth bounded strictly pseudoconvex domain. Then

the projection Ps admits both global and local regularity estimates in Sobolev norms:

(i) H^hII, < CrJ\u\\r,        r > s,

and more generally, z/f,, f2 G CX(C") are real-valued cut-off functions with f2 = 1 in

a neighborhood of the support of Çx, then

(Ü) llfi^«L<C.,(MI, + NI.).     r>s-

Theorem Bs. Let ß c C" be a smooth bounded strictly pseudoconvex domain. Then

the kernel function Ks(w, z) is smooth up to the boundary off the boundary diagonal,

that is

Ks(w, z) (E C°°{Ü xQ\{z = w (^ bQ}).

The key to understanding the projection Ps is to prove regularity estimates for the

operators Us and Ts given by integration against a kernel in the "wrong" space:

L/>(w) -<«(•),*,(•,hO>0,       T,u(*)-(u(-),K0(-,w))m.

From these operators, first mentioned by Bell [5], one recaptures Ps via the formula

?, = USTS.

The key estimates for Us and Ts are proved in §5 using results from the

9-Neumann theory. The proofs of Theorems As and B5, based on these estimates, are

given in §§2 and 3: the global part in §2 and the more delicate local part in §3.

I thank N. Kerzman, who suggested study of the Ks kernel as a thesis problem.

My MIT doctoral dissertation, written under his direction, was a first step toward

the results presented here. The papers of S. Bell, especially [5], have also provided

inspiration in this work.

1. Preliminaries. Throughout, ß is a smooth bounded strictly pseudoconvex

domain in C". This means that there is a bounded C°" real-valued defining function

p: C" -> R such that ß = {z g C": p(z) < 0}, the boundary M2 = {z g C": p(z)

= 0}. the gradient of p does not vanish on zbß, and the complex Hessian of p is

strictly positive definite on the complex part of the tangent space. It will be assumed

that p is normalized so that the gradient of p has length one on the boundary. In that

case the globally defined vector field d/dp given in the underlying real coordinates

by

9    _ v-¡   3p    9

9p " / = 1 oxj dxj

agrees on the boundary with the unit outer normal.

The Hilbert space L2(ß) of square-integrable functions on ß carries the usual

norm || ||0 induced by the inner product (u, v)0 = ¡auv. When î is a positive

integer the inner product

{u,v)s=   £  (D"u,D°v)0

|o|<J



sobolev space projections 229

induces the norm || \\s on the Sobolev space IFi(ß). (Here a = (al,...,a2n) is a

multi-index and D¡ = d/dx¡.) When s is a positive real number that is not an integer,

IFv(ß) can be defined by an interpolation procedure (see e.g. [18]). The closure in

IFv(ß) of the space CX(U) of smooth functions with compact support in ß is

denoted W¡¡(ü). The intersection of all the spaces IFs(ß), taken with the usual

inverse limit topology, is the space C°°(ß) of functions smooth up to the boundary;

it is a dense subspace of each IFv(ß).

The space IF"s(ß), defined for each positive real number s, is the dual space of

IF(,(ß). It is realized as a space of distributions containing L2(ß) as a dense

subspace. If m g L2(ß), then

Hull-, = sup{|(W, <p>()|: «p g Q"(ß), IMI, = l}.
The completion of L2(ß) in the stronger norm

||M||*s = sup{|(M,i;)0|:i;GC0"(ß),||i;||s=l}

is the dual space (IFJ(ß))* of WS(Q); it is not in general identified with a space of

distributions. Always \\u\\_s < ||w||*s, and if u is holomorphic it turns out that the

two norms are equivalent (see Lemma 4.4).

The elements of IFs(ß) represented by holomorphic functions comprise a closed

subspace //i(ß). (N.B. This notation conflicts with common usage, in which Hs

denotes the usual Sobolev space. It is convenient here to reserve the letter H to

indicate a space of holomorphic functions.) The intersection of all the spaces //i(ß)

with the topology inherited from Cx(£l) is denoted Hx(&). The union of the spaces

H's(il) with the usual inductive limit topology is denoted 7/"°"(ß).

