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REZA ZOMORRODIAN

Abstract. The action of nilpotent groups as automorphisms of compact Riemann

surfaces is investigated. It is proved that the order of a nilpotent group of automor-

phisms of a surface of genus g > 2 cannot exceed 16(g - 1). Exact conditions of

equality are obtained. This bound corresponds to a specific Fuchsian group given by

the signature (0; 2,4,8).

0.0 Introduction. The study of automorphisms of Riemann surfaces has acquired a

great importance from its relation with the problems of moduli and Teichmuller

space. After Schwarz, who first showed that the group of automorphisms of a

compact Riemann surface of genus g > 2 is finite in the late nineteenth century,

fundamental results were obtained by Hurwitz [8], who obtained the best possible

bound 84(g — 1) for the order of such group. About the same time Wiman [16]

made a thorough study of the cases 2 < g < 6, as well as improved this bound for a

cyclic group, by showing that an exact upper bound for the order of an automor-

phism is 2(2g + 1). All this was done using classical algebraic geometry, without use

of Fuchsian groups. There was not much movement in the subject between the early

1900s and 1961, when Macbeath [10], following up a remark of Siegel, proved that

there are infinitely many values of g for which the Hurwitz bound is attained, as well

as infinitely many g for which it is not attained. Macbeath used the theory of

Fuchsian groups.

By then it was known that every finite group can be represented as a group of

automorphisms of a compact Riemann surface of some genus g > 2 (see Hurwitz [8],

Burnside [1] and Greenberg [2]).

The aim of the present paper is to make a fairly detailed study of nilpotent

automorphism groups of a Riemann surface of genus g > 2. The groups involved are

finite, by Schwarz' theorem, and since a finite nilpotent group is the product of its

Sylow subgroups, the p-localization homomorphisms (which are analogous, in a way

to the method of taking residues modulo p in number theory) provide a natural tool

for the study of nilpotent automorphism groups.

The problem which I set out to solve is to find and prove the "nilpotent" analogue

of Hurwitz' theorem. Not only does this paper present a complete solution to this
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problem, but the restriction to nilpotent groups enables me to obtain much more

precise information than is available in the general case. Moreover, all nilpotent

groups attaining the maximum order turn out to be 2-groups (i.e., their order is a

power of 2). The results are as follows: Suppose G is a nilpotent group of automor-

phisms of a Riemann surface X of genus g > 2. Then \G\ < 16(g — 1). If \G\ =

16(g — 1), then g — 1 is a power of 2. Conversely, if g — 1 is a power of 2, there is at

least one surface X of genus g with an automorphism group of order 16(g — 1), which

must be nilpotent since its order is a power of 2. This bound corresponds to a specific

Fuchsian group given by the signature (0; 2,4,8).

The necessary and sufficient condition "g — 1 is a power of 2" gives much more

precise and far-reaching information about maximal nilpotent automorphism groups

than is available for Hurwitz groups. Specific Hurwitz groups known at the present

time give the impression that their orders are distributed in a very chaotic fashion

among the multiples of 84, and it does not seem realistic to expect precise

information about them. Indeed, at the time of writing, no information is known

about such basic questions as whether the values of g for which there is a Hurwitz

group have or have not positive density among the integers. This relatively simple

structure is clearly a result of the restriction that only nilpotent groups should be

considered, and does not differentiate the covering group (0; 2,3,7) (for the Hurwitz

problem) from the covering group (0; 2,4,8) for the "nilpotent" problem. Indeed,

there are many nonnilpotent automorphism groups covered by (0;2,4,8) whose

order is not a power of 2. For instance, it follows from the methods of Macbeath's

paper [12] that PSL(2,17) is a smooth factor group of (0; 2,4,8) though it is certainly

not nilpotent.

1.0 Bound for the order of the automorphism group. In this introductory section, I

set out the basic methods by which the results of the last two theorems of this

section on the best possible bound 16(g — 1) are obtained.

The approach used here is based on the method of Fuchsian groups including

Singerman's Theorem, as well as the standard group-theoretic algorithms of Todd

and Coxeter, and Reidemeister and Schreier. It is essentially equivalent to the

method of Wiman and Hurwitz.

1.1 Cocompact Fuchsian groups and signatures. We consider Fuchsian groups

acting on the upper half of the complex plane. A cocompact Fuchsian group T has

presentation

(1.1.1) (xp ak, bk: xp, xx ■■■xrU[ak,bk],j=l,...,r,k = l,...,gy

where [a, b] = abalbl; g is the genus. We call the symbol

(1.1.2) S = (g; mx,...,mr),       r > 0, g > 0, m, > 1,

the signature of T. If all w,- > 2, S is said to be reduced, otherwise nonreduced. If T

has signature S, we write T(S). Let S be obtained from S by dropping all w, = 1.

Thus T(S) s T(S), but in what follows it is essential to consider S as well as 5. If

there are no m¡ (or if all m¡ = 1), T is called a surface group.
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Let r = T(S) act on the complex upper half-plane H2. T has a fundamental

region Fr of hyperbolic area

1
(1.1.3) p(Fr) = 2,r

the rational number

(2g - 2 + E (

(1.1.4) x(S) = 2-2g + E(^-l

is its Euler characteristic.

