
transactions of the
american mathematical society
Volume 288. Number 1, March 1985

INVARIANT MEANS ON AN IDEAL

BY

MICHEL TALAGRAND

Abstract. Let G be a compact abelian group and Q an invariant ideal of I.X(G).

Let Mq be the set of invariant means v on LX(G) that are zero on Q, that is

p(Xa ) = 1 f°r Xa e Q We show that Mq is very large in the sense that a nonempty

Gs subset of Mq must contain a copy of /?N. Lei Eq be the set of extreme points of

Mq. We show that its closure is very small in the sense that it contains no nonempty

Gs of Mq. We also show that Eq is topologically very irregular in the sense that it

contains no nonempty Gs of its closure. The proofs are based on delicate construc-

tions which rely on combinatorial type properties of abelian groups.

Assume now that G is locally compact, noncompact, nondiscrete and countable at

infinity. Let M be the set of invariant means on LX(G) and Mr the set of

topologically invariant means. We show that M, is very small in M. More precisely,

each nonempty Gs subset of M contains a v such that v(f) = 1 for some/ £ C(G)

with 0 ^ / «; 1 and the support of / has a finite measure. Under continuum

hypothesis, we also show that there exists points in Mr which are extremal in M (but,

in general, Mt is not a face of M, that is, not all the extreme points of M, are

extremal in M).

1. Results. Let G be a locally compact group. A left invariant Haar measure of G is

denoted by dx. Whenever G is compact, we assume the Haar measure to be

normalised. The measure of a measurable set A is denoted by \A\. For/g L°° =

LX(G) and u G G, we consider the left translate/„ g Lx(G) given by fu(t) = f(ut).

A (left) invariant mean v on G is a positive linear functional on Lx with v(l) = I

and v(fu) = v(f) for / g Lx and u g G. We say that G is amenable when there

exists a left invariant mean on G. We say that G is amenable when there exists a left

invariant mean on G. We say that G is amenable as a discrete group when G,

provided with the discrete topology, is amenable, that is, there is a left invariant

mean on /°°(G).

We denote by M the set of invariant means on G. We say that an invariant mean v

is topologically invariant if, for /, <i> G Lx, <f> > 0 and f<p = 1, we have v(<p * f) =

v(f), where <¡>*f(x) = ff(s~1x)<b(s)ds. We denote by M, the set of topologically

invariant means on G. It is known that Mt # 0 whenever G is amenable. (For a

proof, as well as for the proof of all these basic facts, see [7].)

When G is compact, M, = {dx}. When G is not compact, and amenable as

discrete, various known results (like [10, Theorem 6D]) show that Mt is very small in
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M. Our first result is a further step in this direction. We provide M with the topology

induced by o(Lx*, Lx).

Theorem 1. Assume that G is metrizable, countable at infinity, noncompact,

nondiscrete, and amenable as discrete. Then, whenever H is a nonempty Gs of M, there

exist v in  M and a continuous function f on  G,  with 0 </< 1,  v(f) = 1  and

\{x;f(x)> 0}\ < +00.

It should be noted that for A c G, \A\ < oo; then v(A) = 0 for v g M,. So the

above theorem asserts that H contains a v which fails to belong to Mt in a

spectacular way.

When G is compact, the Haar measure is an extreme point of M. So when G is not

compact, a natural question is to investigate the position of M, inside M. In a

previous work, we showed that for G — R, there exist extreme points of Mt that are

not extreme in M. Here we shall show that, surprisingly enough, some extreme

points of M, can be extreme in M (or, equivalently, some extreme points of M can

belong to Mt).

Theorem 2. Assume continuum hypothesis (CH): If G is countable at infinity,

metrizable and amenable, there exist extreme points of M which are topologically

invariant. In fact, any Gs set Y of Mt that contains an extreme point of Mt contains an

extreme point of M.

We now turn to a different topic. Given a left invariant ideal Q of Lx, we say that

the invariant mean v is zero on Q if v(A) = 0 whenever \A g Q. We shall study the

set Mq of invariant means which are zero on Q. When Q is large (say maximal), Mq

is much smaller than M. There are three fields of study:

Case 1. Study of MQ for G compact.

Case 2. Study of MQ for G noncompact.

Case 3. Study of M, n MQ for G noncompact.

We shall limit ourselves to the first case. The same results hold in the other two

cases, and the ideas of the proofs carry over. It is of some interest to state the

problem in another language. Using the Stone representation theory, we know that

Lx = C(S), where 5 is the spectrum of Lx. The left action of G on Lx induces an

action of G on S. An invariant ideal Q of Lx corresponds to an invariant closed set

Q of 5", and MQ identifies with the set of probability measures on Q that are

invariant under the action of G. Hence the nature of MQ is strongly related to the

nature of the action of G on Q. In a previous work [11], we have shown that when G

is nondiscrete and amenable as discrete, MQ contains a copy of ßN. The results we

shall prove here are much more precise; they rely on some precise constructions of

measurable sets; these constructions use the structure of G, and we have been able to

perform them only when G is abelian. We do not have enough knowledge of

nonabelian groups to be able to decide with reasonable effort whether the ideas can

be adapted to the general amenable case and whether the results still hold in that

case.
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Theorem 3. Assume that G is compact abelian metrizable nondiscrete. Then for any

proper ideal Q of Lx, every nonempty Gs of Mq contains a norm discrete copy of ßN.

It follows in particular that MQ has no exposed point. This answers a question of

E. Granirer [6].

We denote by EQ the set of extreme points of MQ.