The objects of interest in this paper are, for each positive integer s, the orthogonal

projection Ps: IFs(ß) -» Hs(£i) and the kernel function Ks(w, z) that represents it.

When u g Ws(Q)

Psu(z) = (u(-),Ks,(,-,z))t

and in particular for every holomorphic function h in /7s(ß) the reproducing

property h(z) = (/»(•)> ^j("< z))s holds. For some elementary properties of Ks see

[9], and for the general theory of reproducing kernels see [2].

The central idea is to relate the projection Ps to the usual Bergman projection P{).

A principal tool is the following integration by parts lemma, which holds in an

arbitrary smooth bounded domain ß (not necessarily pseudoconvex).

Lemma 1.1. For each positive integer s there is a linear differential operator L2s of

order 2s with coefficients in C°"(ß) such that for every holomorphic function h in Hs(í¡)

and every function u in IF2s(ß)

(1.1) {h,u)s = (h,L2<u)Q.

If u is also holomorphic, then the top order term of L2su reduces to 2s(d/dp)2su.

Proof. Suppose at first that h g i/°°(ß) and u g C°°(ß). Derivatives of h that are

tangential near the boundary can be integrated by parts with no boundary terms

appearing, and by the Cauchy-Riemann equations normal derivatives of the holo-

morphic function h can be rewritten as tangential derivatives. Hence all derivatives
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on h can be moved to the other side of the inner product to make formula (1.1)

appear.

To identify the top order term of L2s observe that by Green's identity

(*,«>,=/ hü + f   Í(Djh)(Djü)
•>o Jo        ,'ß Jü

J-l

I h"+f
Jo Jh

dh_

where Lebesgue measure is understood both on the boundary and on the interior.

There is a real vector field 3/9a on ß, tangential at the boundary, with coefficients

in C°°(ß), such that (9/9p) + z'(9/9a) is a vector field of type (1,0). Then

dh/dp = idh/do, so integration by parts and another application of Green's identity

give

where A is the usual Laplace operator. It follows by induction that the leading term

of L2s is

92       ,_9__9_

da2       9p 9a

which, when applied to a holomorphic function, reduces to 2s(d/dp)2s plus lower

order terms.

Since C°°(ß) is dense in IF2i(ß), equation (1.1) continues to hold when u is only

in IF2s(ß). Passage to the limit over the interior approximating domains Sí¡={ze

ß: p(z) < -8) shows that (1.1) persists also for h only in Hs(ß).

2. Global regularity and duality. When u G L2(ß), a holomorphic function Usu is

defined by

Usu(^) = (u(-),Ks(-,w))0.

By Theorem B (Kerzman [16]) the Bergman kernel function K0(-,w) g C°°(ß) in

every smooth bounded strictly pseudoconvex domain ß, so when u g Ws(Sl) a

holomorphic function Tsu is defined by

7>(w) = («(•), K0(-,w))s.

The operators Us and 7^, denoted Ls and Ai by Bell [5], are important because

composing them recovers the projections P0 and Ps.

Lemma 2.1. (a) The operator Ts maps C°°(ß) continuously into itself and USTS = Ps

on C°°(ß).

(b) The operator Us maps L2(ß) continuously into HS(Q) and TSUS = P0 on L2(ß).

Proof. By Lemma 1.1 the equation Tsu = P0L2su holds for u in C°°(ß). Since the

Bergman projection P0 for a smooth bounded strictly pseudoconvex domain maps

C°°(ß) continuously into itself, it follows that Ts has the same property. In particular



SOBOLEV SPACE PROJECTIONS 231

UsTsu is defined for u in C°°(ß). Moreover

U,T,u{")= UsP0L2*u(w)=(P0L2°u(-), Ks(-, w))Q

= (L2*u(-),Ks(-,w))0 = (u(-),Ks(-,w))s = Psu(")-

This proves part (a).