It is known that if X is a compact Riemann surface of genus g > 2, then

X = H2/K, where K is a Fuchsian surface group of genus g. Moreover, G is the

automorphism group of X iff G — T(S)/K, where T(S) is Fuchsian and K is a

surface group. Taking areas,

<1JJ> 'C' = îHr^       M-rderot«,

this is the Riemann-Hurwitz identity. Note that |G| is finite.

The signature 5 is called degenerate if

(a) g = 0 and r = 1, or

(b) g = 0 and r = 2, w, # w2,

otherwise nondegenerate. If 5 is nondegenerate and Tx is a subgroup of finite index

in T(S), then there exists a signature Sx such that T, = T(SX) and

(1.1.6) [r-rTil-xtoVxiS).
1.2 More on degenerate signatures. The degenerate signatures do, of course, define

groups, but do so in such a way that the definition is in some sense uneconomical or

redundant. For example, the signature (0; mx) gives an elaborate definition of the

trivial group:

(1.2.1) x? = xxl = l.

The trivial group ought properly to belong to the signature

(1.2.2) (0;     )

with empty set of periods and zero genus. With this signature the Euler characteristic

of the trivial group is +2, which is consistent with the index formula (1.1.6).

Therefore it is reasonable to regard (1.2.2) as a nondegenerate signature. The

degenerate signatures are then characterized by the facts that:

(i) At least one of the relators can be replaced by an apparently stronger relator

without affecting the group.

(ii) The index formula (1.1.6) is not valid if we use a degenerate signature to

compute the Euler characteristic; that is why there is another family of degenerate

signatures, namely,

(1.2.3) g = 0,       r = 2,       mx*m2.

Such a degenerate signature defines a cyclic group of order d = gcd(mx, m2); the

proper signature for this group could be (0; d, d), which is nondegenerate.
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Certain signatures which yield positive x are realized as finite groups acting on the

2-sphere, i.e., subgroups of the orthogonal group (9(3, R).

Now if x(S) > 0, T(S) is finite, and by the Riemann-Hurwitz identity it has order

(1.2.4) |r(S)|=2(l-g)/X(S).

But this implies l-g>0org<l which gives g = 0 for g is a nonnegative integer.

Thus T(S) acts on the Riemann 2-sphere X = S2 and has order 2/x(S). The only

reduced nondegenerate signatures with x(S) > 0 are:

Table 1.1

Signature

(0; n, n)

(0;2,2,n)

(0;2,3,3)

(0;2,3,4)

(0; 2,3,5)

Order

2/7

12

24

60

Type of Group

cyclic Zn

dihedral D2n

tetrahedral^44

octahedral S4

icosahedralA

If X(5) = 0, then the group T(S) is infinite and solvable (and acts on the complex

plane C). In addition, this yields groups of isometries of the Euclidean plane:

Table 1.2

Signature Order Type of Groups

0   (1;    ) cc Free abelian group of rank 2

r = 3 (0;2,4,4)

(0;2,3,6)

(0;3,3,3)

oc

oc

oc

Containing a free abelian group

of rank 2 as a normal subgroup

of finite index with cyclic factor group

r = 4(0; 2,2,2,2) oc Extension of Z2 of free abelian

group of rank 2.

Remark. When r = 3,4, the groups are called the space groups of 2-dimensional

crystallography.

(c) Finally if x(S) < 0, then p(Fr) > 0, thus T(S) can be realized as a Fuchsian

group; that is, a discrete subgroup of PSL(2, R), the group of all Möbius transfor-

mations of the complex upper-half plane H2.

1.3 Smooth homomorphisms.

1.3.1. A fundamental notion in this context is a smooth homomorphism, which is a

homomorphism $ from a Fuchsian group T(S) onto a finite group G which preserves

the periods of T; i.e. for every generator x¡, of order mf, order of <&(x¡) is also equal

to m¡. If $: T(S) -> G is smooth, then ker $ is a Fuchsian surface group. A finite

group which has such a homomorphism onto it will be called a smooth quotient

group. If p is a prime number, then 0 is called p-smooth if the order of $(x,) is

divisible by the highest power pa> of p which divides m¡.
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1.3.2. <ï> is smooth if and only if $ is p-smooth for every prime divisor p of the

product n,r=1 mi of periods.

Theorem 1.3.1 [6, 7]. 7/5 is a nondegenerate signature, then every torsion element

(i.e., an element of finite order) in T(S) is conjugate to some power of some x¡.

Moreover, the order of x: is precisely m¡. Ifx(S) < 0, every finite subgroup ofT(S) is

cyclic.

Corollary 1.3.1. 77ze identity homomorphism id: T(S) -* T(S) is smooth if and

only if the signature S is nondegenerate.

1.4 Automorphisms of compact Riemann surfaces. Let X be any compact Riemann

surface, and suppose X is the universal covering space of X. The complex structure

on X can now be lifted to X so that the projection p: X -* A" is analytic. Let now G

be a finite group of automorphisms, i.e., biholomorphic self-mappings of X. Then

there is a group G of automorphisms of X of X obtained by taking all the liftings of

all elements of G. See [2, 9, 10, 13].