Theorem 4. Assume that G and Q are as in Theorem 3. Then Eq contains no

nonempty Gs of Mq.

Theorem 5. Under the same hypothesis, EQ contains no nonempty Gs of Eq (and

hence is very irregular topologically).

We assume in all these results that G is metrizable. This restriction is inessential

and can be lifted by standard techniques.

The author is indebted to Professor E. Granirer for inviting him to the University

of British Columbia and arousing his interest in this field.

2. Proof of Theorem 1. Given a sequence u = (ux,...,un) of G, x g G and

/ g L°°, we set

m(u,x)(f) = n'1 £/(«,■*).
i^n

Given x, this quantity is not well defined. However, changing / on a negligible set

changes m(u, •)(/) on a negligible set, so the conditions we shall write depend only

on the class off.

Given two sequences u = («,,.. .,«„), v = (vx,... ,vm) of G, and x g G, we write

m(u- v,f)(x) = (nm)~       £     f(uiuJx).

Z< n ,j^m

We say that a set IF c Lx* is elementary if it is of the type

W = {m g Lx*;Vi < n,m(fl) g [a,.,è,]},

where/, g Lx, a¡, b¡ g R. The following lemma is standard.

Lemma 1. Let W be as above. Assume that G is amenable as discrete and that, for

each finite sequence u of G, there is a finite sequence v such that

\{x g G,;Vi < n,m(u ■ v, x)(f) g [a,, bi]}\> 0.

Then M n W * 0.

We now prove Theorem 1.

First step. Let

N= {p,€EM;3geC(G);0<g<l, \{x; g(x) > 0}\< oo;p(g) = l}.

For p g M and h g Lx, we notice that ¡i(h) = 0 whenever h has a compact

support. Indeed, for each n, there exist u,,... ,un G G such that ||EI<fl hu || = ||/z||, so

n\n(h)\ s$ ||A|| and fi(h) = 0. So, for p g N, for each compact set K of G, and for

each r/ > 0, there is g' g C(G), 0 < g' s£ 1, \{x; g'(x) > 0}\ < r/, g' = 0 on K, and
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H(g') = 1. Indeed, if 0 < g < 1, g g C(G), p(g) = 1 and \{x; g(x) > 0}| < oo, it

suffices to take g' = hg, where 0 < h < 1, h g C(G) and h = 0 on a large enough

compact set.

Let us show that if (p„) is a sequence in N, its closure is contained in N. Let Kn be

a sequence of compact sets, with Kn c Kn+X and G = UAT„. There exists a sequence

(g„) of C(G), with 0 < g„ < 1, g„ = 0 on K„, p„(g„) = 1 and \{x; g„(x) > 0}\ <

2"". Let g = sup„g„. Then g g C(G), 0 < g < 1 and |{jc; g(x) > 0}| < oo. Since,

for each n, p„(g) = 1, we have p(g) = 1 for each cluster point p of (p„), which

proves the claim.

Second step. We show that N is dense in M. Since N is convex, it is enough to

show that, given/in Lx and a in R,

IrneJIi, w(/)>a=>3pGA, ¡i(f) > a.

We can assume that 0 < / < 1. For rV integer, let/* g L°° given by/A(x) = f(x) for

x g ATA., and/A(x) = -1 for* <£ AT*. We have w(/*) = w(/) > a.

Given u = (ux,.. .,un) G G", let

C,k,n
xG Gízz"1 £/*(«z*) > a   .

( = 1

Since m(n~1I."=lfuk) > a, we have |C,(A"| > 0. It follows from [10, Lemma 6C] that

there exist open sets ß*-" of G with |Í2A"| < 2" such that

bk-"-"(t, u) = C*-" n fl z,ß*'"> 0,    Vz7 g N,Vz = (r,,...,^) g Gq.

It is routine to check that the map (t, u) -» bkn,q(t, u) is lower semicontinuous. In

particular, its infimum on a compact set is > 0. Since

Inf{|Cuu n ro1-1!; t,u^ Kx) > 0,

there is a compact set L[ c ßu such that Vr, m g Kx, |C„u n rL,| > 0. Let sx be

large enough that Ll c Ks _, and r2 large enough that K2K2KS c ATr. In the same

manner, there exists a compact L2 c W2-2 such that

Vi*,,^) g a:22,Vh *f, c;-2 n txL2 n z-2L2| > 0.

1 on K2KS¡. This shows that C^-2 n ÄT^ =For z; G AT2, we have/(,r2(x)

for w g A"2. So we can assume L2C\ Ks „, = 0 by replacing L2 by L2 \ KSi.

In this manner, we construct compact sets Lp, integers s  and rp with Lpc Ks _x,

Ln c ßVandL„+1 n AT, _, = 0,and

vr=(r1,...,ij a:;,vm *;. Q"' n fl ttLp
¡ap

> 0.

We have |Z.^| < 2~r» < 2'p so there is g g Cíe) with g = 1 on L = UpLp and

|{ g > 0} | < oo. Moreover, asf^f for each integerp,

x g G; p"1 £/„(*) ** a; V/ ^/>>* e r/L > 0,   Vi*,,...,!*., *,,...,*. G,
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sO also

> 0.e G] p~l L /«,(*) > a, Vz < p, u,x G L
i<p

So Lemma 1 shows that there is v g M with v(f) > a and v(L) = 1, so v(g) = 1.