Suppose u g Cx(ti). Since the norm of Ks(z,- ) in IFs(ß) is bounded by a

constant depending on the distance from z to the boundary bQ,, the holomorphic

function Usu lies in Hs(£l). Moreover if h G 7/J(ß), Fubini's theorem implies that

(2.1) (Usu,h)s = (u,h)0.

Therefore ||í¿u\\s < ||u||0 for u in C0°°(ß). Since this space is dense in L2(ß) it follows

that Us is bounded from L2(ß) into HS(Q) and that equation (2.1) persists for u in

L2(ß). Substituting K0(z,- ) for h(z) in (2.1) shows that P0 equals TSUS on L2(ß),

which proves part (b).

In view of Lemma 2.1 estimates for Ps will follow directly from estimates for Us

and Ts. The following global estimates hold for all h in 77°"(ß) and every real

number r:

(2.2) c-1|*||r+Jf<|r,*B,<c,|*8r+2f,

(2.3) C-'\\h\\r^\\Ush\\r+2s^C\\h\\r

with C independent of h. Thus 7^ loses 2s derivatives and Us gains 2s derivatives.

These estimates will be proved at the end of §5 as a corollary of the key local

estimates.

Proof of the global part of Theorem As. If m g C°°(ß), then P5u = UsTsu =

UsP0L2su by Lemmas 1.1 and 2.1. It is well known that the Bergman projection is

bounded on IFr(ß) for every nonnegative r. (See e.g. [19] and further discussion of

P0 in §4.) Therefore by (2.3)

||P,«||r < C||P0L2iz4_2j < C\\L2su\\r-2s < C||«||,

when r > 2s. Density of C°°(fi) in W(Sl) implies that Ps is bounded on Wr(ti)

when r > 2s. Since by definition Ps is bounded on WS(Q), it follows by interpolation

that Ps is bounded on IFr(ß) when r > s. This proves the first part of Theorem Ay,

granted estimate (2.3).

The estimates (2.2) and (2.3) imply in particular that Ts and Us are continuous

operators from //°°(ß) into itself. In view of Lemma 2.1 the operators 7^ and Us are

in fact mutually inverse isomorphisms of //°°(ß) onto itself.

Lemma 2.2 The space //°°(ß) is dense in Hr($l)for every real number r.

This density lemma is true in arbitrary smooth bounded pseudoconvex domains

(not necessarily strictly pseudoconvex): see [6] for a proof. Together with the a priori

estimates (2.2) and (2.3) the lemma implies that Ts and Us extend to mutually inverse

isomorphisms of 7/"°°(ß) onto itself; moreover the extensions give mutually inverse

isomorphisms

Ts: /T+Î(fi) -* Hr *(ß),       Us: Hrs(Sl) -> Hr+S(ti)
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for every real number r. This generalizes a result of Bell [5], who established the

isomorphism when r = 0.

Bell also showed that the 77° pairing ( , >0: 77°°(ß) X HX(Q) -> C extends

uniquely to a continuous pairing of 77~°"(ß) X 77°"(ß) exhibiting the latter spaces as

mutually dual. The same is true for the 77s pairing ( , }s in view of the equation

(g, h)s = (Tsg, h)0, true for g and h in 77°"(ß).

3. Proof of the main theorems. In view of the relation USTS = Ps the local estimates

for Ps will follow from local estimates for Us and Ts.

Theorem 3.1 (The key local estimates). Let £, andl2 be real-valued cut-off functions

in CX(C") such that f 2 = 1 in a neighborhood of the support oft¡x.

(a) For every real number r greater than or equal to s there is a constant C such that

(3.1) \\SlTAr-2s^C{U2u\\r + \\u\\s)

for all u in C°"(ß). For holomorphic functions a stronger estimate holds: for every real

number r ( unrestricted ) and every positive integer M there is a constant C such that

(3.2) UiTsh\\r_2s^C{U2h\l + \\h\\-M)

for all h in Hx(Si).