The group G covers the Riemann surface automorphism group G. Then there is a

homomorphism $: G -» G of the covering group G onto G such that its kernel is

irx(X), the fundamental group of the surface X, and such that if #: G X X -* X and

J^: G X X -> A" denote the group actions, the following diagram commutes:

GX X     -»       X

(1.4.1) *l   pI pï

G X X     ->       X

In this case if g denotes the orbit genus of X, then X will be one of the three

simply-connected Riemann surfaces C = CU{co), C or A, and G will be a group of

a signture 5. The ker($) = irx(X) will be the group of the signature (g; ), and by

(1.1.5)

(1.4.2) |G|=(2-2g)/x(5).

Thus G is a Fuchsian group if and only if x(S) < 0 or 2 — 2g < 0, i.e. if and only

if g > 2, for if g = 0 then x(S) > 0, and if g = 1 then x(S) = 0. And since mx(X) is

torsion-free the homomorphism $ is smooth. Conversely if G is any finite group, any

smooth homomorphism $: T(S) -* G induces a group action of G as a group of

automorphisms of the Riemann surface Â/ker $. Therefore we have the following

result.

1.4.3. We can obtain all Riemann surface automorphism groups (G, X) with G finite

and X compact by finding all the smooth homomorphisms 4> of the Fuchsian groups

T(S) onto finite groups G.

1.5 The localization of the signatures.

1.5.1. Let p be a prime number, and as before let S = (g; mx,...,mr) be a

signature and T(S) the group defined by this signature. For each i = l,...,r, letp":

be the highest power of the prime p which divides m¡. Then we call the signature
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Sp = (g> PaiT-->Pa') the p-localization of S. If every period of S is already some

power of one fixed prime p, then we call the signature S = Sp a p-local signature, and

the group defined by Sp, i.e., F(Sp), the p-localized Fuchsian group. This group has

the following presentation:

r(Sp)=U,...,x'r,a'x,b'x,...,a'g,b'g\(x'xy\...,(x'r)p°',

(1.5.1) * r g \

'=1 j=i       i

Using the hypothesis thatpa,\ml, we have (x¡)m> = 1. And so the mapping defined

on the generating set by

aj-*<*pbk-*b'k k

(i = l,...,r)

(j,k=l,...,g)

can be extended to a homomorphism

lp: T(S) - T(Sp)

which we shall call a p-localization homomorphism. We require the following theo-

rems by A. M. Macbeath [11].

Theorem 1.5.1. IfGp is a finite p-group and<¡>: T(S) -» G is a homomorphism, then

there is a unique homomorphism <pp: T(Sp) -* G such that <b = <b ° I .

Theorem 1.5.2. Let G be a finite nilpotent group and, for each prime p, let G be its

p-Sylow subgroup. For formal simplicity let Gp= {1} ifp + \G\. Let <j>: T(S) -» G be a

homomorphism and let X : G -» Gp be the projection of G (as product of its Sylow

subgroups) onto Gp. Then <p is smooth if and only if (X ° <f>) : T(S' ) -* Gp is smooth

for each prime divisor p ofYl^=xmr

Theorem 1.5.2 shows that one can study nilpotent Riemann surface automorphism

groups by studying the smooth homomorphisms of p-local groups onto finite p-groups.

We can observe this idea in detail in the following.

Let -n-(S) = {p:p|n,r_,/rz,}, p = prime. Now if p € tT(S), Sp is free of periods

and T(S ) is a surface group, and thus every homomorphism from T(S ) to a finite

group is smooth. Let px,. ■■ ,pk e tr(S), and let G = Gp¡ X • - - X G be a finite

nilpotent group. Then each smooth homomorphism <p: T(S) -» G determines k

smooth homomorphisms

*„: r(S„) -+ Gpt       (i = l,...,k)

such that if y e T(S) and g, = ^ <> lp(y) e Gp¡, then <¡>(y) = g,,... ,gk e G. Thus

to find all the covering maps $: T(S) -* G one can find all smooth homomorphisms

>//,: T(S ) -* Gp , where Gp is ap,-Sylow subgroup of G.

1.6 The p-Frattini series of a group.

1.6.1. Let G be a finitely generated group, and letp be a prime number. Define

Gp = (ap,bcb^c-l\a,b,c& G>.
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Gp is characteristic in G and is called the p-Frattini subgroup of G [15]. The factor

group G/Gp is an elementary abelian p-group. Suppose G has the presentation

(g,|7\(g,)>. Then the presentation for G/Gp is obtained from G by adding the extra

relatorsaf and [ak, a,]; i, k, I = l,...,m.

The p-Frattini series of G is defined by:

G = Gg 2 Gf 2 • • • 2 G£ 2 • • •,

where

GU±{GÍ)P,       k = 0,1,2,....

Then Gf is also characteristic in G and G/Gf is a finite p-group for all z = 1,2,_

Next we consider the p-Frattini series of T^), where

Sp = (g;p«\...,p"').