77zz><7 Step. Let zn g 77 and let (F„) be a decreasing sequence of closed neighbour-

hoods of m with C\V„ c 77. Since N is dense it meets each V„, and the first step shows

that N n (¡„Vn =* 0. The proof is complete.

3. Proof of Theorem 2. Let B he the unit ball of Lx, provided with the weak

»-topology. It is a compact metrizable convex set. A Borel probability X on B has a

barycenter bx in B, given by bx(g) = fBf(g) dX(f) for g g Lx(G). We consider a

p g L°°* as a function on B and we set, accordingly,

essinfA/x = Sup{Inf{p(/);/G^l};^ Borel, X(A) = 1}.

Definition 1. We say that p is submedial if for each probability À on B we have

essinfAp < p(¿>a)-

Theorem 6. Assume that p is submedial and an extreme point of Mr Then p is an

extreme point of M.

Proof. According to [4] it is enough to show that, for/ g Lx, 0 < / < 1, we have

Inf,fi(ff) < n2(f). Let K he a compact set G of positive measure and rj the

normalisation of the restriction of the Haar measure to K. Fix v g G and let <f>:

AT2 -> B be given by <p(t, u) = fju. For g g Ll(G), the map

(t,u) ^ j f„,(x)fu(x)g(x) dx

is continuous. It follows that <j> is continuous. The image measure X of tj X 17 by <}> is

supported by <j>( K X AT). Since pis submedial, there is?, u g K with p (/„,/„) < p(^).

An easy computation shows that ¿> = /Vz,,, where

A(w)=|A:r1//('w)i//.

So

Infp(//) = lnf fi(flvfu) « Infp(/z/z„).
f z,t>,« u

Since p is extremal in Mt, the Proposition 4A of [10] shows that Inf,,p(/i/z,,) < p2(/z).

Since fi is topologically invariant, p(A) = p(/), which finishes the proof.

Theorem 7 (CH). 7/ G z's countable at infinity, amenable, and metrizable, each Gs

set Y of Mt which contains an extreme point of M, contains an extreme point which is

submedial.

Proof. Let m be an extreme point of Mt contained in H. Let Vn be a sequence of

neighbourhoods of m with f)Vn c 77. Since Mt is a Choquet simplex, it follows from

[1] that there is/„ g Lx, ||/„|| < 1 with m(fn) = Sup{p(/„); p g M,) and Vp g M„

M/B) = "»(/„) => p G F,,. Let /= E2"/„. Then Vp g M„ p(/) = m</) ^ p g 7/

so we can assume that H = {p g A/r; p(/) = m(f)}.



262 MICHEL TALAGRAND

Since G is amenable, there is a sequence (Vn) of compact sets such that if, for

x g G, we define mn(x) g Lx* by

V/eL",   «,.(*)(/)-|KJ~7 /(tt)ift,

then each cluster point of a sequence w„(x„) belongs to M, [5]. If ß denotes the first

uncountable ordinal, (CH) means that it has the power of R. So there is an

enumeration (Xa, Aa)a<a of the couples (X, A), where À is a probability on B, and

A is a Borel set with X(A) = 1.

Recall that a subset F of a convex set L is called a face whenever F is convex, and

Vjc, y G L,    (x + _v)/2 G F=> x,_y G F.

By induction over a, we construct a decreasing sequence (Ha)a<a of closed faces of

Af, such that for a > 1 the following conditions hold:

(a) 77a is a Gs.

(b) 3/a g Aa, Vp g 77a, p(/J < u(bK).

The induction starts with 770 = 77. Assume now that the construction has been

done for each ß < a. Let Fa = f)a<aHß. It is a closed face that is a Gs. Let

a = lnfliSFp(bxJ and F'a = {p. g Fa; p(z3A ) = a). This is closed face of Mt, that

is a GÄ. So we can write F'a = Ç\V„, where Vn + X c Fn and each Vn is of the type

{p g Af,; p(hn) > an}. Let p g F,- Since p is topologically invariant, we have for

each p that p(hn) = p(mp(-)(hn)) > «„, so there is tp g G with mp(tp)(hn) > a„.

Since each cluster point of the sequence mp(tp) is in A/,, forp large enough, we have

™p(t)(h„) > a„ => mp(t)(hq) > aq   Vq ^ n.

So there is a sequence mn = mp (tn) such that mn(h ) > a for q < zz. Each cluster

point p. of (mn) is in M, and satisfies p(h ) > a for each q, so is in F'a. In particular,

a = hmmn(bx).

Since m„ e L'(6) and Xa(Aa) = 1, we have m„(bK) = jAm„(f) dXa(f), so

Fatou's lemma shows that /^ lim inf„/?!,,(/) dXa(f) < a. In particular, there is

/« e Aa with hminf„ mn(fa) < a. This shows that 6 = Inf{p(/J; p g F^} < a.

We now define Ha= {p ^ F'a; p(fa) = b). This finishes the construction.

Now F = ria<ß 77a is a closed face of A/,, that is contained in 77, and condition (b)

shows that each p g F is submedial. Since a closed face contains an extreme point

[3], the proof is complete.