(b) For every real number r and every positive integer M there is a constant C such

that

(3-3) UMr^C{U2Tsh\\r-2s + \\h\\-M)

for all h in 77s(fi), and

(3.4) MiUMr<c{to2hl_2, + M-»t)

for all h in H °(ß).

Remark. It is part of the theorem that finiteness of the right-hand side in (b)

implies finiteness of the left-hand side. The upper bounds for Ts follow easily from

standard estimates for the Bergman projection. The lower bound for Ts and

corresponding upper bound for Us require some work. The proof is postponed until

§5.

Theorem 3.2. Let f, and f2 be real-valued cut-off functions in CX(C") such that

f2 = 1 in a neighborhood of the support of Çx. If u G IFJ(ß) and l2u G IF'(ß) for

some real number r greater than or equal to s, then ÇxPsu G IFr(ß) and

(3.5) \\UP.Ar^C{U2u\\r + \\u\\s)

with C independent of u.

Remark. This is a restatement of part (ii) of Theorem As. Note that the statement

reduces to part (i) if lx is chosen to be identically 1 on ß.

Proof. Let tj be a smooth real-valued cut-off function such that r/ = 1 in a

neighborhood of the support of I, and l2 = 1 in a neighborhood of the support of v.

Suppose at first that u g C°"(ß). The relation USTS = Ps of Lemma 2.1 together with

the upper bound (3.4) for Us implies

UiPAr<c{hTsul-2s+\\Tsu\\_s).
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Now estimate the right-hand side by applying inequality (3.1) twice: with f, replaced

by r/ it gives

hTAr-2,^ C(U2u\\r + \\ul),

and with the cut-off functions set equal to 1 on ß it gives ||7^w||_s < C11w11Ä.

Combining the last three equations shows that (3.5) holds as an a priori estimate for

uinC°"(ß).

Now suppose only that u g IFJ(ß) and f2« G H/r(ß). There is a sequence of

functions ux, u2,... in C°°(ß) such that Uj -* u in WS(Q) and i\u¡ -* r\u in IFr(ß) as

/ -» oo. (Such functions can be constructed by means of a partition of unity and the

standard bounded extension operator that extends a W(Q) function supported in a

boundary chart to a IF0r(C") function.) The a priori version of (3.5) implies that as

j —> oo the ixPsUj converge in IFr(ß) to some function v such that

||f||r < C(||f2t/||r + ||w||i)-

Since Ps is by definition continuous in IF^ß), the $XPSU: converge to ÇxPsu in

IF^ß). By uniqueness of limits v = ÇxPsu, and so ÇxPsu g W(Q) and satisfies (3.5).

This completes the proof of Theorem Av of the introduction. For compactly

supported functions (which of course are not dense in IFr(ß) when r > 1/2) the

index of the global term in (3.5) can be made arbitrary. This improvement is

required to prove Theorem Bs.

Lemma 3.3. Under the hypotheses of Theorem 3.2, // <p g CX(Q) then for every

positive integer M

with C independent ofcp.

Remark. A stronger estimate holds: the index of the first term on the right-hand

side can be reduced by 2s. However, this gain of derivatives is irrelevant in the

application.

Proof. Since <p has compact support it is possible to integrate by parts to obtain

Ps<p(w)=(<p(-),Ks(-,w))s = (<p(-),Ks(-,w))0= UsP0cp(")-

If tj is an intermediate cut-off function as in the previous proof then the upper

bound (3.4) for Us implies

WSiP&l < c(||T,P0<p||r + \\P0<p\lM) < C(||£2<p||r + ||<p||*M).

The last step follows from standard estimates for the Bergman projection (see

Lemma 4.1).

Corollary 3.4 (Theorem Bf). For each positive integer s the kernel function

Ks(w, z) is smooth up to the boundary off the boundary diagonal, that is

Ks(w, z) G C°"(ß Xß\{(w, z) g M2 X M2: w = z}).
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Proof. The case of the usual Bergman kernel function (s = 0) was established by

Kerzman [16]. Because of Lemma 3.3 essentially the same argument works in the

new setting. The details are as follows.