1.6.2. Let TV = max{a,, a2,...,ar), and let xí^) < 0.

Theorem 1.6.1 [14]. Let T have signature S = (g; mx,.. .,mr). Then T contains a

subgroup T, with signature

si = {g'^ni^nX2,...,nXki,n2X,n22,...,n2ki,...,nri,nri,...,nrk)

such that [T : Tx] = N if and only if there exists a finite permutation group G transitive

on N points and a homomorphism í>: T -* G onto G with the properties:

(i) The permutation 3>(x,) has precisely ki cycles of lengths

m,    mi m¡

»a' ««""'".t/

(ii)/v = [r:r1] = x(r1)/x(r).

The following lemma is by A. M. Macbeath [11].

Lemma 1.6.1. 7/r > 2, then the maximum period of the group (T(Sp))p is pN~l.

Lemma 1.6.2. If r = 1 and x(Sp) *S 0, then the number of periods of (T(Sp))p is

greater than or equal to 4.

Proof. In this case Sp = (g; pN) and

T(Sp) = lxx, ax, bx,...,ag, bg\x?> = xxj\ [a,, bj] = l\ .

Thus xx = (Tlf^ajbrfbj-1)-1 e G' c (T(Sp))p. And x(Sp) =l+p~N-2g and
so we must have g > 1. In [11, Lemma 6.4], it is proved that the number of periods

is 3* p2g, which gives the result.

We now give a presentation for the quotient group T(Sp)/(T(Sp))p = T/Tp, say,

in terms of the generators x[ = xxTp, a'¡ = a¡Tp, b'j = bjTp, where i, j = l,...,g.

We have relators

a) *!"",*! n Wj,b;]
v'-i
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from the original presentation of Yx together with the relators

(2)        xx'p, a,'p, b/p, [x'x, a',}, [x'x, b¡], [a'„ a'j], [b% bf], [a], bj\, [b'„ a'j].

Since r^ contains all commutators, the second relator in (1) can be reduced to

x[ = 1, so the relators xx'p, xx'p in (1) and (2) can be omitted, and we have for

Y/Yp the elementary abelian group of rank 2g generated by a], b'¡.

Thus the order of T/Tp must be p2g > 22 = 4. We now apply Theorem 1.6.1 to

r = nsp).
If we let $: Y -> T/Tp be the natural homomorphism, the group T/Tp can be

realized as a permutation subgroup of the group Spis transitive onp2g points. Now $

maps xx onto the identity element of T/Tp, i.e., <b(xx) = (1)(2) • • • (p2g), a permu-

tation withp2g cycles all of length one. Thus

-pN,       i = l,j = l,...,p2g.
'j     length of the cycle       1

Therefore

"ii = "i2= ■•• =nXp2t=pN

andSj = (g', pN,pN,...,pN), so the number of periods of Yp(Sp) isp2g> 4.

Using the Riemann-Hurwitz identity,

N = p2g=2-2S'+P2g(p-"-')
2-2g + p'N-l       '

or p2g(2 — 2g) = 2 — 2g', g' = (g — l)p2g + 1. Next, combining Lemmas 1.6.1

and 1.6.2, we have

maximum period of Y£ < maximum period of T.

Thus we can conclude the following result:

Theorem 1.6.2. If Sp is a p-local signature with x(Sp) < 0, then Tj? is torsion-free if

k is sufficiently large.

Since the natural homomorphism <j>: T -» Y/Y£ is smooth if and only if Y£ is

torsion-free, we can deduce the following

Corollary 1.6.1. If S is a p-local signature of nonpositive Euler characteristic,

then Y(S' ) covers infinitely many Riemann surface automorphism groups which are

finite p-groups.

1.7 Relationship between the lower central series and localization.

1.7.1. Let 5 = (g; mx,...,mr); lp: Y(S) -* Y(Sp) is the p-localization homomor-

phism

Y1(S)= lp1,...,pk:pi\f\mi,i = h...,ky

Let Yf(S) be the characteristic subgroup of Y generated by the set of all elements of

finite order in Y. If y g Y has finite order, then y = t~1x"'t for some periodic

generator x¡ in Y. Therefore we have

r^ = Normal closure {xx,... ,xr},
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and the following

Lemma 1.7.1. For all prime numbers p, ker lp <z Yf(S), and equality holds if and only

ifp É Yl(S).

Proof. By definition, lp: Y(S) -* Y(Sp) is called the p-localization homomor-

phism, and we have

/,(*r) - (*o** -1.
Therefore Y(Sp) is obtained from Y(S) by adjoining all the relators xf\.. .,xP"r.

Thus ker /   = normal closure ( xf\... ,xf'} c Y¿(S).

Next suppose p £ n(S), then S has no periods, i.e. Y(Sp) is a surface group.

Hence we must have a, = • • • = ar = 0 which implies

kerlp = normal closure( xx,.. .,xr) = Yf(S).

This result states that if q £ n(,S), then kerlp Ç kerlq for all prime numbers p.

1.7.2. The lower central series for Y(S). The normal series

r = Yl(r)> ■•■>Y,(r>---,

where Yzi+i(r) = [Y, Y*(r)], is the lower central series of Y(S).

Let also Yoo(r) = D"_iyk(Y) where Yoo(n 's called the "nilpotent residual" of Y.