The definition and name of submedial means are inspired by Mokobodzki's

medial limits [8]. A natural definition is

Definition 2. We say that p g Af is medial if, for each probability X on B, p is À

measurable, and if Jp(f) dX(f) = p(JfdX(f)).
The existence of invariant means which are medial follows easily from the

existence (under (CH)) of a medial limit. However, it is worthwhile to note that

medial means are never close to being extremal:

Proposition 1. Assume that Z or R is a quotient of G. If p G A/f is X-measurable for

each probability X on B, then p is not in the closure of the extreme points of Mt.
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Proof. Let 6 be a homomorphism of G onto 77, with 77 = R or Z. Write 77 = U7„,

where 7„ is a half-open interval with |/„| > zz. For a subset A of N, let

<t,(A)= n «-'(/„)•
ne ,4

Let p be in the closure of the extreme points of A/,. Then the Theorem 2G of [10]

implies that p(<p(A)) G {0,1} for each A. Let X he the Haar measure of {0,1}^.

Since p ° (¡> is a zero-one additive map on P(N) with p ° <b(N) = 1 and p ° <p({ n}) = 0

for each zz, we known that such a map is not A-measurable so p is not <i>(A)-measur-

able.

4. Proof of Theorem 3. We recall an easy fact [2, paragraph 2, exercise 11]:

Lemma 2. Given n real numbers xx,...,x„ in [0,1], ûh'î/ e g N, i/zere ex/sis a g N

st/c/z f/iaf a < e" and that, for each i < n, there is /c, g Z with

(i) k - v*l < lAfl-

From now on we consider only abelian groups and denote their operation

additively.

The proof of Theorem 3 will rely on the possibility of constructing sets of small

measure, but that are big in other respects. The exact property needed is unfor-

tunately complicated, but we shall single it out in order to avoid frequent repetition

of its lengthy definition.

Definition 3. We say that the compact abelian group G satisfies property (*) if,

given e > 0 and p g TV, there exists q g N depending only on e and p, such that,

given any number xx,...,x„ of elements of G, there exists a set A c G with \A\ < e,

such that, given yx,...,y in G, the group G can be covered by at most q translates of

thesetÇ)^pj^n(xJ+yi + A).

We know no way to comment clearly on a property involving six quantifiers, but

property (*) is much simpler than a first look might indicate. To understand it, the

reader should analyze in detail the proof of Lemma 3, and make a picture of the sets

involved. He will realise that the idea is elementary.

Our first aim is to show that compact infinite abelian groups satisfy property (*).

We first study some special cases.

Lemma 3. T = R/Z satisfies (*).

Proof. If we did not have to take xx,... ,xn into account, it would be enough to

produce A such that, for each>»,,... ,y , n/5;/,(j, + A) contains an interval of length

greater than some a > 0, and take q > 1/a. The idea is that Lemma 2 shows that

any xx,. ..,xn g [0,1] are approximately of the type k¡/a for some a g N. So if one

constructs a suitable subset of [0, a] and reproduces it by periodicity, we do not have

to take xx,...,xn into account. However, some care is needed to control the

perturbation created by the fact that x¡ not is exactly equal to kja.
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Let h G N with h 3= 2p/e. We shall show that one can take q = hp. Let xx,... ,xn

g [0,1], let e = 2hp, and let a g N be as in Lemma 2. For 1 < z < p, we set

B,=      IJ     I/ah''1 +[0,2/aÄ'];
o«z<// '

4 =    U   A:/* + 5,.;       ^ = U A,.
Q*ik<a ;'<p

We note that \B\ < 2/Aa and |^,| < 2//z, so |/1| < e. Also, \A\ = \A\. Now

let yx,...,yp be elements of T. By induction over r < p, one checks easily that

fli<r(.y; + A¡) contains a set of the type U0<jt<aA:/a + 7, where 7 is an interval of

length 2/ahr. Now (1) and the choice of e, a show that f)i<p /<„(*/ + .V, + ^)

contains a set of the type U0ssA<a^/a + 7, where 7 is of length l/ahp. It follows

that T can be covered by h p translates of this set, and this finishes the proof.

Lemma 4. Assume that G is compact abelian, nondiscrete, totally disconnected, and

that the elements of G are not of uniformly bounded order. Then G satisfies (*).

Proof. The hypothesis implies that G has quotients that are cyclic groups of

arbitrarily high order. The proof will be a "discrete version" of the proof of Lemma

3. Let b G N with 1/b < e/4, and q = bp. Let x,,... ,xn G G. There is a quotient

77 = Z/cZ of G, where c ^ 2b2p/e. Let Zj g [0, c - 1] be the image of xr Accord-

ing to Lemma 2, there is 0 < a < bp such that for/ < zz there exists k¡ with

(2) \zj/c - kj/a\ < l/aèp,    i.e. \zf - k]c/a\ < c/abp.

For z < p, define fi, c 77 = [0, c - 1] by

x G Bt. » 3A: G N,        0 < Â: < a/V-1,

kc/ab^1 < jc < kc/ab*~l + 2c/ab'.

One checks easily that |77,| < e/p. Let 5 = Uí<p B¡ and let v>... ,y'p be elements of

77. By induction over r ^ p, one checks that 7)r = f]¡^r(B¡ + y¡) contains a set of the

type

U    {x: kc/a + ar *g x < ztc/a + <*,.+ 2c/a¿/}

0 < A < a

for some ar g 77. Using this result for r = p, we see from (2) that

D     (zj + yf + B)
/'</>,j^n

contains a set of the type

H    {x; kc/a + a < x < A:c/a -I- a + c/a¿/'}
0 < k < a

for some a g 77, so 77 can be covered by q translates of this set.

It suffices to take for A the inverse image of B in G.