Of course Ks(w, z) G C°°(ß X ß) since it is holomorphic in w and conjugate

holomorphic in z. What has to be checked is the behavior when w approaches the

boundary and z stays away from w; possibly z also approaches the boundary. By

Sobolev's lemma it is enough to show that if IF is a small open set intersecting ¿>ß

and Z is an open set whose closure is disjoint from the closure of IF, then

(3.6) sup    \\D¿Ks(w, z)||^(ZnS2|< oo
we wnii

for every multi-index a and every r greater than s.

Let <p be a smooth, nonnegative, radially symmetric function supported in the unit

ball of C" such that the integral of <p over C equals 1. Define

<p„(t) = dist(w, btt)~2"<p((t - H>)/dist(w, ¿ß)).

For each w in ß the function <pw is smooth with compact support in ß, and the

integral of q>w over C" equals 1. Integration by parts and the mean-value property of

holomorphic functions imply

(-l)laiD:.Ks(w, z) = (Ks(-,z), D«q>w(-))0 = PsD\w(z) .

Let f be a smooth real-valued cut-off function that is identically zero in a

neighborhood of the closure of IF and identically one in a neighborhood of the

closure of Z. It is no loss of generality to assume that for every w in IF the supports

of <pw and f are disjoint. When r ^ s and w g IF it follows from the above formula

and Lemma 3.3 that

(3.7) \\D«Ks(w, z)|U'(znn, < c(||?2>Vll, + \\D\XM) < C\\D\J*M

with C independent of w. If u g C°°(ß), then

\(Da<pw, u)J =\(<pw, Dau)0\ < ( / «pj sup \D"u\ < C||«||„

as soon as M > n + \a\. Hence ||7)a(pJ|*A/ < C for such M, with C independent of w

in IF. Thus (3.7) implies the required estimate (3.6). This completes the proof of the

second main result, Theorem B5.

4. Estimates for the o-Neumann problem and for holomorphic functions. This

section summarizes firstly some standard estimates for the 9-Neumann problem and

secondly some special Sobolev estimates for holomorphic functions. A good refer-

ence for the 9-Neumann problem is [15]; details about Sobolev norms of holomor-

phic functions will appear in a forthcoming article [10].

The lemmas in this section should be understood to carry the following assump-

tions: ß is a smooth bounded strictly pseudoconvex domain in C"; the functions f,

and f2 are real-valued cut-off functions in C0°"(C") with f2 identically 1 in a

neighborhood of the support of fx; and M is an arbitrary positive integer.
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Consider 9 as a closed densely-defined operator from the Hilbert space of

(p, z7)-forms with square-integrable coefficients to the Hilbert space of (p, q + 1)-

forms with square-integrable coefficients. The Hilbert space adjoint of 9 is denoted

9*. The Neumann operator N on (0, l)-forms is the inverse of 9*9 + 99*. It is well

known that N admits strong estimates in Sobolev norms (Kohn [17, 15]). Roughly

speaking N gains one derivative, the combination 9*A^ gains one-half derivative, and

the combination 9*^9 preserves the number of derivatives. The formula P0 = Id —

d*Nd for the Bergman projection, together with the estimates for N, leads to

pseudolocal estimates for P0.

Lemma 4.1. For every nonnegative real number r there is a constant C such that

UiPo4r^c(U2u\\r + \\uf-M),

%Po4*r^c(UA*r + \\u\\*M)

for all u in C°°(ß). In particular

iip0«iir<cii«iir,   iipoM|i:r<cii«ii.v

The first inequality is well known. It is commonly written with ambient term \\u\\0,

but the stronger form given here follows from the usual proof. The second inequal-

ity, with negative indices, follows by duality.

An immediate corollary is the following local density statement for holomorphic

functions.

Lemma 4.2. Let r and s be positive real numbers such that r > s. If h is a

holomorphic function such that h G JFs(ß) and Ç2h G IFr(ß), then there is a sequence

hx, h2,... of holomorphic functions in C°°(ß) such that

(a)\\h-hk\\s^0,and

(b) im* - Ml, - o
as k —» oo.