Then Y~,(r) satisfies the following identities:
onto

(a) Yoo(r) = (a e Y: <b(a) = 1 for all homomorphisms <¡>: Y   -*   G with nilpotent

G}.

(h)yx(Y) = npeTX(S)kerlp.

Proof of (a). First if y. <£ Y<x,(r)> then v £ yK(Y) for any K, i.e.yyK(Y) ¥= yK(Y).

Now let d>: Y -» Y/yK(Y) be the canonical homomorphism; then <f>(y) = yyK(Y)

and so <>( v) ¥= 1. Conversely, if #: Y -> G (G a nilpotent group of class K) is a

homomorphism from Y onto G such that <p(y) ¥= 1 for some y e Y, then y £ ker$,

and we have

i = yK+i(G) = y*+i(*(r)) = *(y*+i(r)).

Thus Yif+i(r) c ker<b, that is yx(Y) c ker<p. Therefore y <£ Y^r)-

Proof of (b). By Lemma 1.7.1 if q <£ Y1(S), then kerlp c kerlq; thus we need to

show only Yoo(l\S)) = H^ker/^ where p is any prime. Next to show this we let

x £ y00(Y(S)), thus there is a nilpotent group Gx not necessarily finite, and a

homomorphism #: Y(S) -» G, such that <b(x) # 1. But T(5) is finitely generated,

thus <b(Y) = G, is also finitely generated. Therefore by a theorem of (Gruenberg)

there is a second homomorphism ¡p: <p(Y) '-* G2 where G2 is a finite nilpotent group,

such that i//(<i)(x)) ¥= 1. Let G2 = 11^ ® G^,; then for at least one projection u:

G2 -» Gp for some prime p, u(\p(<b(x))) ¥= 1. Letting w»if»i|i = ä, we find 8:

I\S) -» Gp is a homomorphism of T(5) onto a finite p-group such that x <£ ker 8.

By Theorem 1.5.1, there exists a unique homomorphism <5p: Y(Sp) -» G^ such that

8 = 8p° lp where /p is the p-local homomorphism. Therefore x <£ ker(8p ° lp), i.e.,

x € ker / for this prime p which implies x £ i~)p ker lp. Conversely let x <£ ker lq for

some prime q (i.e. lq(x) ¥= 1). Since /?(*) g r(S?), and r(59) is a residually finite
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g-group, there exists a homomorphism \pq: Y(Sq) -* Gq, where Gq is a finite z^-group

such that \¡/q(lq(x)) # 1. Letting <p = ^q°lq, then <p is a homomorphism of Y(S)

onto Gq such that <|>(.x) # 1, which implies x <£ YooilX>!>))> and this proves (b).

1.8 Covering groups of nilpotent Riemann surface automorphism groups. In the

previous subsections of this paper we have dealt with problems of obtaining

information about the relationship between nilpotent groups of automorphisms and

the family of p-local signatures of a given signature. In this subsection we want to

characterize precisely those signatures S = (g; mx,.. .,mr) for which the group Y(S)

actually can cover at least one nilpotent automorphism group of some Riemann

surface. If Y(S) is a finite group having positive x(5) Euler characteristic, then Y(S)

can only cover itself. Thus we shall assume x(S) < 0-

Definition 1.8.1. We call a signature 5 nilpotent-admissible if every p-local

signature S of S is nondegenerate.

We require the following two important theorems by A. M. Macbeath [11].

Theorem 1.8.1. The following are equivalent:

(i) 5 is a nilpotent-admissible signature.

(ii) Y(S) can cover at least one nilpotent group of automorphisms of a Riemann

surface.

(iii) The intersection yx(Y(S)) of the lower central series ofY(S) is torsion-free.

The next theorem relates the number of nilpotent automorphism groups covered

by a nilpotent-admissible signature to the nature of the Euler-characteristic of its

p-local signature.

Theorem 1.8.2. Let S be a nilpotent-admissible signature; then one of the following

holds:

(i) Ifx(Sp) > 0 for every prime p e n^), then there is only one nilpotent Riemann

surface automorphism group G covered by Y(S). Moreover, the lower central series of

Y(S) in this case becomes constant after a finite number of steps, and all the terms of

the series have finite index, only the constant one being torsion-free.

(ii) Ifx(Sp) < 0 for at least one p e n(,S), then there are infinitely many nilpotent

Riemann surface automorphism groups covered by Y(S). In this case, on the other

hand, all the terms in the lower central series ofY(S) are distinct.

Example. The only nilpotent Riemann surface automorphism group G covered by

Y(S) when S = (0; 2,2g + l,2(2g + 1)) is the cyclic group Z2{2g+X), which was

discovered by A. Wiman [16] and W. J. Harvey [4] to be the largest cyclic group of

automorphisms of a Riemann surface of genus g > 2.

Finally in the next theorem we consider all finitely generated cocompact Fuchsian

groups having nilpotent-admissible signatures. Using the fact that every Fuchsian

group has a fundamental region of positive hyperbolic area, we will find the

minimum value of this area.