Lemma 5. Let G be abelian, compact, nondiscrete, totally disconnected, and such that

each element of G is of order < b for some b. Then G satisfies (*).
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Proof. We show that any q > (b/e)p will work. Let xx,.. .,x„in G. The subgroup

F they generate is finite. Each finite quotient of G is a product of cyclic groups of

order < b. So there is a finite quotient of G/F that is of the type Ylt< Gt, where

each G, has a cardinal between e/p and be/p. Let p, be the canonical morphism

from G onto G, and let ei be the unit of G,. One can take A = Vi¡^pA¡, where

A,=p-l({e,}).

Theorem 8. A compact infinite abelian group G has property (*).

Proof. It is obvious that G has property (*) whenever one of its quotients has it.

But either R/Z is a quotient of G, or G satisfies the hypothesis of either Lemma 4 or

Lemma 5.

The following is the main tool for the proof of Theorem 3.

Proposition 2. Let G be abelian compact nondiscrete. Let Q be an invariant ideal,

f G L°°, and

a = sup{p(/):pG MQ).

Let X a G with \X\ < 1/4. Let e > 0 and a G N. Then there exists B c G\X with

\B\ < e, such that for each sequence w = (wx,...,wa) of G, there exists two sequences

u = (ux,... ,uh), v = (vx,. ..,vc), there exists a measurable set F with G\F G Q, and

there exists tj > 0 such that the set

{x; m(u,x)(xFf) > a - r¡}

can be covered by finitely many translates of the set

{x g G; m(x ■ v, x)(xFf) > a - e, m(w ■ v, x)(xB) > 3/4}.

Proof. Let V = G\X. Since Fis open with \V\ > 3/4, there exists t = (i,,.. .,td)

such that

(3) m(t,x)(V)>3/4

for each x in G. We know that G satisfies property (*). Let q = q(e/ad, ad). Let

r/ = e/2q. The definition of a shows that there is a measurable set F with G \ F G Q,

and z = (z,,... ,z„) such that

(4) m(z, x)(xFf) < a + r/    a.e.

Now property (*) shows that there is A c G with \A\ < e such that, for each

w = (wx,...,wu) g G", there exists yx,...,yq g G such that G = (Jk<q(-yk + C),

where

C = Ç\(-Zj-t,-w, + A)

(where the intersection is taken for/ < n, i < d, I < a). We set 7? = A \ X. Let us

denote by v a sequence consisting of the points z + t¡ + w, for j ^ n, i ^ d, I ^ a,

and let U he a sequence consisting of the points yk + z¡ + t¡ + w¡ for k < q, j < n,

i < î/, / < a. Given x g G, there is k < z/ such that jc' = x + yk g C. It follows that

m(v, x')(A) = 1. Since (3) implies that m(v, x')(X) < 1/4, we have m(v, x')(B) >

3/4. Assume now that m(u, x)(xFf) > « - r/- We have

a - r, ^ zn(M,x)(x/r/) = q~l L wi(i>,x +^)(Xf/)-
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Since, for each s, (4) implies that m(v, x + ys)(xFf) ^ a + t], this forces

m(v, x')(xFf) > a — 2öt) > a — e. The proposition is proved.

We note that in the proof it is essential to be able to choose q independent of n,

since zz depends on r\, and hence of q. This is what motivated the introduction of

property (*).

Proof of Theorem 3. First step. Let Y be a Gs of MQ, and m g Y. Let (F,) be a

sequence of neighbourhoods of m with 77 = Ç)Vn c Y. Denote by Eq the set of

extreme points of Mq. From Krern-Mil'man's theorem, there is, for each n, a

kn g N, and pn _,,... ,pnk:< e Eq with E/asA/i a„ ,p„, g F„ for some «„., > 0,

£/<* a/i./ = 1- Each pnj has a basis of neighbourhoods consisting of slices of MQ [3]

so there exist hni g Lx and /3„, g R such that /v,(/z„,,) > ßn,„ and if *>,(/,„,,) > A,.,

for i < fc„, z>; g Mq, we get E,<A a,,^, g V„. We denote by (gJ) (resp. (ßs)) an

enumeration of the hni (resp. /3„,) as a single sequence. Let as = sup{p(gs):

PG     Mq}.

Second step. We construct disjoint open sets (Ain) of G for zz g N and i «S 22",

with \A¡n\ < 2~2'~"~3, and such that whenever w = (wx,...,wn) G G" and s < zz,

there exists two sequences u, v of points of G, r/ > 0, and F with G \ F g zO, such

that the set

(5) {x;m(u,x)(xFgs)> a2 --q)

can be covered by finitely many translates of the set

(6) [x g G; m(w ■ v, x)(xFgs) > ots - n~x;m(w ■ v, x)(xA.J > 3/4}.

The possibility of this construction follows from Proposition 2.

Third step. For a g {0, 1}n, write as o\n the sequence of the first zzth terms of o.

We identify [1,22"] with {0,1 }D», where D„ = {0,1}". Fora g {0,1 }n, let Ua = \Jkn,

where the union is taken forzz g N and all the k g {0,1}D" with k(a\n) = 1.