Proof. Let 77 be a real-valued cut-off function in CX(C) such that 77 = 1 in a

neighborhood of the support of f, and f2 = 1 in a neighborhood of the support of 17.

Take a sequence ux, u2,... of functions in C°°(ß) such that uk —> h in IFv(ß) and

r\uk -» r\h in W(Q,), and set hk equal to P0uk. It follows from Lemma 4.1 that the

holomorphic functions hk have the required properties.

To state estimates for 9*^ in norms with negative indices it is necessary to

introduce tangential Sobolev norms. Each boundary point of ß has a neighborhood

in which it is possible to choose smooth real coordinates /,,... ,t2„_x, p, where p is a

given defining function for ß. A function u supported in such a boundary chart has

tangential Fourier transform

&(t,p) = f       e-i(,'T)u(t,p) dt
JR2„-l

and tangential Sobolev norm

INIlW0 (     (i+H2)>(t,p)|2¿t¿p.
•'-00 •'R2"-1
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Of course norms of forms are defined componentwise. When r > 0 the tangential

norm is dominated by the usual Sobolev norm, but when r < 0 this relation is

reversed (by duality).

Lemma 4.3. Let u be a (0, l)-form with coefficients in C°°(ñ) such that du = 0. 7/f,

and f2 are supported in a boundary chart then for every real number r

\\Çxd*Nu\\r+x/2 < c(U2u\\r + \\u\\*M)    ifr > 0,

%d*Nu\\r < c(|||f2«|||r_1/2 + II^A^IIU + NI*")    if' < 1.

with C independent of u.

The first case is well known. The second case comes not from duality but from the

same techniques [15, p. 53] used to prove the first case. The proof is omitted.

The following lemmas concern Sobolev norms of holomorphic functions. The first

one says that three different norms are equivalent.

Lemma 4.4. If h is a holomorphic function, then for every positive real number r

llfiA|U<llfiA||!,<C(||i'2AJ|_r + ||AU),

and z/f, and f2 are supported in a boundary chart, then

C-1||f1A||_r<|||flA|||_r<C(||f2A||_r +UAH-*)

with C independent ofh.

To compute the Sobolev norm of a holomorphic function it turns out to be

enough to consider derivatives in the direction normal to the boundary. Recall that

if p is a normalized defining function for £2, then 9/9p means Y.(Djp)Dr

Lemma 4.5. If h is a holomorphic function then for every real number r and every

positive integer k

llíiA|Uc(|f20/9p)*A||r_, + ||A||-A/)

with C independent ofh.

An inequality in the other direction also holds. In fact a differential operator of

order k maps IFr(ß) continuously into IFr"/i(ß) except when r = 1/2,3/2,.. .,k —

1/2, and restricting to holomorphic functions eliminates the exceptions:

Lemma 4.6. If h is a holomorphic function and L is a linear differential operator of

order k with coefficients in C°°(ß), then for every real number r

UXLh\\r^C{U2h\\r+kAh\\-M)

with C independent of h.

The last three lemmas are actually true in a much more general setting. They hold

for harmonic functions in arbitrary smooth bounded domains. The proofs use only

standard elliptic theory (see [10] for details).
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5. Proof of the key local estimates. This section is devoted to the proof of Theorem

3.1 and the estimates (2.2) and (2.3). To keep track of the local behavior it is

convenient to fix a sequence ti0, r)x,. .. of smooth real-valued cut-off functions such

that t)0 = f,, each tj+1 is identically equal to one in a neighborhood of the support

of 77y, and f2 is identically one on the support of 7jy for every/. It is also useful to

introduce the notation

II    II«     iiq>0,

II    II?*     if <7 < 0

in order to treat the cases of positive and negative indices together.

To prove (3.1) observe that

^xTsu,tp)0 = (u,P0(^))s=   E (Da«,D0P0(?i<P)>o

for u in C°"(ß) and <p in C0°°(ß). When |«| < s and r > 5

(5.1) \(D"u,DaP0(íx<p))0\^\\r]xDau\\r^\\DaP0(^)\\*(r^)

+ ||7)aM||o||(l-77l)7)aP0(fl(p)||0.