Theorem 1.8.3. Let Y be a finitely generated cocompact Fuchsian group with a

nilpotent-admissible signature S = (g; mx,...,mr), then p(Fr) > w/4, and equality

occurs only when Y is the (2,4,8) triangle group (i.e. the group of signature (0; 2,4, 8)).
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Proof. Write p(Fr) = p. If Y has the above signature, then by (1.1.3)

¡x = 2tr 2g~2+ £(l
7-1

m,
2 < m, < • • • < mr < oo.

(Of course r may be zero, in which case the sum by definition is zero.)

The proof is made by considering three cases.

Case 1. g > 2.

p. > 2n 2+ E
7-1

Case 2. g = 1.

Case 3. g = 0.

H = 2tr

277  E

7-1

-2+E
7-1

1 -

1

1

in,

J_
m,

m.
> 4t7.

> 2lT— > 17.

>2 ,(-2+|).

(i) r > 5. p ^ 77.

(ii) /■ = 4. If all m, = 2, fi = 0 and T is not Fuchsian. Hence assume mx, m2, m3

> 2, m4 > 3; then p > 2t7(-2 + 3/2 + 2/3) = 77/3-

(iii) r = 2. fa < 0 and Y cannot be a Fuchsian group.

Therefore the only case left to be considered is g = 0, r = 3, i.e. the triangle

groups. Then p = 27r[l

¡i > 0 rules out m  = 2,j

l/mx — l/m2 — l/m3], 2 < mx < m2 < m3 < oo  and

1,2,3, as well as mx = m2 = 2.

Subcase 1. my > 3, j = 1,2,3, which can be divided into four parts,

(i) mx = 3, m2 > 4, m3 ^ 4. p > 7r/3.

(ii) m, = m2 = 3, m3 > 4. p = 277(1/3 — l/m3). If p < 77/4, then m3 = 4.

Hence S = (0; 3,3,4) and the 2-local signature (0; 4) is degenerate,

(iii) mx = m2 = m3 = 3. Then p = 0.

(iv) mj > 4 for ally = 1,2, 3. p > tt/2.

Subcase 2. mx = 2, m2 > 3, m3 > 3. p = 277(1/2 — l/mx — l/m2).

(a) m2 > 6, m3 > 6. Then p > 77/3.

(b) 3 < m2 < 6, m3 > m2. There are three possibilities for this case.

(i) S = (0; 2,3, m), m > 7. p = 2ir(l/6 - 1/m). Now p < 77/4 only if m < 23,

or 7 < m < 23. But among these 17 integers all those divisible by a prime p ¥= 2,3

must be dropped out, because then the p-local signature Sp would be degenerate.

Thus m = 8,9,12,16,18. Moreover, if 2a\m (3"\m) for some a ^ 2, then the 2-local

(3-local) signature is degenerate.

(ii) S = (0; 2,5, m), m ^ 5. p = 277(3/10 - 1/m). Again p < 77/4 only for m <

5. Thus the only possibility is m = 5. But if S = (0; 2,5,5), then the 2-local signature

is (0; 2) and is degenerate.

(iii) S = (0; 2,4, m), m > 4. In this final case ¡u = 277[l/4 - 1/m], and p > 0

implies m > 5. And p < 7r/4 only when m < 8. Hence m = 5,6,7,8 are the only
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possible numbers for the last period. Therefore we have:

(i) S = (0; 2,4,5), which has the 5-local signature (0; 5) degenerate.

(ii) S = (0; 2,4,6), which has the 3-local signature (0; 3) degenerate.

(hi) S = (0; 2,4,1), which has the 2-local (0; 2,4) and 7-local (0; 7) signatures,

both degenerate.

Thus a bound for a nilpotent-admissible signature occurs when S has the exact

form (0; 2,4,8), which is in its own 2-local form, and for that group p(Fr) = 77/4.

This completes the proof.

This leads immediately to the first main result. Define ro to be the group of

signature (0; 2,4,8), a notation we shall use from now on.

Theorem 1.8.4. Let G be a finite nilpotent group acting on some compact Riemann

surface X of genus g> 2. Then G has order \G\ < 16(g — 1). Equality occurs if and

only if X = H2/Y, where Y is a proper normal subgroup of finite index in F0.

Proof. Let X be the universal covering space of X, then by subsection 1.4 there is

a group G which covers G. In that case there is a smooth homomorphism <p of the

covering group G onto G, such that the kernel trx(X) of <p is the fundamental group

of the surface X and is the group with signature (0; g). Here X is the complex

upper-half plane H2 and G is a Fuchsian group. By 1.1.5,

Area(H2/nx(X))

Area(772/r(S)) '

By the area formula 1.1.3, Area(H2/7rx(x)) = 477(g - 1). By Theorem 1.8.3,

Area(772/r) > 77/4, and equality occurs if and only if Y(S) = Y0. The result now

follows.

2.0 The structure of the (2,4,8)-triangle group.

2.1 In view of Theorem 1.8.4 of §1.0, which shows that Y0 = (0;2,4,8) is the

unique nilpotent-admissible signature with Euler characteristic of minimum absolute

value, it is natural for us to look closely at the properties of this group, and in

particular its nilpotent smooth quotient groups.

The argument in Theorem 1.8.4 shows that if |Aut(X)| = 16(g - 1), then X =

H2/Y where T is a proper normal subgroup of ro. (Here Y is defined to be the group

of covering transformations of the universal covering $: H2 -» X.)