Now let P, R be two finite disjoint sets of {0,1 }N. There exists zz0 such that,

whenever a, p g P u R are distinct, we have a|zz0 =£ p|zz0. So, for zz > zz0, there

exists kn g {0,1}D" which has value 1 on the elements a|zz for a g P, and value zero

on the elements p|zz for p G R. Let w G G" and consider the sets K, L given by (5)

and (6), where i = kn. By construction we can write K c U/<17 y¡ + L. Let F' c F

with G\ F' g G\ If i; = (z;,,.. .,u0), let F" =Cl(y,- w, - vf + F') (where the inter-

section is taken over / < q, i < n, j < a). Since G\F" g g, the definition of as

shows that K n F" has positive measure. It follows that L n (F" - ^7) has positive

measure for some / < o. We note that for x g F" - V7, we have w, + i>. + x G F for

all i < zz,/ < a, so m(w ■ v, x)(gs) = m(w ■ v, x)(xFgs)- In particular,

{x G G; m(w ■ v, x)(gs) > as - zz"1; w(w • v, x)(F') = 1;

Va g F,m(w - iz, x)(í7a) ^ 3/4; Vp g R,m(w ■ v,x)(Up) < 1/4}

has positive measure. So Lemma 1 shows that there is p g A7 with p(gs) > a\

p(F') = 1, p(Ua) ^ 3/4 for a g F, and p(Up) < 1/4 for p g R. By compacity,

given any set P c {0,1}N and í g N, there is p g A/g with p(t/0) > 3/4 for a G P,

p(Ua) < 1/4 for a £ F and p(gs) = ots. The first step and compacity again show
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that there is p g 77 with p(Ua) > 3/4 for a g F, and p(Ua) < 1/4 for o £ P. The

map p -» p(Ua) is continuous. Let

<f,a(p) = Sup(lnf(p(/7a),3/4),l/4)

and $: A/0 -» [1/4,3/4]<01) be given by <t>(p) = (<ba(p)). This map is continuous

and <p(H) ^ {1/4,3/4}(0,1> . As this later set contains a copy of ßN that can be

lifted in 77, the result follows.

Remark. We have, in fact, constructed 2cardR disjoint sets of MQ that are

decreasing intersections of slices and that all meet 77.

5. Proof of Theorem 4. It is known that M is very large (for example see [9]). The

difficulty in proving Theorem 3 was that Mq can be much smaller than A7. The same

difficulty will arise in proving Theorem 4. However, there seems to be another

difficulty since we have not been able to find a simple proof of the much weaker fact

that the set of extreme points of A7 is not dense in M.

The method of proof will use the ideas of the previous paragraph, together with

some new methods. The key will be a refinement of property (*) that we single out

despite its complexity.

Definition 4. We say that the compact abelian group G satisfies property (**) if,

given e > 0, p g N, Fa neighbourhood of zero in G, and for each r < p a function

<br from Gr to G, there exists q g N, depending only on the previous data, such that,

given any number xv... ,xn of elements of G, there is a set A c G, a neighbourhood

IF of zero, and functions \pr: Gr —> G with the following properties:

(7) For yx,...,y   in G, G can be covered by at most q translates of the set

^j<n,i<p(Xj+yi + A).

(8) For u G Gr, write u = («,,... ,ur). Then \D\ < e, where

D = \JW +■(«,- Uj) + ß*r(u) + A,

the union being taken for r < p, u g G', z, j < r, and ß g {-1,1}.

(9) Vr<p,V«GGr,    Vv(m) + IFc <¡>r(u) + V.

Condition (9) means that \pr is close to <br. Given r, i, j < p, the union of

W + ui — uf + A for u g Gr is all G. The use of \¡/r is to control the size of D.

Condition (8) is fairly strong, and needs a very accurate choice of \pr to hold. It is

hence surprising that the following should be true.

Theorem 9. A compact infinite abelian group G has property (**).

The plan of the proof is similar to that of Theorem 8: using the quotient, one

reduces to the three cases considered in Lemmas 3-5. As the proof is fairly long, we

shall treat only the case G = R/Z. The idea can be adapted to the other cases.

First step. Let AeN with h > 6p/e. Let

1= {(i,j,r,ß);i,j^r^p,ß^ {-1,1}}.

We enumerate 7 = (kdi^h- According to Lemma 2, there is a g N such that for

/' < zz there is k,. g N with

(10) \xj-kj/a\^(10ahpb)'1.
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We show that q = hph works. We can assume that V = [-a1, a~l], since a can be

taken arbitrarily large by decreasing e if necessary.

Second step. For / < pb let c(l) = (ah')1. By induction over / < pb we construct

maps <¡>'r from Gr to G, such that the following condition holds:

(11) \/r*ip,Vu£Gr,   ^(M)G^-1(M)+[-c(/),c(/)].

(12) If m = I - b[l/b] and if £m = (i, j, s, ß), for tz g Gs the number u, - u} +

ß<b's(u) is of the type kc(l) for some k g Z.

The induction step to / + 1 goes as follows: If m = I + 1 — b[(l + l)/b] and

em = ('> 7> s> ß)i f°r r ^ s just let 4>l+l = <j>', while for r = s set

<t>l;\u) = ßc(i + i)[c(i + îy'iu, - uj + ßu(u))] - ß(u, - uj).

This completes the induction. We set \pr = <brph and W = [-c(pb), c(pb)]. Condition

(9) follows from (11). For t < p, let

AT=   (J kc((T-l)b)+[-c(rb),c(rb)].
AeZ

Each (z, /, r, ß) G 7 is of the type ¿m for some m ^ b. Fix t < p, and let / = w + t¿.

It follows from (11) and (12) that

77=   U   {W+Ui-Uj-r ß^r(u))c   IJ kc(l)+[-3c(l+ l),3c(/+ 1)].
»6C AeZ

So \AT + H\ < 6/h; if A = \JT^pAT, condition (8) follows. The proof that condition

(7) holds is just as in Lemma 3.    Q.E.D.