By Lemmas 4.4 and 4.6 and the estimates of Lemma 4.1 for the Bergman projection,

it follows that the first term on the right-hand side is at most a constant times

(llf2"L + ll"ll-w)||<p||-*+2i.

while by the disjointness of the supports of (1 - tj,) and f, the second term is

dominated by HulUI^H^ for every positive M. Therefore

ia,7>, <p>0| < c(|Mlr + M*)IMI-*k.
Since C0°°(ß) is dense in both IF0'(ß) and (IF'(ß))* when t > 0, it follows by taking

the supremum over m such that ||<p||(_* + 2j = 1 that

UiTAr-2s^C{\\^2u\\r + \\u\\s).

This proves the first inequality in Theorem 3.1.

Inequality (3.2) for holomorphic functions follows from the same argument if in

(5.1) the function u is replaced by h and the second term on the right-hand side is

replaced by

\\Dah\\*M-s\\(1 - i\x)DaPa(lxip)\\M+,.

Next consider inequality (3.3) for h in 77'(ß)- If f i has compact support in ß then

||?iA||r < C||A||_M, so after taking a partition of unity it may be assumed that f, and

f2 are supported in a boundary chart. Suppose for the moment it has been shown

that r¡J+4h g IF^ß) for a certain index/ and a certain real number q less than or

equal to r — 1/2. (This assumption holds for every/ when q ^ s.) In view of the

local density statement of Lemma 4.2 there is a sequence hx, h2,... of holomorphic

functions in C°°(ß) such that hk -> h in IFJ(ß) and tiJ+3hk -» t]j+3h in W(Sl) as

k -* oo.

\i
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If <p g C0°°(ß), then by Fubini's theorem

(5.2) (vJ + iTsh,<p)0 = (h,P0(r,J + x<p))s=  lim (hk,P0(i,J+x9))s
k —* oo

=   lim (ilj + iTshk,cp)0.
k: —» oo

Writing Ts = P0L2s and P0 = Id - 9*M) gives

(5.3) (r,J+lTshk, <p)o = (i,J+xL2'hk, <p)o - (7,y+19*iV9L2jA„ <p)o.

The main point of the argument is that the second term on the right-hand side is

lower order than the first term. Lemma 4.3 implies

\(nj + xd*NdL2shk, <p)J < c(\\Vj+2dL2°hk\\q_2s + \\\r,J + 2dL2*hk\l_2s

+ |||f29*^9L2íA,||U_2í+||9L2íA,||*M_2í)ll<pll2*-í-i/2-

(One or the other of the first two terms in parentheses on the right-hand side is

irrelevant, depending on whether q - 2s is positive or negative.) Since dhk.— 0 and

the commutator [9, L2s] is an operator of order 2s, it follows from Lemma 4.6 that

the first term in parentheses is at most a constant times ||Tjy+3AA|| + ||AJ|_W. In

view of the norm equivalence stated in Lemma 4.4, the second term in parentheses

admits the same bound. The third term in parentheses is at most

\U2P0L2'hk\lM_2s +%L2shk\\\_M_2s < C(||7;AJ-a,-2j +IWLm).

and by estimate (3.2) already proved this is dominated by ||A^||_W, as is the fourth

term in parentheses. Thus

(5.4) \(vJ + xd*NdL2'hk, <p)J < C(||i,,.+3AJ9 + HMI-^MI^-i/r

Since qp has compact support

limJnJ + 1L2shk,V)o = (r,J+1L2°h,<p)o.

In view of estimate (5.4) it follows by combining (5.2) with (5.3) that

|(t,,+ 1L2**, <p)J < \(iJ+lT,h, <p)J + C(||ny+3*|4 + ||A||-M)||<p||2:^-i/r

Taking the supremum over compactly supported <p such that ||<p|l2Ï-o-i/2 = 1

gives

(5.5) h,-+1L2î*|?_2l+1/2< c(faJ+1TM,-2,+l/2 +k+3A||9 +||A||-m).