We discovered that the restriction of nilpotency makes it possible for us to answer

completely the question: "Which values of g are possible for a nilpotent automor-

phism group of order 16(g — 1)?" In fact, g is a possible value if and only if g — 1 is

a power of 2.

Theorem 2.1.1. Let S be a signature with genus 0, and G a nilpotent automorphism

group covered by Y(S). Then all prime factors of\G\ are factors of periods ofY(S). In

particular if S is p-local with genus zero, then every nilpotent automorphism group

covered by Y(S) is a p-group.
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Proof. Let S be the signature (0; m,,... ,mr) and let Y1(S) denote, as before, the

set of prime divisors of the periods of S. Let p be a prime number such that

p £ n(,S). Then the p-localization signature S is (0; ), and so Y(Sp) represents the

trivial group. But now by Theorem 1.5.2 thep-Sylow subgroup of G must be a factor

group of Y(S_), therefore trivial, i.e. p does not divide the order of G. This proves

that the only prime factors of |G| are precisely those which divide the periods of

Y(S). In particular, if S = Sp is a p-local signature for some prime p, then every

period of Y(S) is a power of this prime p. Thus the only prime divisor of the order

of G isp, which implies that G is a p-group.

Corollary 2.1.1. Every nilpotent automorphism group covered by Y0 is a 2-group.

Thus if a surface of genus g admits a nilpotent automorphism group G of order

16(g — 1), then g — 1 must be a power of 2.

Note. There are many nonnilpotent groups covered by ro. (See, for instance,

Macbeath [12].) It is only because we restrict ourselves to nilpotent groups that we

obtain such complete results arithmetically. We shall prove, conversely, later, that if

g — 1 is a power of 2, then there is always at least one nilpotent automorphism

group covered by ro, so that the values of g such that some surface of genus g admits

a nilpotent automorphism group are completely characterized. But first let us

consider the case when n = 4, i.e. G is a 2-group of order 16, and g = 2. We ask:

" Does there exist a compact Riemann surface of genus 2 and a nilpotent automor-

phism group of order 16 covered by ro?" There are precisely nine types of

nonabelian groups of order 16 and five types of abelian ones; see Burnside [1].

Among these there is only one (2,4,8)-group given by G = (a, b\a2 = bs = 1,

aba = b3). It can be seen easily that ab is of order 4. Since ab = b3a~l = b3a,

(ab)2 = b3a2b = b\ Hence (ab)4 = b* = a2 = 1. Therefore, the only (2,4,8)-group

of order 16 is the group G, = (a, b\a2 = (ab)4 = bs = 1, aba = b3). Now let ro be

generated by P and Q where P2 = Qs = (PQ)4 = 1. Let 0: Y -» G, be a homomor-

phism defined by 0(P) = a, @(Q) = b, @(PQ) = ®(p)®(Q) = ab. Hence 0 is

smooth because every element of finite order belong to ker(0) must be conjugate to

some power of P or Q or PQ. Therefore, ker(0) is a Fuchsian surface group of genus

2, and G, is a smooth quotient group for ro. We denote this kernel by Nx and use it as

the first step in an induction argument to prove the following existence theorem.

Theorem (2.1.2) (Existence). For any integer n > 4, there exists a nilpotent

2-group G of order 2" acting on a compact Riemann surface X of genus g = 2"~4 + 1.

In the proof of Theorem 2.1.2 we need the following elementary but technical

lemma.

Lemma 2.1.1. Let G be a finite p-group and let {1} # N<G. Then there exists a

series of subgroups N = Nx D • • •  3 JV, = ¡1) each normal in G with [ N¡■: N¡ ,+, ] = p.

Proof. Since N is normal in G, it is a union of G-conjugacy classes, each of which

contains pm elements for some m. Partitioning N into its G-conjugacy classes we

have: |iV| = \N n Z(G)| + £*_,<*,., (Z(G) is the center of G), where the a, are the
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sizes of the distinct conjugacy classes of noncentral elements in N. Suppose a¡ G N is

not in Z(G); then C(a¡), the centralizer of a¡, is a proper subgroup of G, and so

a, = [G : C(ai)] is a power of p. Thusp divides each a, and therefore also \N n Z(G)|.

Hence TV n Z(G) is non trivial, and has order a power of p. We now prove the

assertion of the lemma by induction on the order of N. Assume that the lemma in

question is true for all subgroups N* of any p-group G* where \G*\ < \G\. Let Ns_x

be a subgroup of N n Z(G) of order p. Let p be the natural homomorphism p:

G -> G/Ns_x = G*. Now |G*| < |G|, so by the induction hypothesis applied to

N* = N/Ns_x, there exists a series TV* = /Vf 3 • • • d /V*_, = {1} with N* normal

in G* = G/Ns_x. Letting N¡ = p~l(N*) for i = l,...,s - 1 we obtain the desired

series for N, G. This enables us to prove that, for every n > 4, there exists a surface

A' of genus g = 2"~4 + 1, and a nilpotent 2-group (covered by ro) of automorphisms

of X.