The proof of the following is identical to that of Proposition 2, using property (**)

instead of property (*).

Proposition 3. Let G be abelian compact nondiscrete. Let Q be an invariant ideal of

Lx,fe Lx,and

a = Sup{p(/);p g Mq).

Let X a G with \X\ < 1/10. Let e > 0 and n g N. Let V be a neighbourhood of the

identity, and for r < n let <pr be a map from G'to G. Then there exist a set B c G\X,

a neighbourhood W of the identity, and for r < n maps \prfrom Gr to G, such that the

following hold:

(13) For each sequence w = (wx,...,wn) of G, there exist two sequences u =

(ux,...,uh), v = (vx,...,vc), there exists a measurable set F, with G\F^ Q, and

there exists r/ > 0 such that the set

{x G G; m(u,x)(xFf) ^ a ~ v}

can be covered by finitely many translates of the set

(14)        {x g G; m(w ■ v, x)(xFf) > a - e; m(w ■ v, x)(Xb) > 9/10}.

Vz- < n, Vzv G Gr,    ^r(zz) + IF c <br(u) + V.

(15) |F| < e, where

E = \JB + u,. - Uj + ß4>r(u) + W,

the union being taken over all r < n, i, j < r, u G Gr, ß g {-1,1}.
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Proof of Theorem 4. First step. Let Y be a Gs subset of MQ and me Y r\ EQ.

Let IF„ be a sequence of convex neighbourhoods of m, with DIFn c Y. Each IFn

contains an extreme point, so it also contains a nonempty set of type {v g

Me; '(&,) > ß„), forg„ 6 L», A, 6 R- Leta„ = suV{v(gn); v e MQ).

Second step. We now construct two sequences (An), (Bn) of disjoint open sets of

G, a sequence (F") of neighbourhoods of the identity and for r < n maps <}>" from

Gr to G, such that the following properties are satisfied, where (k(n)) is a fixed

sequence valued at any given integer infinitely many times:

(16) Vr<z!,VizeG',   4>" + l(u) + V" + 1 cz ̂ (u) + V,

and V" is of diameter < 2~".

(17) Let

D„ = {jV" + ui-uJ + ßt?"r(u)+An,

*,-UP"+ «,-«/ +/»#(«)+•*,,.
where the union is taken over all choices of r < n, i, j < r, i #/, jSe {-1,1},

u g G'. Then |2>J < 2'7-B, |£J < 2"7"", Bm n Dn = 0 for m > zz, ¿m n F„ = 0

for m > n.

(18) For each zz, and each w g G", there is a measurable set F with G\ F g g,

T) > 0 and two sequences «, z; of G such that when F is either ^4,, or Bn, the set

(x g G; w(u, x)(xFg*{n)) > afc(B) - r,}

can be covered by finitely many translates of the set

[x g G; zn(w • v, x)(xFgk(n)) > o^j-n-1; m(w ■ v,x)(xE) > V1"}-

The first step is similar to the general step, so we assume the construction has been

done up to n. Let Xx = U/<n E¡. Then \XX\ < 1/10, so Proposition 3 shows that there

is a measurable set An+X c G\XX, a neighbourhood IF of the unit, and for r ^ zz

maps \pr from Gr to G, such that the following hold:

(19) For each sequence w = (wx,... ,wn) of G, there exist two sequences u, v of G,

a measurable set F with G \ F g g, and r; > 0 such that the set

[x g G; m(u, x)(xFgk(n + X)) > otk(n + X) - ij}

can be covered by finitely many translates of the set

{xG G;m(w- v,x)(xFgk(n + X)) > ak(n + X)- n~l; m(w ■ v, x)(xAk(i}+¡)) 3* 9/10).

(20) Vz- <zi,Vize Gr, ^,(u) + IF c #'(«) + Vn + l.

(2Y)\D\ < 2'1-", where

ö - lM„+i + «, - «7 + W,(«) + ̂

the union being taken over all r < zz, z, / < z-, w g Gr, ß g {-1,1}.

For m g Gn+1 we define ^b+1(ii) as the identity of G. Let X2 = 7) U U/0l />,.

Then |^f2| < 1/10. Using Proposition 2 again, we find a measurable set 7f„ + 1 c

G\X2, a neighbourhood K" + 1 of the unit, and, for r < zz + 1, maps <i>" + 1 form Gr
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to G such that <¡>" + l(u) + V" + l c ¡pr(u) + W for r < n, u g G, such that |F„ + 1| <

2~7~", and that (18) holds for E = Bn+l. This completes the construction. We set

<f>,.(u) = limn <t>';(u) for r G N, u G Gr, and ,4 = \JA„, B = \JB„.

Third step. Using a method similar to that of the proof of Theorem 4, one sees that

there exists Pi, p2 G f)„W„ with px(A) > 9/10, p2(B) > 9/10. Let p = (px + p2)/2.

Thenp g C\nWn n Y. Let

IF= (0G MQ;0(A) > \/4;9(B) > 1/4}.

We show that W C\ EQ= 0 (so that p £ EQ). Suppose, if possible, that IF n EQ #

0. Then there is g g L00 and r/ with 17 < a = sup{ v(g); v g A/e} and

(22) Vz-gA^,    r(g) > T) => rG IF.

The definition of a and Lemma 2, show that there is a measurable set F, with

G\FX e Q, and a sequence « of G, such that for each sequence v of G

m(u ■ v, x)(Fx) = 1 => m(u ■ v, x)(g) < a +(a — i})/7.