Recall from Lemma 1.1 that the top order term of L2s on holomorphic functions

is 2s(9/9p)2s. In view of Lemma 4.5

IMIUi/2 < c(\\Vj+1(d/dp)2sh\\q_2s+1/2 + ||A||_W)

<  C(lk + lL2'AL-2» + l/2 +ll1»y+2*ll,-l/2 + 11*11-«)-
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Together with (5.5) this implies

(5-6) IMIU./2 < c(||f2r,Ai-2, + hJ+Mq +11*11-«)-

If the right-hand side of (3.3) is finite, then (5.6) implies that 77,/z G IF"+1/2(ß).

By induction on q (starting from the value min(i, r — 1/2)) it follows that rj^A g

IF'(ß) for every/; moreover (5.6) holds whenever q < r - 1/2. The middle term on

the right-hand side of (5.6) has the same form as the left-hand side, but with the

index lowered by 1/2. Iterating (5.6) at most 2[q + M + 1] times lowers this index

to -M, resulting in

k*ll9+1/2<c:(||f2riA||r_2j + ||A||-M).

Now set/ equal to 0 and q equal to r — 1/2 to obtain the desired estimate (3.3).

Inequality (3.4) is an easy consequence of (3.3) and the relation TSUS = P0 of

Lemma 2.1. If A g 77°(ß), then by (3.3)

(5-7) MM < C[U2TJJM,-i. + WM-m)

= C(||í2Ai_2í + ||t/iA||.w),

so it remains only to estimate the global term in (5.7). Since Us is bounded from

7/°(ß) to 7/!(ß). inequality (5.7) implies in particular the global estimate

(5-8) l|t/sA|U2f<C||A|U

when M > 0. If <¡p g Cx(£l), then Fubini's theorem, equation (5.8), and the esti-

mates for the Bergman projection yield

\(Ush,cp)0\ = \(h,Us<p)0\ = \(h,UsP0<p)0\

< C\\h\\-.M-2s\\UsP0<p\\M+2s < C||A||-M-2.v||<)p||a/.

Therefore

(5-9) \\Ush\\-M<C\\h\\.M-2s

when M > 0, and so (5.7) implies (3.4).

This completes the proof of Theorem 3.1. The global a priori estimates (2.2) and

(2.3) are an immediate corollary. First note that (3.2) and (3.4) imply that Fs and Us

map 7/°°(ß) into itself. Setting f, equal to 1 on ß in (3.2) and (3.3) gives

11^*11,-2, < C||A||r,        |A||r < C(||7;A||r_2J + HAU).

To get (2.2) it remains only to observe by (5.9) that for h in 7/°"(ß)

||A||-M = ||i/îrsA||.M<c||riA||.M_2î.

Finally (2.3) follows from (2.2) by replacing h with Ush and using that TJJsh equals h

forAin77°°(ß).

6. Further remarks. (1) The full force of the strict pseudoconvexity of ß is not used

in the proofs. The key element is the knowledge that 9*.iV gains a fractional

derivative, but the size of the gain is unimportant. Accordingly Theorems As and Bs

hold more generally when ß is a smooth bounded pseudoconvex domain such that



240 H. P. BOAS

its Neumann operator admits subelliptic estimates. David Catlin [11] has recently

characterized such domains as being the domains of finite type, in the sense that the

maximum order of contact of complex varieties with the boundary is finite. Exam-

ples of such domains are strictly pseudoconvex domains with Cx boundary and

weakly pseudoconvex domains with real analytic boundary. See [12] for further

discussion of finite type conditions.

(2) In this paper I have considered the projection Ps only for integral values of s,

but it can equally well be defined for fractional s. This has some interest because s

equal to 1/2 corresponds to the Szegö projection. Methods similar to the ones used

here show that the Szegö projection admits regularity estimates in domains of finite

type. This result will be proved in a forthcoming paper [10].
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