Proof of Theorem 2.1.2. Let r0 = Y(S), and let G, be the unique (2,4, 8)-group

of order 16, i.e., the group generated by a and b satisfying the relators a2 = bs = 1,

aba = b3. Let Nx = ker©, where as before 0 is the smooth homomorphism 0:

ro -» G, with the smooth quotient group G,. We have shown that TV, is a surface

subgroup of ro with genus g = 2. Since x(S) = -1/8 is negative and S is a 2-local

signature, we can use Corollary 1.6.1 to deduce that ro contains normal subgroups

Nx and N2 with ro>7V1I>7V2 such that

(i) genus(/V,) = 2,

(ii) genus(/V2) > 2"~4 + 1,

(iii) ro//V2 is a finite 2-group.

Now let G be the finite 2-group ro/7V2, and <b the natural map <b: Y0 -* Y0/N2. Let

<b(Nx) = N = Nx/N2, thus N<\G. By Lemma 2.1.1, there is a 2-group Na with

^ D Na> Na<G and [#:#«] = 2""4. Let 7V3 = <p'\Na)- Then ^3 is normal in

ro = <f>^1(G) and TV^ => 7V3; thus 7V3 must also be a surface group. Now by the

Riemann-Hurwitz relation 7V3 has genus 2"~4 + 1, and by standard theory Y0/N3 is a

group of automorphisms of the compact Riemann surface H2/N3.

The observation that all nilpotent groups of maximum order turn out to be

2-groups suggests the problem (obviously closely related to the general nilpotent

problem in view of the localization techniques used in our attack) of determining for

each odd prime p, the "p-group" analogue of Hurwitz' bound. It turns out, as often

happens in questions of this nature, that p = 3 is exceptional and harder to deal

with, whereas all primes p > 5 can be dealt with at once.

The following results will be shown in a later paper, using similar techniques,

(i) If G is a 3-group, then \G\ < 9(g - 1). If g - 1 = 3", n > 4, then there is a

surface X of genus g with 9(g — 1) automorphisms. There is no automorphism group of

order 9 acting on genus 2, there is no automorphism group of order 27 acting on genus

4, and there is no automorphism group of order 81 acting on genus 10.

(ii) If G is a p-group for any prime p ^ 5, then

P 3
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Conversely, if

g-l=l^pn,       n>0,

then there is a surface of genus g with an automorphism group of order p" + l,

The bounds (i), (ii), correspond to specific Fuchsian groups, given by the signa-

tures (0; 3,3,9) for p = 3 and (0; p, p, p) for p > 5, which cover the two types of

automorphism groups. I have also made a study of the lower central series of each of

these groups, by computing the terms to the point where a torsion-free subgroup is

reached.

References

1. W. Burnside, Theory of groups of finite order. Note K, Dover, New York, 1955.

2. L. Greenberg, Finiteness theorems in Fuchsian and Kleinian groups (Proc. Instructional Conf.

organized by London Math. Soc.), Academic Press, London, New York and San Francisco, Calif., 1977.

3. K. W. Gruenberg, Residual properties of infinite soluable groups, Proc. London Math. Soc. (3) 7

(1957), 29-62.
4. W. J. Harvey, Cyclic groups of automorphisms of a compact Riemann surface. Quart. J. Math. Oxford

Ser. 2 17 (1966), 86-98.

5. W. J. Harvey, ed., Discrete groups and automorphic functions (Proc. Instructional Conf. organized by

London Math. Soc), Academic Press, London, New York and San Francisco, Calif., 1977.

6. A. H. M. Hoare, A. Karrass and D. Solitar, Subgroups of finite index of Fuchsian groups, Math. Z.

120(1971), 289-298.

7. _, Subgroups of infinite index in Fuchsian groups, Math. Z. 125 (1972), 59-69.

8. A. Hurwitz, Ueber algebraische Gebilde mit eindeutigen Transformationen in sich, Math. Ann. 41

(1892), 403-42.
9. J. Lehner, Discontinuous groups and automorphic functions, Math. Surveys, no. 8, Amer. Math. Soc,

Providence, R. L, 1964.

10. A. M. Macbeath, On a theorem of Hurwitz, Glasgow Math. J. 5 (1961), 90-96.

11. _, Residual nilpotency of Fuchsian groups, Illinois J. Math, (to appear).

12. _, Generators of the linear fractional groups, Sympos. on Number Theory (Houston), Amer.

Math. Soc, Providence, R. I., 1967, pp. 14-32.

13. F. Rhodes, On the fundamental group of a transformation group, Proc. London Math. Soc. (3) 16

(1966), 635-650.
14. D. Singerman, Subgroups of Fuchsian groups and finite permutation groups. Bull. London Math. Soc.

2(1970), 319-323.

15. M. Weinstein, ed., Between nilpotent and soluable. House, Passaic, N. J., 1982, p. 270.

16. A. Wiman, Ueber die hyperelliptischen Curven und diejenigen vom Geschlechte p = 3 welche

eindeutigen Transformationen in sich zulassen, Bihang Till. Kongl. Svenska Veienskaps-Akademiens

Hadlingar 21 (1895-6), 1-23.

Department of Mathematics, University of Pittsburgh, Pittsburgh, Pennsylvania 15260