We can assume that u has at least 10 elements. Again according to Lemma 2, there is

a measurable set F2 with G\F2 e Q, and

ra(w-z;,x)(F2) = l,m(M-z;,x)(g)>r/

=> m(u ■ v, x)(A) > 1/4, m(u ■ v, x)(B) > 1/4.

By w> denote a sequence with w = u ■ v. Let v G M^, with zj(g) = a. Then we have

v(m(w, -)(g)) = Kg) = a. Since

?({*; ».(w, x)(F,) = 1}) = 1,

we have

v({x; m(w, x)(g) < a +(a — r/)7}) = 1.

So

v({x;m(w,x)(g)>r1})> 7/8.

Since v({x; m(w, x)(F2) = 1}) = 1, we get v(Cx) > 7/8, where

(23) Cx = {x; m(w,x)(A) > 1/4; m(w,x)(B) > 1/4}.

Let n be the number of elements of w. Let A' = U(5¡„ A¡ and B' = U,^,, 5,-. We have

|/F|, |7Ï'| < 2"7 from (17). We have v(m(w, -)(A'))= v(A') < |^|, so

(24) p({x;m(w,x)(A')^ 1/8}) *i2-4,

and a similar inequality for ZF. Let A" = A \ A', B" = B\ B', and let

C2= {jcg G;m(w,x)(A") > 1/8; m(w, x)(7i") > 1/8}.

It follows from (23) and (24) that v(C2) > 3/4. In particular, there is x with x g C2,

x + <p„(w) g C2 so we must have

m(w, x)(A") > 1/4;        m(w, x + <¡>n(w))(B") > 1/4.

Since n > 10, there are at least two distinct indices i, j < zz with x + w,, x + wy g

A". Let «j, zz2 with x + w, G A„, x + vi>- g /4n . We can assume zz1 < zz2. There are

also distinct indices k, I < zz with

* + WA + 4>„(W) ^ ß„,< * + W, + <|)„(w) G £
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where n3 < nA. Assume, for example, nx < n3 (the case nx > n3 is similar). Then

either i ^= k or i ^ I, say i i= k for definiteness. So we have

x + w,■ e An¡,        x + wk + <i>„(w) G Bn>,

so

B,„^{Ani + wk-w, + 4,„(w))* 0.

Note that nx > n. Since (p„(w) g <p'^(w) + V"' this contradicts the fact that Bll} n

Dn = 0, and finishes the proof.

6. Proof of Theorem 5. This proof relies on

Proposition 4. Let G be a compact, abelian, nondiscrete group. Then there exists a

sequence (An) of sets of G with \An\ < 1/2 + 2'4 such that, for each r,,... ,f G G,

there exists n with \C\i^ntj + An\ > 1/2.

Proof. If a quotient of G has this property, so does G. The result is true for R/Z

by taking An = \Jk k/n + [0,9/16«]. A similar idea works if G has cyclic quotients

of arbitrarily larger order. If each element of G has a bounded order, it is enough to

take for An the family of sets f>_1(^) where B c 77, H is a finite quotient of G, 4> is

the quotient morphism and 1/2 < \B\ < 9/16.

Proof of Theorem 5. The argument given at the beginning of the proof of

Theorem 2 shows that one can suppose that, for some/ g Lx, Y = {p g Mq; p(f)

= a}, where

(25) a = sup{p(/),p G Mq).

Proposition 2 still holds when 1/4 and 3/4 are replaced by 2~4 and 1 — 2~4. Let

(k(n), /(«)) be an enumeration of N2. We can construct by induction a sequence

(Bn) of disjoint sets of G, with \B„\ < 2""~5 such that for each sequence w =

(wx,... ,wk(n)) of G, there exist two sequences u, v of G, there exists a measurable set

F, with G\F g Q, and there exists r¡ > 0 such that the set

{x g G; m(u, x)(xFf) > a - -q}

can be covered by finitely many translates of the set

{x g G; m(w ■ v, x)(xFf) > a - 1/n; m(w ■ v, x)(xBn) > 1 - 2"4}.

For / g N, let C, = U{Bn; l(n) = I}. An argument used several times shows that

there is p, g Mq, p¡(f) = a, Pi(C¡) > 1 — 2~4. From (25) we can assume that

P/ g Eq. Let (An) be a sequence as in Proposition 4. Let A = U„ Bn n /4/(B).

Since Q n ^4 = C, n /Í, we have |p/(/4) - P/(^4/)| < 2"4. Since p.,(A,) < |i4,| <

1/2 + 2"4 we get p¡(A) < 1/2 + 2'\ Now let tx,...,tq g G. There exists / with

\À, n n^^r,-^/! > 1/2. In particular, for i ^ q we have |^°, n (i, + À,)\ > 1/2 so

p(y4, n (i,. + >!/)) > 1/2. Since

(>l n(z, + ^))A(^l/ n(/,.+ >!,)) c (cxC/Juí/.+ÍCXC,)),

we get

p,(A n(t, + A)) > p.,^, n(z, + ^,)) - 2"3 > 1/2 - 2"3.
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By compacity, it follows that there is a cluster point p of the sequence (p,) with

p g Y, p(A) < 1/2 + 2"3, and p(A n (t + /F)) > 1/2 - 2^3 for each t g G. Since

1/2 — 2"3 > (1/2 + 2"3)2, it then follows from [2] that p is not extremal. However,

p g Ëq.     Q.E.D.
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